POWER UP YOUR LIFE WITH RASPBERRY PI

Five fun projects to help you improve & automate your world

BUILD AN INFINITY MIRROR
Mike Cook concludes his cool two-parter

RETRO VISION
Use an old TV with your new Pi Zero

NEW FEATURES COMING TO SONIC PI
MORE AMAZING COMMUNITY PROJECTS
TURN YOUR PI ZERO INTO A USB GADGET
OPEN GL: WHAT’S ALL THE FUSS ABOUT?

BLUETOOTH AUDIO GUIDE
Turn your Pi 3 into a music streamer

WHAT IS PRESSURE?
Find out by doing some science with the Sense HAT

007 GADGETS
Pi-powered gadgets that are licensed to thrill

THE ONLY PI MAGAZINE WRITTEN BY THE READERS, FOR THE READERS
VNC SDK now available for RASPBERRY PI!

With VNC SDK you can connect VNC Viewers with VNC Servers easily over the Internet. Using VNC Cloud, no complicated network configuration at either end is required!

What will you create with VNC SDK?
Check it out here: https://developer.realvnc.com/

Getting connected: www.realvnc.com/products/vnc/raspberrypi/
For more information contact vncdeveloper@realvnc.com
Life can be hectic, can’t it? At times like this, it’s the little things that suffer. You forget to record your favourite TV show, you miss the weather report, or – worst of all – you end up drinking cold coffee. As our features editor Rob Zwetsloot explains at the start of this month’s cover feature, while technology has advanced to a point that we can navigate the globe with a tiny monolith stored in our pockets, there’s still too much to do and too little time to do it. There’s tons of great technology out there – all we’ve got to do is find new and interesting ways to make to work in our favour. The Raspberry Pi is the perfect example and we’ve put together five projects to demonstrate how you can use it to power up your life. You can get started today on page 20 – and, if you’re inspired by our ideas, do let us know what little life hacks you have in mind using the Raspberry Pi.

For our other big feature this month, we’ve put together a top-secret dossier of James Bond-inspired hacks that Q himself would be proud of. Get started on page 66 and see what top-secret intel you can gather with these rather mischievous Raspberry Pi projects.

Enjoy the issue!

Russell Barnes
Managing Editor
POWER UP YOUR LIFE

TUTORIALS

> PI ZERO USB GADGET 46
Turn any computer into a Raspberry Pi!

> BLUETOOTH AUDIO WITH PI 3 50
Utilise the Pi 3’s excellent Bluetooth functionality

> SONIC PI PT9: TRACKING BEATS 52
This month Sam Aaron explains Sonic Pi’s tick system

> WHAT IS PRESSURE? 54
Learn science with the Sense HAT in part 2 of our series

> RCA OUTPUT FOR PI ZERO 56
ModMyPi.com shows us how to hook up to old TVs

> MIKE’S PI BAKERY 58
Join Mike for the second part of his Infinity Mirror project

> TIME-LAPSE WITH WOLFRAM 62
Experiment with the Pi camera and the Wolfram language

IN THE NEWS

THE PI 3 LAUNCH REPORT
See what happened at the launch of Raspberry Pi 3 last month in our event round-up

OPEN GL

Find out what all the fuss is about in our look at what OpenGL support means for the Raspberry Pi 2 & 3

CODE CLUBS

Learn how you could start a Code Club in your local area with a little help from The MagPi
JAMES BOND SPY PROJECTS
Amazing Pi-powered gadgets with a licence to thrill. Oh, and James - do please try to return the equipment in one piece this time...

GALAGA PI MINI ARCADE CABINET
A flawlessly detailed recreation of the arcade classic

SHEEP TAGGER
A useful RFID hack for farmers everywhere

LICHEN BEACONS
An incredible digital sound art installation

BURT BOT
Pi community blogger Average Man shows us his latest and greatest creation

3Ucreate ASTRO PI KITS
MUST BE WON!
We've got three amazing UCreate Astro Pi kits to give away - jump across to our competition to find out more

SUPER SONIC PI
Sam Aaron talks us through the very latest version of Sonic Pi

YOUR PROJECTS

REGULARS

NEWS
The biggest stories from the world of Raspberry Pi

TECHNICAL FAQ
If you've got a problem, we've got the answer

BOOK REVIEWS
The latest computer books you should be reading

THE FINAL WORLD
This month Matt Richardson celebrates a year in Pi

COMMUNITY

THIS MONTH IN PI
Discover what else has been happening this month

MIND THE SKILLS GAP
A report from the Manchester Digital Skills Festival

EVENTS
Find a community gathering near you and get involved!

LETTERS
What do you think about stuff? We want to know...

REVIEWS

PIMORONI P8266 IOT
CHROMIUM RPI 0.4.1
RASPBERRY PI ZERO KIT
RASPBERRY SQUID
The morning of Monday 29 February saw a brisk yet very bright dawn on London’s South Bank, with the low winter sun creating sharp shadows across the city. We were looking at it from high above in the Shard at about 8am, an hour after the Raspberry Pi 3 had been announced, and preparing for a live stream from element14 to celebrate the fourth birthday of the Raspberry Pi and to talk about the Raspberry Pi 3.

“Four years old, eight million units in the wild – we thought it would be fun to do something to celebrate,” Eben Upton, CEO of Raspberry Pi Trading and co-creator of the original Raspberry Pi, explained during his talk at the launch conference. “So we’ve got a new product: Raspberry Pi 3.”

The 8 million number for Pis sold is also an important new milestone – this makes the Raspberry Pi the best selling British computer ever, finally beating the Amstrad PCW. Later on in the day, Eben would disclose that the next milestone goal was 12 million, a number that would make the Pi the third bestselling computer of all time, only behind Macs and PCs.

Revealing the Raspberry Pi 3 properly to the world, Eben got to detail all the changes and updates made to the Pi 3 that mattered: 802.11n wireless LAN; Bluetooth Classic and Low Energy; a much faster 64-bit processor that, even when running 32-bit code, is much better than the previous model; and a slightly upgraded VideoCore IV chip. You can read all about the full range of new features in detail in issue 43 of The MagPi, including our own benchmarks.

Another surprise was waiting, though, as Eben revealed the Compute Module 3; this is an upgrade to the original Compute Module used in projects prototyped on the Pi, this time with the BCM2837 chip now seen in the Pi 3. “There are two missing-in-action products in our roadmap,” Eben explained when asked about the naming. “The Compute Module 2 and the Raspberry Pi 2 Model A. What happened to those products is that the Raspberry Pi 3 came in nice and quickly and kind of closed the window for them. We were selling so many 2Bs that all our chips were getting pulled into 2B; by the time we...
had enough pipeline to build those other products, we were only two to three months away from the [Pi] 3 launch. We expect the 3 to be around for a little longer than 2 was, so we’re expecting that there should be a 3A.”

A similar conference was held at the RC Components launch event later that morning at the Globe. Eben gave a more personal presentation about the Raspberry Pi: “I owe everything I have in my life to the hardware I had as a kid. I hope there are kids who will look back on the Raspberry Pi, and particularly the Raspberry Pi 3, with the same sort of affection.”

Eben hoped that the Raspberry Pi as a secondary ‘breakable’ computer will give kids the confidence to make a start in computing. He explained that the family computer is a part of the family infrastructure: you can’t mess around with it. He extended his analogy to the family car – something you could feasibly take apart and put together again, but are very likely to do incorrectly. A broken car, and a broken computer, severely inconveniences a family.

On display at both locations was an excellent selection of projects from a diverse range of people that celebrate the use of the Raspberry Pi, from 360-degree camera hats and motors with feedback loops, to student robots and theme park dinosaur attractions. The Pi community is large and still expanding with every new release – day one stock of the Raspberry Pi 3 sold out in a lot of places – and the Pi 3 looks like it will not only help that community to grow but also further the educational mission of the Raspberry Pi Foundation.

Event later that morning at the Globe. Eben gave a more personal presentation about the Raspberry Pi: “I owe everything I have in my life to the hardware I had as a kid. I hope there are kids who will look back on the Raspberry Pi, and particularly the Raspberry Pi 3, with the same sort of affection.”

Eben hoped that the Raspberry Pi as a secondary ‘breakable’ computer will give kids the confidence to make a start in computing. He explained that the family computer is a part of the family infrastructure: you can’t mess around with it. He extended his analogy to the family car – something you could feasibly take apart and put together again, but are very likely to do incorrectly. A broken car, and a broken computer, severely inconveniences a family.

On display at both locations was an excellent selection of projects from a diverse range of people that celebrate the use of the Raspberry Pi, from 360-degree camera hats and motors with feedback loops, to student robots and theme park dinosaur attractions. The Pi community is large and still expanding with every new release – day one stock of the Raspberry Pi 3 sold out in a lot of places – and the Pi 3 looks like it will not only help that community to grow but also further the educational mission of the Raspberry Pi Foundation.

