Raspberry Pi Blog

This is the official Raspberry Pi blog for news and updates from the Raspberry Pi Foundation, education initiatives, community projects and more!

Make our light-up Raspberry Pi box for #MonthOfMaking

On Tuesday, Rob at The MagPi magazine tweeted this:

The MagPi magazine on Twitter

Hey @Raspberry_Pi, wanna join us in making some stuff for #MonthOfMaking? Rob has some cosplay to do this week and other plans for the rest of the month…

And we said YES!

At this point in time, Alex was hiding in the Raspberry Pi Foundation makerspace, creating thingamabobs and whatsits with the laser cutter, and an idea came into her mind.

(Is it weird that I’m referring to myself in the third person? It is. I’ll stop.)

The idea started with this:

Raspberry Pi laser cut box #MonthOfMaking

Oddly satisfying, right?

And ended like this:

Raspberry Pi laser cut box #MonthOfMaking

Raspberry Crepe Cake?

With a little bit of this in between:

Raspberry Pi laser cut box #MonthOfMaking

For hiding treasures

And thanks to some cheap battery-powered lights and magnets from Poundland…

#MonthOfMaking

Whosits and whatsits galore

…it lights up too!

Raspberry Pi laser cut box #MonthOfMaking

Photograph taken inside my rucksack for ambience

Make your own

So, do you want to make your own? Of course you do.

Ideally, you need access to a laser cutter, but if you don’t have one, you can just cut out the layers from some thick cardboard using a craft knife.

You’ll need these four files:

These are slightly different to the ones I used, so the acrylic should press-fit without the need for the backing frame you see in the image above. And, though you can’t see them in the photos, magnets keep the box closed. You could also use velcro.

Feel free to resize the files and change the box design to better fit whatever you want to put inside, but remember: making these boxes to sell, or diverging from our brand guidelines when using the Raspberry Pi logo, is against our trademark rules.

#MonthOfMaking

Join Raspberry Pi and The MagPi magazine in the #MonthOfMaking by using the hashtag in your social posts sharing your makes online. And, just as you can see from my light-up box, your make doesn’t have to use any digital technology. Bake a cake, stitch loop art, restore a car — whatever you plan on making this month, make sure we see your creation! Have fun!

3 Comments

Handheld text-based adventure gaming with Quest Smith

Play text-based adventure games that print out in real time, with Quest Smith: the Raspberry Pi Zero W–driven handheld gaming device from Bekir Dağ.

Quest Smith

Quest Smith is a raspberry pi zero driven thermal printing text based game. In each level, it gives you options to choose so every game is different than the other one.

Text-based adventure games

Today I learned:

Around 1975, Will Crowther, a programmer and an amateur caver, wrote the first text adventure game, Adventure (originally called ADVENT because a filename could only be six characters long in the operating system he was using, and later named Colossal Cave Adventure).

But I’m sure you already knew that.

According to the internet, text-based games in their most simple form are video games that use text instead of graphics to let players progress. You read the description of your surroundings and choose from a set of options, or you type in your next step and hope the game understands what you’re talking about.

Colossal Cave Adventure

We have a conversation going in our team right now about whether the term ‘text-based games’ is solely used for video games of this nature, or whether choose your own adventure books also fall into the category of text-based games. Leave your thoughts in the comments.

Anyway…

Quest Smith!

After encountering a similar handheld gaming device in a Berlin games museum, Bekir Dağ decided to build his own using a Raspberry Pi Zero W.

Quest Smith text-based game

For Quest Smith’s body, Bekir Dağ designed a 3D print, and he provides the STL files for free on Thingiverse. And for the inner workings?

A Raspberry Pi Zero W fits snugly into the body alongside a thermal printer, a battery, and various tactile buttons. The battery is powered by a solar panel mounted on the outer shell, and all components are connected to a TP4056 board that allows the battery to power the Pi.