ANDROID PI

We followed up with Eben about his thoughts on Android on Raspberry Pi

During the event, a question arose about whether Android might be supported on the Pi 3. A short answer of yes was followed up by a more thorough explanation.

“[This is thanks to] all of the things that have changed over the past six months,” Eben explained. “We now have an open graphics driver stack which we’re currently shipping as a public beta, and there’s been a lot of work done by the community to port both Android and Chrome OS to run on top of that integration – it’s kind of an exciting thing.”

Android has been tried before on the Raspberry Pi, but the results were never very promising until the recent driver stack beta.

“I think Android would run pretty well, though I think there’s still a bit of work to do on driver performance and stability.” Eben elaborated. “Obvious use case is to run apps from the Android store. Would certainly be nice to see that.”
It’s been four years since the Raspberry Pi was released, and everyone celebrated in style.

During the launch of the Raspberry Pi 3, one of the sentiments that Eben Upton, co-creator of the Pi and CEO of Raspberry Pi Trading, mentioned a few times was that having a birthday on 29 February makes it harder to celebrate the true birthday of the Pi. As we’re now in another leap year, it’s time to make it a big celebration.

Held on the weekend of 5–6 March in the Raspberry Pi’s home town of Cambridge, the event saw 1,500 people turn up to pack the Cambridge Computer Lab and show off their love for a very small and very cheap computer. It was an incredible sight as people piled into talks and crowded around amazing demos that showed off the true power of the Raspberry Pi: to open up computing to everyone, no matter their age or background.

Party all day long
As well as the daytime convention party, there was the evening party on Saturday which reportedly required 110 pizzas (we were too busy eating them to count) and included the most raspberry-flavoured delights you’re likely to see for the rest of the year.

It was an incredible weekend filled with happy and amazing people that really brought the community together. Same time next year, then?

"An incredible weekend filled with happy, amazing people"
Jumpstart Raspberry Pi Projects with **Cayenne**

The first **drag-and-drop project builder** developed for **makers** to quickly design and prototype amazing Raspberry Pi **IoT projects**

- Customizable online dashboard with drag-and-drop widgets
- Remotely control sensors, motors, actuators, GPIO boards, and more
- Create triggers and threshold alerts for devices, events, and actions
- Schedule one-time or multi-device events for easy automation
- Start your projects directly from the mobile app

Get **Cayenne** for **FREE** and start building today!

cayenne-mydevices.com/magpi

Raspberry Pi is a trademark of the Raspberry Pi Foundation.
musical programming environment Sonic Pi (sonic-pi.net) is getting a raft of new features for version 2.10, due out in the next few weeks. New synths include three chiptune sounds based on the classic NES games console. There are four more FX to play with: the human speech-like ‘vowel’, ‘whammy’ and ‘octaver’ transposition effects, and ‘mono’ to merge stereo sample channels. There’s also support for working with large directories of samples via a powerful new filter system. Other additions include ‘doubles’ and ‘halves’ to generate ring values, and an ‘on’ command to run a block of code if a condition is met. See magpi.cc/21D4x8o for the full list of changes.

As its creator Dr Sam Aaron tells us, it’s all part of the ongoing process to keep improving Sonic Pi, to make it more flexible for live-coding music performances, and also simpler to work with in the classroom. “One of the fundamental aspects of Sonic Pi, which people really haven’t figured out yet, is that it has incredible depth as a result of a lot of deep thought. For example, the randomisation being massively deterministic.” One new randomisation function in v2.10 is the ‘pick’ command, which is similar to ‘shuffle’ but with the potential for duplicates. “When people start using randomisation as a reliable reproducible building block for their compositions, then these kind of functions become very important.”

Tuning it up

The new set_cent_tuning command should also come in handy for tuning Sonic Pi to use alongside other musical instruments. “I did a gig before Christmas with a concert pianist and he said ‘Sam, can you tune Sonic Pi up?’ and I could, but it was a bit of a faff so I built this thing to make it easier.” Sam has also live-coded with bands and guitarists, and views Sonic Pi as “a musical instrument which happens to be very easy to code with.” He also thinks it’s important that Sonic Pi is seen as more than a coding tool, even for its educational purpose: “People say ‘I want to study this because I’ve seen people do amazing things with it’.”

Many new features arise from Sam observing what children try out in Sonic Pi during school workshops. Another source of ideas is his own rehearsals for live-coding gigs. “I practise with the system two hours a day, most days. During a practice session, I will keep a diary of thoughts… things about ‘why isn’t this so simple?’, ‘this should be possible’… I use that list for driving feature developments.”

Developing Sonic Pi at the University of Cambridge’s Computer Laboratory, Sam says the work is split into three main categories. As well as software development, he uses it as a live performance instrument, and goes into schools and universities to do workshops. “All of those things, I try to do with the Raspberry Pi if possible.”
While Sonic Pi is also available for Windows and Mac OS X – with over 200,000 downloads – it comes pre-installed on the Pi’s Raspbian OS, and the project is funded by the Raspberry Pi Foundation. Back in late 2012, a few months after the Pi’s launch, Sam was asked to come up with a way of engaging schoolchildren with creative coding. Sonic Pi was originally conceived as a “guerrilla project” with a short three-month development period in which to “design a fully built system, collaborate with a teacher [Carrie-Anne Philbin], design a scheme of work, deliver it in lessons, and evaluate it!”

Education and the future

Since then, Sonic Pi has developed into a sophisticated educational tool – for both computing and music curricula. It’s based on Ruby, which Sam regards as an ideal language for educational purposes, particularly for bridging the gap between block- and text-based coding. Sonic Pi is designed to be easily accessible for everyone, including those with no musical background. Nor do users require a deep understanding of the language to start using it: “If you only need to do musically simple things, then the code is very, very simple.”

Sam is also very interested in ‘liveness’: the ability to change things on the fly while running code, as introduced in Sonic Pi v2.0. “It leads to a deeper engagement, a faster iteration of experimentation, play, and risk-taking. And then, when you start doing an endeavour in front of an audience, it fundamentally changes how you perceive programming.”

As for the future of Sonic Pi, the next major addition revolves around input/output, with support for MIDI, DMX, and the Pi’s GPIO pins; this could be used to sync a light show with the music, for instance. Sam is already working on this, using Erlang to relay messages with reliability and low latency, although it’s likely to take many months to perfect.

Most exciting is the prospect of sharing messages with other computers running Sonic Pi for jamming sessions, with the potential to create Sonic Pi ‘orchestras’ in schools. “I could also send those messages to a web server and have it forward them on to other people around the world, at which point I have distributed jamming. Or for streamcasting, where I could actually perform to other people... all they need is a version of Sonic Pi.” The ultimate aim is to enable children to screencast their performances with great ease and very low bandwidth requirements, with the potential for others to listen in via ‘radio stations’ within Sonic Pi.
Join nine talented young people on 23 April at Raspberry Pi Towers to see how they’ve merged technology and art for their end-of-year exhibition

While the event is free, available spaces are in short supply. Since we’re big shots in the world of Raspberry Pi, however, we’ve managed to secure three sets of two tickets. Want to take a friend or relative to see how art meets tech? Email us at competition@raspberrypi.org with your details, using ‘New Works Exhibition’ as the subject.

The Raspberry Pi Creative Technologists programme is open to artistic individuals aged 17–21, with the aim to help guide those selected to use technology to make their ideas and projects a reality. The 2016 cohort have spent the last year being mentored by the Raspberry Pi Foundation and various industry partners, attending field trips and getting the support they need to move their own projects forward.

The Creative Technologists’ experience culminates with an end-of-year exhibition in which each Creative Technologist shows off their innovative project that combines technology with art and other creative pursuits. The New Works Exhibition is taking place on 23 April and will showcase their accomplishments and demonstrate how diverse technology can be when it comes to being creative, no matter the form.

We’re certainly looking forward to what they have in store. The 2016 cohort comes from all areas of the arts and technology spectrum, with specialisations including music, animation, programming, engineering, and writing – there’s even a magician.

This exhibition will comprise an exclusive opening night, with an open-access exhibition the following day. If you’re interested in a free ticket to the 2016 Creative Technologists’ New Works Exhibition at Raspberry Pi’s shiny new HQ in the heart of Cambridge, you can learn more about it at rpct.io and apply for your free ticket via magpi.cc/rpct2016. We’ve also secured some tickets to give away – see the boxout on this page for details.
✓ **Power supply**
 9-28Vdc power supply, with surge and reverse polarity protection

✓ **Real time clock**
 real time clock with on-board lithium back-up battery

✓ **Serial ports**
 standard RS-232 and RS-485 interfaces to the Raspberry Pi serial line, with opto-isolator and electrostatic discharge protection

✓ **Buzzer**
 on-board buzzer, connected to an I/O pin of the Raspberry Pi board for acoustic feedback

✓ **UPS version with hardware watchdog**
 integrated uninterruptible power supply, external lead-acid 12V battery required

✓ **Strato Pi Server**
 pre-assembled and tested Raspberry Pi 2 Model B with Strato Pi board (base or UPS version) in a standard 4 modules DIN rail case

Save 10% on our online store
discount code: MAGPI10
RASPBERRY PI 3
OVERHEATING
NOT A PROBLEM

Eben Upton says you won’t experience high temperatures in normal use

 Shortly after the Raspberry Pi 3 was released, some concerns were raised over the temperature of the BCM2837 chip that powers the new Pi. A very small number of users had found the temperature of their CPU reaching up to 100 degrees. Aware of the issue, the Raspberry Pi hardware team investigated the claims.