Quest Smith text-based game

The Quest Smith software is still somewhat of a work-in-progress. While users can build Quest Smith today and start playing, Bekir has put out the call for the community to submit their own parts of the story.

Each level requires two versions of the story, which makes the possiblities grow exponentially. So it will be very difficult for me to finish a single story by myself. For the player to reach level 9, we will need to have 1023 story parts to be written. If you can help me with that, it would be amazing!

To see more of Quest Smith’s build process, find the files to make your own device, and instructions on how to contribute toward the story, visit the Quest Smith Hackster.io page.

More text-based adventuring with Python

If you’re interested in writing your own text-based adventure game in Python, we’ve got a free online course available in which you can learn about object-oriented programming while creating a text-based game. And for a briefer intro, check out Wireframe magazine issue 6, where game developer Andrew Gillett explains how to make a simple Python text adventure.

6 Comments

IBM Q System One quantum computing on a Raspberry Pi?

IBM Q System One: the world’s first commercial, integrated, universal, approximate quantum computing system…

…on a Raspberry Pi?

What is a quantum computing system?

An excellent question and, while some of you may know the answer, here is Kurzgesagt‘s ‘in a nutshell’ explanation of quantum computing for the rest of us:

Quantum Computers Explained – Limits of Human Technology

Where are the limits of human technology? And can we somehow avoid them? This is where quantum computers become very interesting.

Qrasp — quantum computing on a Raspberry Pi

After seeing a press announcement for IBM’s Q System One, the first-ever commercial quantum computer, IBM Q Ambassador Hassi Norlen decided he wanted his own, and reached for his trusty Raspberry Pi to build one.

“This will not be easy,” he admits on his Medium blog post for the Qrasp project. “IBM Q System One is, after all, a cloud-based quantum computing offering, with the main hardware, cryostats, quantum chips, and all locked away in the IBM labs.”

Hassi goes on to explain the list of required ingredients for building your own Qrasp, including the Raspberry Pi Sense HAT, and the programs one can run on the finished device.

Qrasp

Qiskit interface for Raspberry PI with SenseHat

It’s a great blog post, and to save me summarising it here, check it out for yourself. You’ll also find a link to the GitHub repo for Qrasp, and other tidbits of information on making the most out of the final build.

2 Comments

Automatic Calling System using Raspberry Pi

If like me, you’re awful at remembering birthdays, you need Piyush Charpe’s Automatic Birthday Calling System. It’s the Raspberry Pi device that calls on your behalf – aka Heaven for Introverts.

Building business relationships through niceness

Piyush’s father works as an insurance adviser, and, because he’s a lovely chap, he makes it his mission to wish all of his clients a happy birthday. Nice, right? I hardly remember the birthdays of my closest friends: and here’s Piyush’s father sending his kindest regards to everyone on his client list.

Way to make me feel like a bad friend, Papa Charpe!

So good are Charpe Sr’s customer service skills that he’s unexpectedly built himself an unmanageable amount of birthday wishes to send. So that’s where his son comes in with his idea for an automatic birthday calling system. Huzzah! Take my money, etc. etc.

Automated calling with a Raspberry Pi

Piyush used a Raspberry Pi Zero W, 4G GSM module and Google Firebase for the system, alongside an audio recording of his father wishing a happy birthday, and some help from a friend with experience building Android apps.

Raspberry Pi automatic birthday caller

Acquiring a client list from his father that included names, dates of birth and telephone number (our GDPR manager is weeping into her compliance documents as she reads this), Piyush added the information to Google Firebase, an online real-time database system.

Raspberry Pi automatic birthday caller

The accompanying Android app allows his father to add and remove clients from the list, and updates him on successfully-made calls; it’ll also let him know who he’ll need to follow up with if they were unavailable to receive their birthday greeting.

The system updates at midnight, consolidating a list to be called at 10am the following day. And, at the end of the month, the system’s call history is deleted automatically after sending it in CSV format to his father.

The system has now been working 24/7 for eight months, and has been adopted by other business owners in the area.

You can read more about the project here.

Put down your phone!

What a lovely use of technology with great scope for expansion. Why stop at birthdays? Do I remember my parents’ anniversary? Of course not. And don’t get me started on updating my nearest and dearest on life events, changing address, etc. This system is genius! Introverts need never talk to another human being again! Rejoice!

32 Comments

How musical game worlds are made | Wireframe #8

88 Heroes composer Mike Clark explains how music and sound intertwine to create atmospheric game worlds in this excerpt from Wireframe issue 8, available now.

Music for video games is often underappreciated. When I first started writing music in my bedroom, it took me a while to realise how much I was influenced by the worlds that came from my tiny CRT TV. A couple of years ago, I was lucky enough to be approached by Bitmap Bureau, an indie startup who hired me to compose the music for their first game, 88 Heroes.

88 Heroes is a platformer styled like a Saturday morning cartoon. Interestingly, cartoon soundtracks have a lot in common with those for stage productions: short musical cues accompany the actions on screen, so if someone violently falls downstairs, you hear a piano rolling down the keys. This is called ‘mickey mousing’ in cartoons, but we hear similar things in film soundtracks.

Take Raiders of the Lost Ark, scored by John Williams: for every heroic rope swing, leap of faith, or close encounter with danger, the main theme can be heard powering through the dissonances and changing rhythms. It fills the audience with hope and becomes synonymous with the lead character – we want to see him succeed. Let’s not forget the title theme. Every time you see the Star Wars logo, does that grand title theme play in your head? It’s the same with video games. The challenge here, of course, is that players often leave the title screen after three seconds.

Three seconds is all you need though. Take Super Mario World’s soundtrack, composed by Koji Kondo. Many of its levels have the same leading melody, which changes subtly in tonality and rhythm to create the appropriate mood. The most repeating part of the melody is four bars long, but we hear it in so many forms that we only need the first two bars to know where it’s from. In classical music, this is called ‘variations on a theme’. In video games, we call it a ‘sonic identity’.

Action platformer 88 Heroes, featuring music by Mike Clark.

How a picture should ‘sound’

Sonic identity informed my approach to the 88 Heroes soundtrack. The title screen tells us that an unknown group is going to save the day. I first thought about unlikely heroes who end up on an adventure, and Back to the Future, scored by Alan Silvestri, sprang to mind. The second inspiration came from traditional superheroes, like Superman. I composed a melody which travels between the first and fifth notes in the scale (in this case C and G), with little flourishes of the notes in-between. It’s a triumphant, heroic melody.

This concept helps to connect these worlds beyond their visuals. It took a long time for games to evolve into the cohesive open-world sandboxes or MMOs we see today; the technology that masked loading screens to create a seamless experience was unheard of in the 1990s, so a melody that you hear in different ‘costumes’ gives these games a sense of cohesion.

Intelligent instruments

What if you have levels (or worlds) so big that some areas need to be loaded? That’s where non-linear composition comes in. Banjo-Kazooie, released for the N64 in 1998, was among the first 3D games to feature dynamic music. It used a technique called MIDI channel fading. MIDI stands for Musical Instrument Digital Interface; think of it as a universal language for music that is played back in real time by the hardware. As you walk into caves, fly in the sky, or move near certain characters, instruments fade in and out using the different MIDI channels to mimic the atmosphere, give the player an audio cue, and build and release tension.

Learning how to write music that changes as you play might seem impossible at first, but it becomes second nature once you understand the relationship between every instrument in your composition. Many digital audio workstations, like Logic and FL Studio, let you import MIDI data for a song (so you have all the notes in front of you) and set the instruments yourself. Try slowly fading out or muting certain tracks altogether, and listen to how the mood changes. What could this change represent in a video game? It’s like when you’re riding Yoshi in many of the Mario games; the fast bongos come in to represent the quick-footed dinosaur as he dashes at high speeds.