“In everyday use I would say ‘never,’” Eben Upton told ZDNet (magpi.cc/1TJfNRp) in response to a question about how often boards would reach temperatures where users need to throttle their speed. The culprit seemed to be unnaturally high load as the result of benchmarking the Raspberry Pi 3, something the vast majority of people won’t be doing.

We spoke to James Adams, director of hardware at Raspberry Pi, for more information: “We knew the Pi 3 was going to be able to generate significantly more heat under heavy load, but that’s just physics and the price you pay for more performance... We have of course been testing the Pi 3’s heat output under various loads and our conclusions were that it was still OK without a heatsink: in the majority of normal use cases we don’t see it hitting the temperature limit.”

He tells us that tests have shown the Raspberry Pi 3 sitting at about 20 degrees above ambient/room temperature while idling on the desktop environment, which is completely normal for any piece of hardware.

“Extended loads of any type won’t damage the Pi, as the BCM2837 and components will operate fine at higher temperature indefinitely,” James assures us. “Heavy CPU and/or GPU load will increase the temperature, but the Pi will throttle itself to keep the die temperature at 85°C or lower.”

Regardless, a new firmware revision has been pushed to improve this throttling behaviour of the CPU.

JUST IN CASE...

As Eben says, it will likely never happen unless you decide to put some serious load on the CPU. However, if that’s what you plan to do, then it might be worth being prepared for high temperatures. We asked James what people could do about it:

“Adding a small heatsink will allow the Pi to dissipate heat faster and therefore be less prone to throttling in heavy use cases.”

A few places sell heatsinks for the Raspberry Pi already – ModMyPi has a set (magpi.cc/1XqTJJo), but your usual supplier of Pi goods will likely stock them as well.

Below: The new Raspberry Pi 3’s CPU is much faster, but can get quite hot under a heavy workload.
t’s been a long time coming, but finally the Raspberry Pi is getting close to having a complete, open-source OpenGL driver stack. What this means is that developers will have access to hardware acceleration from the GPU. This is a huge step for the software on the Pi; in essence, it will let software on Raspbian have access to more power, especially graphically intense applications like video games.

While it may have been four years since the release of the Raspberry Pi until its inclusion, this particular driver beta is the result of two years of work by Eric Anholt. Eric is an open-source developer at Broadcom who has done a lot of work on open-source graphics for Intel on MESA. He began working on it shortly after joining Broadcom.

“The 3D side of things has been delightful,” Eric tells us. “I had some sample triangle-drawing code for the GPU that [VideoCore engineer] Scott Mansell had reverse-engineered; if you don’t know, getting from ‘doesn’t draw anything’ to ‘draws a single triangle’ is about half of the work of building a full OpenGL driver. Between that, the excellent documentation, and a software simulator to use for testing and debugging, I was able to produce a driver that was drawing triangles within a week of starting at Broadcom.”

More to do
Currently, the beta is in ‘good shape’ and most of the work now involves getting displays working and everything merged into the kernel. For a stable release, Eric tells us there are “more than a few months, less than a few years” of work left.

“I keep writing patches continually and merging code to the upstream repositories, and it’ll be trickling out as releases happen,” he reveals. The drivers are already being used to port Chromium OS to the Pi, and Android will hopefully follow soon. Users are also excited about the possibilities, so this could well result in a wave of better and new software for Raspbian and the Raspberry Pi. If you want to contribute, Eric would love to work with you. Find out how here: magpi.cc/1TFBU1q

Some games work on OpenGL, like Borderlands 2, enabling their release on multiple platforms and not just Windows.

GAME DEVELOPMENT
One of the interesting things about the OpenGL driver is that it also allows for better video game support. If you’ve been keeping an eye on the Raspberry Pi blog, you’ll know that a selection of games were recently released by YoYo Games for the Pi (magpi.cc/2Xnk7Uz). This is the same studio behind GameMaker: Studio, a game development suite. During a chat with Mike Dailly from YoYo games, he mentioned that the OpenGL release made a port of the full Studio software to Raspberry Pi one step closer. Maybe one day you could be developing games professionally on the Raspberry Pi.
START A CODE CLUB IN YOUR AREA

Are you a teacher or after-school club organiser interested in setting up a Code Club in your area? Here’s how simple it is to get started...

It’s easier than you think to run a Code Club yourself: you don’t need existing coding skills, just a can-do attitude to get stuck in, learning alongside your students for an hour a week!

If you haven’t yet heard about Code Club, it’s a UK-based not-for-profit organisation offering free learning materials and support for teachers, volunteers, and parents running after-school coding clubs for children aged 9–11.

Code Club’s specially designed projects offer structured and fun content for the clubs. The projects are step-by-step guides for children to follow to create animations, games, websites, and much more. Children build up their programming skills as they move through the projects. There are also challenges to provide opportunities to apply what they’ve learnt.

Caroline Harding, a Year 4 teacher who helps to run a Code Club at her school in Croydon, told us about the benefits the club has brought the children.

“Making Code Club available to the children in our school has helped tremendously with their confidence and engagement in coding and computing in general,” she explains. “It taps into their problem-solving skills and enables them to develop their critical thinking skills.

“Programming and coding is an area of the curriculum that many staff can find intimidating. Knowing that the children have some experience of the program can help ease some anxieties and enables that ‘have a go’ attitude!”

By starting a club at your school, you’ll be joining a huge community of teachers who do the same thing – around 50% of Code Clubs are run by teachers.

If you’re considering getting a Code Club started, we’ve come up with a few tips to help you.

Register your club online
To access Code Club’s project materials, you will need to register online. You can sign up as a Code Club Host at codeclub.org.uk/start-a-club, making sure to use your school email address so we can validate you as a teacher.

Once you’ve entered your details, you will be able to select the option to run the club yourself. Your club will then be automatically activated and you’ll have immediate access to all Code Club’s online resources.

Code Club has projects in three different coding languages: Scratch, HTML/CSS, and Python. Beginning Below Code Club allows children to experiment and invent, using different languages to create their own games, animations, and websites.
START A CODE CLUB IN YOUR AREA

Feature

For teachers, running an after-school Code Club can help build confidence in teaching the computing curriculum and in integrating computer science into everyday lessons. If you or someone you know are keen to get some additional, more formal training, you may be interested in Code Club’s Teacher Training courses. There are three modules on offer, focusing on ‘Computational Thinking’, ‘Programming & Networks’, and ‘The Internet’.

Many of the sessions are now free for teachers, so if you are interested, you can make an enquiry with the Code Club team by emailing hello@codeclubpro.org.

TACKLING THE COMPUTING CURRICULUM

with Scratch is recommended, as this visual block-based language provides a great introduction to key programming concepts. If your pupils are already experienced with Scratch, though, you may wish to get started with HTML/CSS or Python. There are twelve Code Club projects in each language, to keep your club occupied for a full term.

Your first Code Club
It’s worth preparing for your first Code Club session by working through the project in advance, so that you are aware of all the instructions and the places where pupils could possibly get stuck.

Code Club in practice
There are thousands of teachers running their own Code Clubs across the country, and around the world. We spoke to Matthew Cave, assistant headteacher at West Town Lane Academy in Bristol, about his club. Beginning with Year 5 and 6 students, Matthew and his team introduced Code Club’s Scratch projects for all Key Stage 2 children. Now, they have a whole-school approach, with Scratch Jr introduced for Key Stage 1, and they have invested in new technology including Lego WeDo and My Romo. “We’ve been running our Code Club for over a year now, with 40 children attending. The club is in high demand,” says Matthew.

Code Club’s fun approach has provided other benefits: “It’s amazing to see the sense of achievement the children get when they finish their projects. We can really see them starting to persevere with the tasks in Code Club, using analytical thinking to troubleshoot.”

What advice does Matthew have for teachers who are thinking of starting a club? “It’s dead easy, so take the plunge! The children will run with it, so don’t worry about not being an expert.”

Learn more about Code Club via codeclub.org.uk.

Left: There is no cost involved in starting a Code Club. It’s free for schools, and the kids who attend.
Discover a world of science fiction grounded in computing reality with pi-top’s flagship learning software!

Learn to code, make circuits and create hardware with your friends using CEEDuniverse, a massive multiplayer online game. Perfect for added engagement to STEAM classes and home learning! CEEDuniverse comes free with all pi-top devices.

Build an outpost with your friends!

Learn to build circuits in game!

Uncover hidden secrets and learn to code!

What will you do in CEEDuniverse?

WWW.PI-TOP.COM
pi-top

World’s First Raspberry Pi Laptop.

12Hr Battery Life
13.3” HD Screen

Accessible Modular Components & RPi

Compatible with all models of Raspberry Pi

$299 excluding VAT

MagPi Review

pi-top

pi-topCEED

pi-topCEED is the easiest way to use your Raspberry Pi!

13.3” HD Screen

Front facing access to the Raspberry Pi and components

Compatible with all models of Raspberry Pi

$99 excluding VAT

“I’d love to see a pi-topCEED in every classroom.”
— Eben Upton, Founder & CEO of RPi
Life in 2016 is hectic. While technological advancements have made certain aspects of life easier than they’ve ever been (thank you, series link button and Google Maps), we’ve all still got so much to do and only so much time to do it in.

Life doesn’t have to be that way, though, especially with the amount of technology that you’re probably not utilising. We can’t add hours to the day, but we can definitely try to use them better.

We’ve thought up five ways you can hack your life with a Raspberry Pi to make it just a little bit easier. With a minimal amount of work now, you can free up precious time in your schedule and reduce the stress in your life.
EVENING
Once you get back home, you can relax for the rest of the day. Fire up your supercharged media centre and lose yourself in your favourite movie or TV show, with the least amount of hassle.

LUNCHTIME
Having a bit of lunch at work and want to check everything is OK at home? Is the baby asleep? Has anyone stolen your amazing magic mirror? Log into your teddy cam in a browser to find out.

AFTERNOON
If you realise you’ll be working a bit late and nobody’s around to feed the hamster, not to worry. With the hamster feeder, you can tweet out a hashtag and your little pet gets a treat.

GETTING READY TO GO
You should listen to your mum and always have a look in the mirror before you leave the house. With this magic mirror, you can check your hair, the weather, and the news.
Start your day right with the perfect cup of tea or coffee. How? It’s all about the temperature. Here’s how to take control of your kettle...

>STEP-01 Wire up the sensor
Because the sensor we’re using is digital, the Raspberry Pi and our code will need to manually load some drivers before being able to use the sensor. We need some information from this for our Python script. Wire up the sensor as shown in the diagram on the right. Connect the positive lead to pin 2, which is 3V3 power; connect the data wire to pin 36 (GPIO 16), and the ground to pin 34 next to it. Turn the Pi on.

>STEP-02 Set up the sensor
Once booted up, open the terminal and do the following:

```
sudo nano /boot/config.txt
```

Add to the end of the file the line:

```
dtoverlay=w1-gpio,gpiopin=16
```

Reboot the Raspberry Pi and the open up the terminal again. We need to activate the relevant kernel modules with:
A GUIDE TO TEMPERATURE

What temperatures do you need to set your kettle alarm to?
Here’s a quick reference for general temperatures:

- **White tea:** 65–70°C
- **Green tea:** 75–80°C
- **Coffee:** 80–85°C
- **Herbal tea:** 90–95°C
- **Black tea:** 95°C

This is why you pour milk after brewing, people!

You could also technically use this alarm for sous-vide cooking with an insulated drinks cooler. You’ll have to check meat temperatures for that yourself, though.

>STEP-03

Set up the display

You don’t need the display plugged in for this, so you might as well install the libraries for it now, before we wire everything up. Use `cd ~` to go back to the home directory and install the Display-o-tron files with:

```
sudo modprobe w1-gpio
sudo modprobe w1-therm
```

Now move into the w1 devices folder with `cd /sys/bus/w1/devices/` and use `ls` to list out what’s there. It might take a few seconds to show up but a folder with something like `28-000006d85491` will appear. `cd` into the folder and type `cat w1_slave` to see if it returns data like so, which means it’s working:

```
72 01 4b 46 7f ff 0e 10 57
 crc=57 YES
```

The t is the temperature in °C (22.175). If something like this pops up, make a note of the folder name, you’ll need it later.

>STEP-04

Wire up the full system

Reboot the Pi after installation, turn it off and unplug it so we can construct our system. Unplug the connection from the sensor to pin 2 and put the display in. Put this connection into pin 32 (GPIO 12) – it’s not a 3V3 pin, but we’re going to cheat to get it to power the sensor. Connect up the positive end of the buzzer to pin 40 (GPIO 21), and negative to pin 39.

>STEP-05

Set up the code

Download the `temperature.py` code from magpi.cc/KettleSensor.

Remember the number we noted down earlier? This is the serial for the thermal sensor, and you’ll need to edit line 19 in the Python file to replace `28-000006d85491`. While you’re editing the file, you can also change the default temperature in `set_temp`.

Save and go back to the terminal, then use `sudo nano /etc/rc.local`.

At the end of the file, add the following line so this script runs at boot (pointing towards where you saved the file):

```
python /home/pi/temperature.py &
```

>STEP-06

Use the sensor

You’re ready to go! Test it out first in a cup of hot water to make sure it’s all working – you may need to add `sleep.time(5)` to the script after line 17 if it doesn’t load up. When placing it in your kettle, make absolutely sure the sensor doesn’t touch the heating element – it will likely break it. Change the temperature on the fly using up and down on the joystick.
After making sure you look your best in the morning, catch up on the world around you with a flick of your wrist. **Mike Cook** shows us how…

There are many different types of ‘magic mirror’, they consist of a computer display hidden behind a partially reflective surface that’s invisible until the display lights up, masquerading as a normal mirror in the meantime. This particular design is for a web browser controlled through gestures, using Pimoroni’s Skywriter HAT sensor board. This 65×55mm board uses near-field RF disturbances to recognise gestures, and these gestures can be used to control a web browser hidden in the Magic Mirror. We got it to use a ‘getting to work’ checklist from a variety of sites from the BBC: news headlines, national weather, local weather, and local road reports. But it’s easy to define your own group of webpages around any theme that takes your interest.

THE PROJECT

The basic list of webpages is stored in a normal text file called `sites.txt`, with one line for the URL of each page. The Python script will take this file and set up the web browser with a tab for each URL. Communication between Python and the web browser is done by the PyAutoGUI framework. This is a clever system of inserting mouse clicks and typing into any application running on the desktop. Once the browser is set up with all the pages you want to view, the Skywriter sensor looks for gestures and then uses them to control the web browser. For example, a flick left or right displays the page in the next tab. A flick up or down scrolls the contents of the webpage up or down. The air wheel gesture, a rotating finger, refreshes the webpages on all the tabs. Finally, a double tap will shut the system down, allowing you to safely remove the power without fear of damaging the SD card. The Skywriter has a few other gestures in its repertoire that we don’t use here, so you might like to extend control using these.

Unfortunately, electric field sensors like the Skywriter won’t work through mirror film (we tried), because the metal content shields the electric field, therefore the sensor has to be mounted on the mirror’s frame.
THE HARDWARE
The hardware is just a Raspberry Pi set up for web browsing, so that means it must have access to the internet and some sort of display. While you can use any display, we took the opportunity to use an old LCD VGA monitor, rescued at the last moment from going into landfill; this requires an HDMI-to-VGA adapter for the Pi to drive it. We took the back off the LCD VGA, nicely removing the mount at the same time, and mounted it inside an IKEA picture frame. While a lot of the detail will depend on the mechanical construction of your monitor, see the step-by-step section overleaf for what we did. Web browsing is not the slickest of pastimes on a Pi, so we recommend using a Model 2 or 3 with the latest fast browser, which is currently Epiphany.

THE SOFTWARE
First off, you need to install the PyAutoGUI framework and the Skywriter library.

For PyAutoGUI, you’ll need to use:

```
sudo apt-get update
sudo apt-get install python-Xlib
sudo pip install pyautogui
```

And for the Skywriter, follow the advice at magpi.cc/22s5Md6.

The PyAutoGUI framework works on absolute mouse coordinates. It knows little of what window is where – it just positions the mouse at given coordinates and can click, drag or write. This means in order for it to do its magic, you have to be organised and know where the window and the sweet spots (URL links and tabs) are going to be. These points will be different on different screen resolutions, so you must gather these magic numbers for your own setup and replace the ones we used on ours at the start of the Python script. To help you do this, there’s a mouse monitor program called mouseMon.py (overleaf). It simply prints out the coordinates of where the mouse is currently. Run this from IDLE and make a note of the numbers you get for each point the main webDriver.py program requires, as detailed below.