Undertale’s soundtrack blends analogue synth instruments with a plethora of real instruments to help create emotion.

Music is used to evoke emotions that wouldn’t be possible with visuals alone. Beep: A Documentary History of Game Sound shows a six-second video of a boat accompanied by two soundtracks; one is a light and happy guitar piece, the other a grating, scary, orchestral dissonance. Through these two extremes, the music creates the mood by itself. I remember playing Metroid Prime and finding the Chozo Ghost enemies rather scary, not because of their appearance, but because of the unnerving music that accompanies them. Music and sound design are one and the same. Think about what feelings you can create by taking music away entirely — it’s a great way to create tension before a boss battle or pivotal plot point, and it really works. In Undertale, scored by Toby Fox, there are times when the music stops so abruptly during NPC dialogue that you feel shivers down your spine.

So, what if you’re trying to come up with some game music, and you have writer’s block? Well, the next time you play a new game, turn the sound off. As you’re playing, focus on how the story, art, or characters make you feel, and focus on the emotions the game is trying to convey. Then, think of a time when a song made you feel happy, sad, joyful, anxious, or even frightened. Maybe you can use the music to create the mood you want for that game, as opposed to what the game makes you feel. By finding these emotions and understanding how they can change, you’ll be able to write a score that helps strengthen the immersion, escapism, and player investment in your game.

You can read the rest of the feature in Wireframe issue 8, available now in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from us – worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

Markets, moggies, and making in Wireframe issue 8

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusives, and for subscriptions, visit the Wireframe website to save 49% compared to newsstand pricing!

1 Comment

Get making in March with #MonthOfMaking | MagPi issue 79

Hi folks! Rob from The MagPi here. This month in issue 79 of The MagPi, we’re doing something a little different: we invite all of you (yes, you!) to join us in the #MonthOfMaking.

Learn more about the #MonthOfMaking inside issue 79!

#MonthOfMaking

What does this mean? Well, throughout March, we want you to post pictures of your works-in-progress and completed projects on Twitter with the hashtag #MonthOfMaking.

#MonthOfMaking

As well as showing off the cool stuff you’re creating, we also want you to feel comfortable to ask for help with projects, and to share top tips for those that might be struggling.

If you’re not sure where to start, we’ve put together a massive feature in issue 79 of The MagPi, out now, to help you decide. On top of various project ideas for different skill levels, our feature includes some essential resources to look at, as well as inspirational YouTubers to follow, and some competitions you might want to take part in!

So, go forth and make! I’m really looking forward to seeing what you all get up to during this inaugural #MonthOfMaking!

Get The MagPi 79

You can get The MagPi 79 from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days for a print copy. You can also get the issue online: check it out on our store, or digitally via our Android or iOS apps. And don’t forget, there’s always the free PDF.

Free Raspberry Pi 3A+ offer!

We’re still running our super special Raspberry Pi 3A+ subscription offer! If you subscribe to twelve months of The MagPi, you’ll get a Raspberry Pi 3A+ completely free while stocks last. Make sure to check out our other subs offers while you’re there, like three issues for £5, and our rolling monthly subscription.

Get a 3A+ completely free while stocks last!

3 Comments

Celebrate with us this weekend!

The Raspberry Jam Big Birthday is almost here! In celebration of our seventh birthday, we’re coordinating with over 130 community‑led Raspberry Jams in 40 countries across six continents this weekend, 2-3 March 2019.

Raspberry Jams come in all shapes and sizes. They range from small pub gatherings fueled by local beer and amiable nerdy chatter to vast multi-room events with a varied programme of project displays, workshops, and talks.

To find your nearest Raspberry Jam, check out our interactive Jam map.

And if you can’t get to a Jam location this time, follow #PiParty on Twitter, where people around the world are already getting excited about their Big Birthday Weekend plans. Over the weekend you’ll see Raspberry Jams happening from the UK to the US, from Africa to – we hope – Antarctica, and everywhere in between.