CONTROLLING THE BROWSER
The code in webDriver.py, which can be downloaded or copied from the listing overleaf, drives the browser. Basically, it sets up the browser by clicking on the icon on the top row of the screen, then it clicks on the URL space and types in the first URL from the sites.txt list. The rest of the list is read and a new tab opened for each one. Make sure there aren’t...
too many tabs so that the tab bar has to be scrolled, as you have no control of tab bar scrolling with this code. When it was all finished and tested, we changed the /etc/rc.local file to add this line to the end:

```python
python "path name"/webDrive.py &
```

This makes the Pi boot up automatically into this program. Of course, the "path name" should be replaced by the path where this program is to be found.

MIRROR UPGRADES

If you fancy making your magic mirror look more like a mirror when you actually start using it, then you might want to refer to Michael Teeuw’s Magic Mirror code up on GitHub: magpi.cc/1U1belQ. It creates a custom interface using a black screen and white text to make the whole setup look like a mirror, but with extra info on it. This could be particularly useful if you have a larger monitor or even an old TV you want to use for the project.

With a bit of tweaking and modification, you can have it scrape data from the sites you listed and even have it swipe between the different bits of information, to keep the mirror from being overwhelmed with data all at once. How you make and use your mirror is all up to you and your personal tastes.

MAKING THE MAGIC MIRROR

> **STEP-01**

Prepared the monitor

With the back off the VGA monitor, it revealed two short tapped pillars. We extended these with a 10mm M3 tapped pillar, fastened with a piece of M3 studding or thread cut from a longer bolt. This was the basic anchor for the system. It was fastened to a length of 30x12 aluminium channel of 3mm thickness that spanned the whole width of the frame. The channel walls were trimmed to fit flat.

> **STEP-02**

Fixing the bar

At each end, a piece of 20mm angled aluminium was mounted so that it could be bolted onto the frame with two M3 bolts. Holes in the top were used to fasten this to the long channel to make a secure fit. We found it a bit fiddly to hold the nuts on the underside of these right-angled brackets, so we fastened them on the underside with hot-melt glue to allow easy assembly and disassembly.

> **STEP-03**

Allowing cable access

Slots were cut in the wall of the channel to allow cables to pass through, and also allow clearance for some components on a side board. Don’t cut too deep or you’ll start weakening the beam somewhat – in the long run, that would be bad for the overall structural strength of the mirror, and that wouldn’t make your life easier in the way we want.

```python
#!/usr/bin/env python
import time
import random
import os, sys
import RPi.GPIO as GPIO
GPIO.setwarnings(False)
import pyautogui
import skywriter
import signal

# location in screen to click
# on a 1024 X 768 VGA monitor
browserIcon = (112,19)
newTab = (957,80)
refreshPage = (912,80)
typeURL = (697,80);
tabBar = 118
tabOffset = 105
tabIncrement = 200

sitesfile = open("sites.txt","r")
sites = list()
numberOfPages = 0
for line in sitesfile.readlines():
sites.append(line)
numberOfPages +=1
sitesfile.close()

main():
```
Monitor controls

The monitor’s control buttons were removed from the front panel and hot-melt-glued on a piece of foam mounted to the back of the monitor. Then the control panel mount was removed by careful use of a knife; the monitor’s shape was a clean rectangle and the mounting foam for the surrounding was a lot easier to cut. The surrounding mount was cut from black A3 foam in two pieces.

Finishing off

The Skywriter HAT was mounted on a Black HAT Hack3r extension board and fastened to the underside of the frame. You could just use a 40-way female-to-male ribbon cable if you want, but make sure the HAT is connected to the correct pins if you’re doing this. Fit the frame glass with mirror film. Unfortunately, the Skywriter doesn’t work from behind this film, which is why it’s on the side.

```python
# global increment, numberOfPages, visited, scroll, air_value
setupBrowser()

while True:
    time.sleep(0.5)
    if increment != 0:
        showNewTab()
    if scroll != 0:
        scrollPage()
    if air_value >= 500:
        refreshAll()

def refreshAll():
    global air_value
    for page in range(0, numberOfPages):
        xClick = tabOffset + (tabIncrement * page)
        pyautogui.click(x=xClick, y=tabBar)
        time.sleep(0.8)
    air_value = 0

def scrollPage():
    global scroll
    screenWidth, screenHeight = pyautogui.size()
    pyautogui.moveTo(screenWidth / 2, screenHeight / 2)
    time.sleep(0.2)
    pyautogui.scroll(scroll * 5)
    print("Scroll ", scroll)
    scroll = 0

def showNewTab():
    global increment, visited
    visited += increment
    if visited >= numberOfPages:
        visited = 0
    if visited < 0:
        visited = numberOfPages - 1
        increment = 0
    # click on the appropriate tab
    xClick = tabOffset + (tabIncrement * visited)
    print("tab ", visited, " location ", xClick)
    pyautogui.click(x=xClick, y=tabBar)

setupBrowser()

@skywriter.flick()
def flick(start, finish):
    global increment, scroll
    print("Got a sensor flick!", start, finish)
    if start == "east" and finish == "west":
        increment = -1
    if start == "west" and finish == "east":
        increment = 1
    if start == "north" and finish == "south":
        scroll = -1
    if start == "south" and finish == "north":
        scroll = 1

@skywriter.airwheel()
def spinny(delta):
    global air_value
    air_value += abs(delta)
    print("Airwheel:", air_value)
```

Download:

magpi.cc/1NqJjmV
TEDDY BABY MONITOR

A camouflaged security camera – perfect for keeping an eye on a baby from another room, or covertly making sure no one’s nicked your stuff when you’re away from home.

SECRET STUFFED TOY CAMERAS

Secret stuffed toy cameras are either a weird movie cliché or a very smart way to keep an eye on certain things. Either way, proprietary products are going to be expensive; with a Raspberry Pi and any stuffed toy, you can create as good a product as any bought one. As well as childcare, it can be a good camouflaged CCTV camera in case of burglaries, and you’ll be able to view it on any web browser.

SELECTING YOUR RASPBERRY PI

Before we start constructing our teddy camera, it’s best to get the Raspberry Pi ready for the task. We’ve selected a Model A+ for this project, as it’s quite small yet still supports the Camera Module. It also runs the web-streaming software.

You’ll Need

- Raspbian Jessie (make sure it’s up to date)
 magpi.cc/1U7aNgf
- Raspberry Pi Camera Module
 magpi.cc/1UaFuuW
- RPi Cam Web Interface
 magpi.cc/1RhjyYU
- Stuffed toy:
 We’re using one with a shirt for easier camouflage
Turn Babbage into a Camera

STEP-01 Cut the camera hole
Press the Camera Module up against the shirt. Mark out the size of the aperture, then cut it open (carefully!) with a good craft knife.

STEP-02 Attach the camera
Make sure the camera aperture has enough space to see through the hole and then sew the mounting points of the module to the shirt.

STEP-03 Attach the Pi
Loop the camera cable under the teddy. Attach the Pi (A+ is best) to the back with the same sewing method, and then connect the ribbon cable.

Fine, considering all the finished project requires is power and a wireless LAN connection, it makes the A+ a perfect candidate Pi.

As we’re making this wireless, it’s best to get that set up now – unless you plan to run a Cat 6 cable up to a stuffed toy, which might ruin the camouflaging effect. You’ll also want to go into the Configuration menu in Menu>Preferences and enable the camera in the Interfaces tab, then reboot.

Installing the Software

We’re using the tried-and-tested RPi Cam Web Interface software for this tutorial, which connects straight to the Raspberry Pi Camera Module and displays it in a pre-made web interface that’s all part of the package. Open the terminal and clone the project’s GitHub repo with the following command:

```
$ git clone https://github.com/silvanmelchior/RPi_Cam_Web_Interface.git
```

It’s not a big repo, so it shouldn’t take too long to download. Once it’s done, move into it and make all the relevant files executable using the following command:

```
$ cd RPi_Cam_Web_Interface
$ chmod u+x *.sh
```

It’s now ready to be installed, which you can do simply with:

```
$ ./RPi_Cam_Web_Interface_Installer.sh install
```

The whole process will take a little while to install; you may wish to perform it on a newer Pi if possible. You’ll also be asked a few questions along the way – the first will be whether or not you want to install Apache. This is the web server software you’ll need to actually view the camera in a web browser, so press Enter to confirm you wish to do so.

Towards the end of the installation, it will ask where you want to put the default web root folder; you can just press Enter to accept the default, but if you know what you’re doing you can create a custom one.

Once it’s all finished, the install script will throw up one final prompt on whether or not you wish to reboot. – select Yes.

FIRST TESTS

After the reboot, the light on your Camera Module should have turned on. If you’ve not plugged the Camera Module in yet, turn off the Raspberry Pi and do so, pull up the plastic slide between the audio and HDMI port, insert the ribbon with its silver stripes facing the HDMI port, and then securely push the slide down. Now turn the Pi back on.