Coolest Projects UK

The first of this year’s Coolest Projects events is also taking place this weekend in Manchester, UK. Coolest Projects is the world’s leading technology fair for young people, showcasing some of the very best creations by young makers across the country (and beyond), and it’s open for members of the public to attend.

Tickets are still available from the Coolest Projects website, and you can follow the action on #CoolestProjects on Twitter.

CBeebies’ Maddie Moate and the BBC’s Greg Foot will be taking over Raspberry Pi’s Instagram story on the day, so be sure to follow @RaspberryPiFoundation on Instagram.

7 Comments

A smart guitar for blind, deaf, and mute people

ChordAssist aims to bring the joy of learning the guitar to those who otherwise may have problems with accessing guitar tutorials. Offering advice in Braille, in speech, and on-screen, ChordAssist has been built specifically for deaf, blind, and mute people. Creator Joe Birch, who also built the BrailleBox device, used Raspberry Pi, Google Assistant, and a variety of accessibility tools and technology for this accessible instrument.

Chord Assist: An accessible smart guitar for the blind, deaf and mute

Powered by the Google Assistant, read more at chordassist.com

Accessibility and music

Inspired by a hereditary visual impairment in his family, Buffer’s Android Lead Joe Birch spent six months working on ChordAssist, an accessible smart guitar.

“This is a project that I used to bring my love of music and accessibility (inspired by my family condition of retinitis pigmentosa) together to create something that could allow everyone to enjoy learning and playing music — currently an area which might not be accessible to all,” explained Joe when he shared his project on Twitter earlier this month.

BrailleBox

This isn’t Joe’s first step into the world of smart accessibility devices. In 2017, he created BrailleBox, an Android Things news delivery device that converts daily news stories into Braille, using wooden balls atop solenoids that move up and down to form Braille symbols.

Demonstration of Joe Birch's BrailleBox

ChordAssist

This same technology exists within ChordAssist, along with an LCD screen for visual learning, and a speaker system for text-to-speech conversion.

Chord Assist was already an Action on the Google Project that I built for the Google Home, now I wanted to take that and stick it in a guitar powered by voice, visuals, and Braille. All three of these together will hopefully help to reduce the friction that may be experienced throughout the process of learning an instrument.

ChordAssist is currently still at the prototype stage, and Joe invites everyone to offer feedback so he can make improvements.

To learn more about ChordAssist, visit the ChordAssist website and check out Joe’s write-up on Medium.

4 Comments

Digital lava lamp!

Forget the iconic conic shape of the lava lamp from the sixties and seventies — Julian Butler’s digital lava lamp gives you all the magic of its predecessor, without any of the hassle!

My programmable digital lava lamp

Showcasing the construction and display modes of my programmable digital lava lamp. Built with the help of Processing software, FadeCandy + Raspberry Pi hardware this lamp can respond to sound and other aspects of it’s environment via wifi etc.

I lava you (I lava you not)

When I was a teenager, we had a lava lamp at home. It was orange, it took an age to get going, and once the lava was in full flow, it radiated with the heat of a thousand suns.

Julian Butler’s modern version is so much better. “Showcasing the construction and display modes of [his] programmable digital lava lamp,” Julian has shared a rather hypnotic video on his YouTube channel. He’s also created a three-part build tutorial about the project.

Inspired by his co-worker’s salt mood lamp, Julian decided to build something similiar, aiming to smoothe out the creases and add more functionality.

Using a Raspberry Pi and Micah Elizabeth Scott‘s FadeCandy board, plus 120 NeoPixel LEDs, Julian got to work programming lights and prototyping casings until he was happy with the result.

The face of Julian happy with the result

And the result is a beautiful, programmable digital lava lamp: all the mesmerising fun of a regular lava lamp, without the excruciating wait time and significant risk of second-degree burns. Plus, it will never leak, and it can be any colour you like!

Get groovy, baby

Watch Julian’s video, ooh and aah at the swirly-whirly wonderment of his digital creation, and then visit his blog for all the details of how to make your own. Julian has plans to add more interactive elements to the lamp, including voice recognition, and we can’t wait to see the final result!

5 Comments

What we are learning about learning

Across Code Clubs, CoderDojos, Raspberry Jams, and all our other education programmes, we’re working with hundreds of thousands of young people. They are all making different projects and learning different things while they are making. The research team at the Raspberry Pi Foundation does lots of work to help us understand what exactly these young people learn, and how the adults and peers who mentor them share their skills with them.

Coolest Projects International 2018

Senior Research Manager Oliver Quinlan chats to participants at Coolest Projects 2018

We do our research work by:

  • Visiting clubs, Dojos, and events, seeing how they run, and talking to the adults and young people involved
  • Running surveys to get feedback on how people are helping young people learn
  • Testing new approaches and resources with groups of clubs and Dojos to try different ways which might help to engage more young people or help them learn more effectively

Over the last few months, we’ve been running lots of research projects and gained some fascinating insights into how young people are engaging with digital making. As well as using these findings to shape our education work, we also publish what we find, for free, over on our research page.

How do children tackle digital making projects?

We found that making ambitious digital projects is a careful balance between ideas, technology, and skills. Using this new understanding, we will help children and the adults that support them plan a process for exploring open-ended projects.

Coolest Projects USA 2018

Coolest Projects USA 2018

For this piece of research, we interviewed children and young people at last year’s Coolest Projects International and Coolest Projects UK , asking questions about the kinds of projects they made and how they created them. We found that the challenge they face is finding a balance between three things: the ideas and problems they want to address, the technologies they have access to, and their skills. Different children approached their projects in different ways, some starting with the technology they had access to, others starting with an idea or with a problem they wanted to solve.

Achieving big ambitions with the technology you have to hand while also learning the skills you need can be tricky. We’re planning to develop more resources to help young people with this.

Coolest Projects International 2018

Research Assistant Lucia Florianova learns about Rebel Girls at Coolest Projects International 2018

We also found out a lot about the power of seeing other children’s projects, what children learn, and the confidence they develop in presenting their projects at these events. Alongside our analysis, we’ve put together some case studies of the teams we interviewed, so people can read in-depth about their projects and the stories of how they created them.

Who comes to Code Club?

In another research project, we found that Code Clubs in schools are often diverse and cater well for the communities the schools serve; Code Club is not an exclusive club, but something for everyone.

Code Club Athens

Code Clubs are run by volunteers in all sorts of schools, libraries, and other venues across the world; we know a lot about the spaces the clubs take place in and the volunteers who run them, but less about the children who choose to take part. We’ve started to explore this through structured visits to clubs in a sample of schools across the West Midlands in England, interviewing teachers about the groups of children in their club. We knew Code Clubs were reaching schools that cater for a whole range of communities, and the evidence of this project suggests that the children who attend the Code Club in those schools come from a range of backgrounds themselves.

Scouts Raspberry Pi

Photo c/o Dave Bird — thanks, Dave!

We found that in these primary schools, children were motivated to join Code Club more because the club is fun rather than because the children see themselves as people who are programmers. This is partly because adults set up Code Clubs with an emphasis on fun: although children are learning, they are not perceiving Code Club as an academic activity linked with school work. Our project also showed us how Code Clubs fit in with the other after-school clubs in schools, and that children often choose Code Club as part of a menu of after-school clubs.

Raspberry Jam

Visitors to Pi Towers Raspberry Jam get hands-on with coding

In the last few months we’ve also published insights into how Raspberry Pi Certified Educators are using their training in schools, and into how schools are using Raspberry Pi computers. You can find our reports on all of these topics over at our research page.

Thanks to all the volunteers, educators, and young people who are finding time to help us with their research. If you’re involved in any of our education programmes and want to take part in a research project, or if you are doing your own research into computing education and want to start a conversation, then reach out to us via [email protected].

No Comments