The light activates on the Pi camera to show it’s on. To see if the web interface is all working, open the browser and navigate to your Raspberry Pi’s IP address. If you don’t know what that is, open up the terminal and type `ifconfig` to bring it up. It will be listed as ‘inet addr’ and look something like 192.168.1.50.

FINISHING UP

If everything’s working (and before connecting it to Babbage, as shown in the steps), we can do some housekeeping. If you have to manually start it every time, then add a command to `rc.local` to get it to launch at boot. It’s also a good idea to go to Raspberry Pi Configuration and have it boot to the CLI; this means it will turn on a bit faster and use less power, as you won’t need to use the graphical interface with this Pi. You’ll still be able to dial in via SSH, though, for any maintenance.

Turn it all off, remove all unnecessary cables (HDMI, mouse, keyboard) and you can finally move onto the steps on how to construct the camera. Once that’s done, find a good place near a power socket and you’re done!

Below Make sure the Camera Module is activated in the settings

raspberrypi.org/magpi

April 2016

29
T blaming-controlled hamster feeder

Treat your hamster (or other family rodent) to a tasty seedy snack with a simple tweet – great when you’re working late or don’t want to get up. Ben Rogers shows you how...

You’ll Need
- NPN transistor
- Motor with worm gear
- Assorted junk from recycling bins, toy boxes, charity shops, etc.

The motor takes too much current for the Pi to handle directly, so the batteries power it.

This diode simply stops the back-EMF damaging anything.

The transistor lets the Pi switch on the motor without damaging the Pi.
ave you ever found yourself far from home, wishing you could give your pet hamster a little treat to show how much you care? It’s a common problem, but it need never be an issue again. With a Raspberry Pi running Node-RED, an open collector to drive a motor, some enjoyable engineering tinkering, seeds, and a hamster, you can build a Twitter-controlled Hamster Feeder of your own.

>STEP-01
Install Node-RED on your Pi
If you have the latest version of Raspbian Jessie, Node-RED comes installed in your Programming folder. If not, you can install it via a terminal (see magpi.cc/1VuU5Aq).

You also need the Iceweasel browser. Connect your Pi to the internet, open Node-RED, and paste the address at the top of the Node-RED window into Iceweasel. You should now see the Node-RED editor.

>STEP-02
Node-RED listening to Twitter
Drag the Twitter node with the connector on the right into the work area. Double-click on it and enter your Twitter ID. You need to search ‘all public tweets’ – unless you want to ensure only you can feed your hamster! Add your search term: #feedmyhamster. When someone tweets a message including ‘#feedmyhamster’, the Twitter node receives the message and passes it on to the next node.

>STEP-03
Turn the motor on (and off).
The message that comes out of the Twitter node has all of the tweet metadata, but you just want the message to be 1 to turn on the GPIO pin, so add the change node and change the message to 1. Add the delay with a change message to 0 to turn the GPIO back off. Finally, connect both to the GPIO out node. Set the pin to your output pin. Don’t forget to deploy your Node-RED flow.

>STEP-04
Connect the motor
If you tried to power the motor directly by the GPIO, the current would damage the Pi. Instead, use an open collector transistor. The transistor switches the motor on when the GPIO pin is set to high.

As our motor still runs too fast, we used technical Lego gearing to reduce the speed.

>STEP-05
The engineering
An Archimedes screw from a marble–run game has been used to deliver the sunflower seeds. The hopper was made from a plastic milk bottle. Another successful (but not as cool) prototype involved a disc made from several layers of card, with a seed–sized notch in it. The disc is half–inside and half–outside the bottom of the hopper. As the disc rotates, the notch catches a seed at the top and drops it into the cage, half a turn later.

>STEP-06
Happy hamster!
Now, whenever anyone in the world uses the hashtag ‘#feedmyhamster’, the Raspberry Pi gets the message and converts it to an on signal. It passes this signal to the GPIO. The GPIO feeds an on signal to the transistor, which then lets a current flow to the motor. The motor turns the gears, which turn the Archimedes screw, delivering a couple of seeds into the cage. No hamsters were harmed (or overfed) in the making of this project.
Make your media consumption easier by creating a media server and media centre, so you can truly relax after a hard day.

Media centres on Raspberry Pi – easy, right? Just install OpenELEC and you’re done. Plugging in USB storage, disk drives and the like makes the setup a little unsightly under your TV, though. This is where a good media server comes in, allowing you to keep all your media in one place without the need to go between shelves and the TV. Just sit down, pick up the remote, and take it easy for the evening.

You’ll Need
- Two Raspberry Pis, one with up-to-date Raspbian (check the FAQ)
- OpenELEC
- USB hard drive
- Usual selection of cables for your TV

Relax with your favourite film streamed straight from your media server

Stream any track you like from your complete music collection, stored on a hard drive

The standard Kodi dashboard is used to navigate and choose media to stream
STEP-01
Server Pi setup
For the server Raspberry Pi, you can get away with using just about any Pi for the task. As all the hard work will be done on the TV Pi, all you need is a place that can store and transfer the files over the network. We’d suggest at least a B, though, as the extra USB ports will allow you to easily put in at least one USB drive and a WiFi dongle if you want to make it wireless. Install and update Raspbian and we’re ready to go.

STEP-02
Network sharing
To make this very easy, create a folder called share in the home directory. We’ll make sure all our media is mounted into here. We can then place this media server with all your films and TV box sets to make putting them in easier. Unfortunately, Blu-ray drives are still a bit tricky to get working on the Raspberry Pi, if at all, so you’d be limited to DVD.

STEP-03
Share folder
Our share folder is called ‘share’ and lives in /home/pi/share. In the same configuration file for Samba, add the following to the end of the file and save:

```
[MediaServer]
  comment=Raspberry Pi Media Server
  path=/home/pi/share
  browseable=Yes
  writeable=Yes
  only guest=no
  create mask=0777
  directory mask=0777
  public=yes
```

STEP-04
Auto-mounting storage
This is the clever bit – how do we get the media into the share folder? You could manually mount the main storage hard drive to the folder, but if you add other USB storage devices (or a USB disk drive), they won’t show up. You could share the media folder, but we’re going to use fstab to mount it into the share folder. In the terminal, use `sudo nano /etc/fstab` and add the line:

```
/media/ /home/pi/share none defaults,bind 0 0
```

STEP-05
TV Pi setup
We’re using OpenELEC for this setup, but you’re free to use OSMC or another Kodi alternative. We also suggest you use a Raspberry Pi 2 or 3 for the media centre, while a generation 1 Pi will handle Kodi and high-def videos, it’s not uncommon to experience a bit of interface lag. The Pi 2 and 3 have a bit more power to deal with that.

STEP-06
Network shares
Go to Video (or Music) on your Kodi dashboard and click on ‘Add Videos…’. Scroll down to Windows network (SMB) and select it. It should search the network and give you the WORKGROUP option. In there you’ll find RASPBERRYPI, which has a MediaServer folder inside it. Select OK, give it a name you want, then press OK again and it should be added! All the files will be in the USB folders within the share for to peruse as you please.
SUBSCRIBE TODAY!
Subscribe to the Official Raspberry Pi mag today for a whole host of benefits

Subscription benefits
- Save up to 25% on the price
- Free delivery to your door
- Never miss a single issue
- Get it first (before stores)

PI ZERO #40 IS STILL ON OFFER
Call today!

SAVE UP TO 25%
Pricing

Get six issues:
- **£30** (UK)
- **£45** (EU)
- **$69** (USA)
- **£50** (Rest of World)

Subscribe for a year:
- **£55** (UK)
- **£80** (EU)
- **$129** (USA)
- **£90** (Rest of World)

Direct Debit
- **£12.99** (UK) (quarterly)

How to subscribe:

- [website](https://magpi.cc/Subs1) (UK / ROW)
- [website](https://imsnews.com/magpi) (USA)
- Call +44(0)1202 586848 (UK/ROW)
- Call 800 428 3003 (USA)

SUBSCRIPTION FORM

YES! I’d like to subscribe to The MagPi magazine & save money

This subscription is: [] For me [] A gift for someone

YOUR DETAILS

Mr [] Mrs [] Miss [] Ms []

First name ___________________________ Surname ___________________________

Address ..

Postcode ___________________________ Email __

Daytime phone ______________________ Mobile _________________________________

*If giving The MagPi as a gift, please complete both your own details (above) and the recipient’s (below).

GIFT RECIPIENT’S DETAILS ONLY

Mr [] Mrs [] Miss [] Ms []

First name ___________________________ Surname ___________________________

Address ..

Postcode ___________________________ Email __

PAYMENT OPTIONS

1 **DIRECT DEBIT PAYMENT** £12.99 every 3 issues (UK only)

Instruction to your bank or building society to pay by Direct Debit

Please fill in the form and send to:
The MagPi, Select Publisher Services Ltd, PO Box 6337, Bournemouth BH1 9EH

Name and full postal address of your bank or building society:

To: The Manager Bank/building society ___________________________

Address ..

Postcode ___________________________

Name(s) of account holder(s) __

Branch sort code __________ Account number __________

Reference ___________ (Official use only)

Instruction to your bank or building society

Please pay Select Publisher Services Ltd Direct Debits from the account detailed in this instruction subject to the safeguards assured by the Direct Debit Guarantee. I understand that this instruction may remain with Select Publisher Services Ltd and, if so, details will be passed electronically to my bank/building society.

Signature ___ Date __________

Banks and building societies may not accept Direct Debit instructions for some types of account.

SUBSCRIPTION PRICING WHEN PAYING BY CHEQUE OR CREDIT/DEBIT CARD

6 issues: [] UK £60 [] Europe £65 [] Rest of world £90

12 issues: [] UK £120 [] Europe £130 [] Rest of world £180

2 **CHEQUE**

I enclose a cheque for ____________________________ (made payable to Select Publisher Services Ltd)

3 **CREDIT/DEBIT CARD**

[] Visa [] MasterCard [] Maestro [] Switch

Card number __

Expiry date ____________

Issue number ____________ (if shown)

Security number ____________

(last 3 digits on the back of the card)

Signature ___ Date __________

I would like my subscription to begin from issue ____________________________ (month + year)

RETURN THIS FORM TO:

MagPi Magazine Subscriptions, Select Publisher Services Ltd, PO Box 6337, Bournemouth BH1 9EH

[] Please tick this box if you DO NOT want to receive any other information from Select Publisher Services Ltd.

[] Please tick this box if you DO NOT want to receive any other information from other companies.

[] Please tick this box if you DO NOT want to subscribe to The MagPi newsletter.
love arcade and pinball machines,” enthuses Tiburcio. “I love to buy and restore them, but I was running out of space and my wife was running out of patience.”

Most people would buy an old arcade machine, or perhaps place a Raspberry Pi inside a full-size cabinet, but Tiburcio had grander ideas: “I decided to build a collection of scale arcade machines.”

One quick look at the photos will show you he succeeded, but Tiburcio isn’t an amateur maker by any means. Originally from Buenos Aires, Argentina, Tiburcio was the founder of STGO Makerspace (stgomakerspace.com) and organised the first Maker Faire in Latin America.

“My first try was in 2013,” he says. “I made a scaled version of Space Invaders, which was particularly complex because it uses a double mirror. Galaga was one of my favourite arcade games, so it came next. It’s an accurate scale replica of the original arcade, mostly custom-made, and it uses a mini CRT which makes it unique. You need a CRT to get the real arcade feel.

“Finding the right screen was a challenge. There are not many colour 5˝ CRTs. I usually get them from old broadcast TV monitors or cheap portable TVs. This particular screen is a Magnavox portable TV.”
The scale cabinet was made from 3mm and 6mm plywood, with the parts modelled in Sketchup (sketchup.com) and laser-cut. The rest of the cabinet was custom-constructed using 3D printed models, acrylic, and aluminium.

Aside from the Raspberry Pi and screen, pretty much everything is built from scratch. “The decals are from online repositories,” says Tiburcio. “I scaled to fit and printed them with a photo printer on vinyl. If I needed to make more accurate stencils, I would use vinyl and a Silhouette Cameo (silhouettecameo.co.uk) cutter.”

The push buttons were bought ready-made, but the joystick is 100% 3D printed: “I started with a model online and improved it with a spring and metal stick.”

Even the coin door is 3D printed, with a little metal rod that goes across the hinge. “I own some real arcade machines,” he explains, “so with those as the reference, I modelled the door and printed it. “The joystick was a challenge, since there’s no joystick of that scale that looked accurate. I started with a model I found at Thingiverse (thingiverse.com) and improved it with a metal stick and a spring system.

“You can find most of the original artwork online,” continues Tiburcio. “There are many repositories with vector and bitmap versions of the artwork. Sometimes the colour is not accurate, and you need to make some adjustments, but most of the time it’s just about scaling them.”

Original arcade cabinets were painted with stencils using layers of three or four colours. So Tiburcio applied a clear coat base over his decal to make it look like paint. “It plays well,” he tells us. “Correctly nailing the joystick was the key to making it good. The microswitches in the push buttons are not as smooth as an arcade, but it works. The plan is to build a collection of my 25 favourite machines. I’m currently making Pac-Man, Donkey Kong, Missile Command, and Asteroids (which is an even bigger challenge since it has a vector CRT).”

It’s an accurate scale replica of the original arcade, mostly custom-made, and it uses a mini CRT.
We see all kinds of cool gizmos built with the Raspberry Pi, but what really thrills us is to see our favourite computer being used to create practical projects that are useful in the real world. You don’t get more real than sheep herding in North Yorkshire.

A few years ago, Dr Paul Buckley swapped intensive care for small-scale farming in Scarborough. He now has a flock of around 150 sheep.

Like all farmers, he keeps an eye on his sheep, but from last year it has been compulsory for farmers to tag sheep with eID (electronic identification) chips. “All sheep in the UK have to have ear tags,” Paul tells us, “one of which is yellow and contains a transducer holding the details of the animal.”

“It’s similar to the microchip identification that’s common in dogs and cats,” he explains.

The specification for the sheep tags are tightly controlled, and the reader has to operate at 134kHz. “Sadly, this doesn’t allow the extremely cheap and easily available dog and cat chip readers to work, because they operate at a different frequency,” says Paul. “The commercially available readers aren’t cheap (£700 – £5,500), and this is prohibitively expensive.”

The breakthrough arrived when Paul investigated commercial RFID readers. “I came across a supplier in Australia [priority1design.com.au] who makes an RFID reader card for the princely sum of about £25,” says Paul. “Primarily designed to be used with a laptop PC, the card has a serial data output through a USB connector and in that mode works exceptionally well. I decided that a fully portable reader that could be
EIDSHEPHERD: SHEEP TAGGER

EIDSHEPHERD

>STEP-01

The cricket bat

The components are housed inside a wooden box, with two batteries used to power the Raspberry Pi and LED display. The RFID scanner is fitted at the bottom of the ‘cricket bat’.

>STEP-02

Ready to tag

The LCD display provides information on the sheep being tagged. A piezo buzzer inside the bat provides feedback when a tag has been successful.

>STEP-03

Tag... you’re it

The Sheep Tagger in action. It’s held next to the yellow tag attached to the sheep’s ear. The information about that sheep is saved to a file on the device, and is examined later.

easily carried and available for tag reading in the field would be very useful. The project was born.”

The Sheep Tagger is officially called the eIDShepherd – an eID ear tag reader for sheep. “My wife calls it the ‘cricket bat’,“ laughs Paul.
The heart of the Raspberry Pi is a RFIDRW–USB module, Adafruit 16×2 LCD display, a DS1307 clock module, and a piezo buzzer.

“I found, to my surprise and delight, that numbers appeared on the screen when I wafted an old sheep tag over the aerial of the reader module,” recalls Paul. “My wife failed to see why I was excited. I persevered and learnt how to manipulate the data string to produce CSV-compatible output, and then how to create and append it to a text file on the SD card.”

There were some challenges in turning the equipment into a fully working sheep tagger.

“I discovered I needed a clock when, for the first time, I ran the Raspberry Pi off batteries and disconnected from the internet,” says Paul. “The biggest issue was getting the device to emit an audible beep on successful read of the tag.” The workaround was buzzer hardware attached to a GPIO pin of the Pi Zero. This is momentarily set high when a data string detects the serial input.

The total cost for the final project was less than £60, much less than a commercial device.

“We collect the sheep in a pen and put the tip of the Sheep Reader close to the yellow tag in the sheep’s ear. A bright blue LED on the front of the device blinks momentarily and an audible beep confirms the data acquisition. When I get home, the data is downloaded from the SD card as a text file.

“We’ve had no problems in the field,” continues Paul. “We’ve been using it alongside a laptop to ensure that there are no bad reads or missing data, but all the reads have been correct and the two systems have correlated perfectly. I am now confident to use the Sheep Reader as a standalone device.”

The sheep have a small electronic tag fitted behind the ear that needs frequent scanning
lichens, apparently, are dual organisms. Fungi and algae living together mutually, they’re a good indication of air pollution and the subject of the fascinating Lichen Beacons project. This is a digital sound art installation, involving someone walking around a large room with a portable Raspberry Pi (Pi-in-a-box) and uncovering Bluetooth beacons that activate different responses. The portable Pi comes with a screen and headphones, and the Bluetooth responses to the Eddystone Bluetooth beacons come in the form of music, pictures, and poems.

“The idea with this platform is to make it possible to slow down and take in a digital environment, at a very different pace from the usual hectic screen-hopping and social media hot-desking that seems to define most digital environments,” says the team that created the installation. Tom Hall made the music, Drew Milne wrote and read the poetry, and Barry Byford brought it all together with code.

“One of the great things about the Pi-in-a-box we created was that people needed no technical skills to use it,” Barry explains. “We had a very wide range of
LICHEN BEACONS

The humble Pi-in-a-box seems like a very simple affair, but it does exactly what needs to be done. Walking around the installation in this way adds a level of immersion.

SEARCH FOR BEACONS

>STEP-01
Get your gear
The Pi-in-a-box is a container that has a battery, screen, and headphones attached. All you need to do is pick it up, put it on, and carry it around.

>STEP-02
Find the beacons
Bluetooth beacons are placed around the room, their signal strength activating different parts of the installation. You and the beacons dictate the pace.

>STEP-03
Learn
Listen to the music, hear the poem, and take in the information. It’s not just designed to look pretty: it’s also trying to impart a message.

people, including some that were self-declared technophobes, and because all they had to do was walk and explore the location looking for ‘Lichen Beacons’, there were no technology usage issues with the equipment. This was a very pleasing result and made the event much more inclusive."

“From my perspective, there’s a special affinity between lichens, digital photography, and small screens,” Drew says. “The challenge is to find a new grammar of thinking and writing that can echo the world-making symbiosis of lichen life. Our installation offers the perfect platform for thinking about the poetics of digital environments, and how such environments relate to the world’s fragile ecology... There’s politics in the poetics, too: a way of thinking about how sound art can respond to the sites in which it is installed, while also opening up the larger questions of our environmental crisis. Our installation is a model for using technology in ways that are both home-made and also at the sharp end of what contemporary technology makes possible."

The sound design is binaural, with music wrapping around the sequential poems to create an immersive experience. Part of the future plans to improve the installation involve this sound, according to Tom: “Just as the audience can experience the 18 parts of the installation in any order, I’d like to create a musical environment that responded differently to the order in which people visited the beacons.”

The installation should be turning up in more places around the UK and Europe, so keep an eye out for information on where you might be able to experience it; the full event schedule can be found on the Ludions website: ludions.com/events.
raspberry Pi Zero robots are hardly new – in fact, in our Pi Zero launch issue (#40) we featured a fully functional Raspberry Pi Zero robot before the board was even out! The thing we like best about Pi Zero robots is that they’re always quite inventive and different (such as the Matchbot), and BURT is no different.

Created by Average Man himself Richard Saville, BURT stands for Boxey Unintelligent Robot with Tracks. “I had attended Pi Wars back in December with my other robot, ‘AverageBot’,” Richard tells us. “When the new Pi Zero came out, I wanted to try my hand at making a mini robot using the things I had learnt through Pi Wars.”

It’s a remote-controlled device, so not truly autonomous, but it’s still an excellent little project. BURT comprises a custom-designed plywood chassis that can be rapidly revised and remade, a custom PCB ‘face’ with a couple of LEDs that react to the movement of the robot, and a series of motors. Motor drivers and remote controls finish off the robot to make it work.

“It’s not complex at all in terms of features,” Richard points out. “BURT has no sensors or anything clever – simply two motors and basic controls (hence the ‘Unintelligent’ part of the BURT name). The complex part is putting it all together and working out where everything can go, whilst trying to maintain a small footprint. Everything is compact and fiddly, but that was always the aim.”

BURT is still a work in progress, but Richard seems happy with the way it has turned out so far: “I aimed to make a small basic robot that could move around; that part works as intended, and the media centre remote control does the job well. BURT seems to be able to negotiate a range of different terrains with ease.”

Some of Richard’s plans to upgrade BURT should help to make it more autonomous. First
BURT BOT

>STEP-01

Turn it on!
You’ll need to add some batteries and get the Pi started up. This will provide power for the motors, then you can start the script to use it.

>STEP-02

Controlling BURT
BURT is currently controlled with a media centre remote, which is picked up by a USB sensor. The LEDs on the front react to BURT’s movement.

>STEP-03

Recharge
Currently, BURT uses four AAA batteries to power itself, but they don’t last too long, so you’ll need to replace them every so often.

I wanted to try my hand at making a mini robot using the things I had learnt through Pi Wars

Robots and time machines with the Raspberry Pi, then. Richard does have a major tip for anyone wanting to give a robot like his a go, though: “If anyone wants to try something similar, remember the old rule and don’t make the same mistakes as I did: ‘measure twice, cut once’.”
The MagPi
ESSENTIALS
LEARN | CODE | MAKE

AVAILABLE NOW:

> CONQUER THE COMMAND LINE
> EXPERIMENT WITH SENSE HAT
> MAKE GAMES WITH PYTHON
> CODE MUSIC WITH SONIC PI

From the makers of the official Raspberry Pi magazine
OUT NOW IN PRINT
ONLY £3.99
from raspberrypi.org/magpi

CONQUER THE COMMAND LINE
The Raspberry Pi Terminal Guide

PRIME TIME
Your own Development with Raspberry Pi

MENT OR SENSE THAT
The real world Raspberry Pi

MUSICAL TUNIC Pi
Create Amazing Sounds
ould you like to transform your Pi Zero into an Ethernet USB gadget? You can then plug it into your PC as a USB stick and give it a screen, mouse, and keyboard in the most compact and inexpensive way possible.

This tutorial assumes that you’ll be working from a Windows platform, but if you have a good grasp of other operating systems, it should be easy to apply this to Linux or Mac.

We’re also assuming that you know how to prepare an SD card with Raspbian Jessie (full desktop), and that you know your way around PuTTY and VNC.

Get Raspbian ready
Start by preparing your SD card. While that’s processing, it’s a good time to visit Adafruit’s website and start downloading the new kernel we’re going to use to transform our Pi Zero into an USB Ethernet gadget: magpi.cc/1R9nuQJ.

Whichever way you’ve prepared your SD card, chances are that at this point it’s still in your reader. This is a great opportunity to transfer the new kernel you’ve just downloaded so that we can get the other steps done directly on the Pi.

Rename the Adafruit file to gadgetkernel.tgz and move it to your SD card at the root level.

Solder, serial debugger and terminal
In order to get your Pi Zero Sidecar set up, some advance preparation is needed.

Solder the GPIO header on your Pi Zero, so that you can use a USB-to-TTL serial cable to connect to it while configuring it to become an Ethernet gadget.

We have used Ryanteck’s Raspberry Pi Debug Clip because it offers a really clean and foolproof solution. If you’re going to use something different, be careful with the connections. You’ll need to follow the diagram shown overleaf.

At this point, you’re ready to fire up your Pi Zero. Connect your serial-to-TTL cable or your Pi Debug Clip, and Windows should be able to download the correct drivers for you. Be wary that some Prolific-based adapters won’t work correctly and you’ll need to find a workaround to install the correct driver.

Our Debug Clip was recognised as COM3. Find how yours is configured in Device Manager.

Your Pi is booting up in the meantime, and by now it should be ready for you to finally connect to it. Get onto PuTTY, choose to connect via Serial and make sure to change the baud rate to 115200.

You should be prompted for a login: the username is pi and the password is raspberry.
Begin the mutation

As you log in, you should be able to notice the kernel version that comes as standard with 2016-03-18-raspbian-jessie. If you have missed it, just type:

```
uname -r
```

You should get 4.1.19.v7+ (or later).

Since we’re doing some exploring, type the following commands and save the output by copy/pasting it into a text editor, along with the kernel version from above:

```
lsmod
```

...and:

```
ls -la /boot/kernel.img
```

Good: let the mutation begin. You need to unpack and move the new kernel in order to replace the original one. Doing this will ensure that a newer version with extra modules will be used instead, allowing us to enable the USB gadget functionality. In our particular case the Ethernet Gadget has been enabled in the new kernel, so all we need to do is to provide some overlays and modules for it to work correctly.

To unpack the kernel, execute the following commands in a terminal.

```
cd ~
sudo mv /boot/gadgetkernel.tgz .
tar -xvzf gadgetkernel.tgz
```

Just to be on the safe side, we’re also going to backup the original kernel. Execute the following commands from your home directory, which you won’t have to move away from throughout the rest of the steps.

```
sudo mv /boot/kernel.img /boot/kernel.img.org
```

Now replace the old kernel with the new one:

```
sudo mv tmp/boot/kernel.img /boot/
```

Ignore the following message, as it won’t affect the outcome of what you’re doing:

```
mv: failed to preserve ownership for ‘/boot/kernel.img’: Operation not permitted
```

You’ll get this type of message several times in the next two steps.

We now need to install both the overlays and modules...

```
sudo mv tmp/boot/overlays/* /boot/overlays/
sudo mv tmp/boot/*dtb /boot
sudo cp -R tmp/boot/modules/lib/* /lib
```

The moving and copying is finished. Before we reboot, we just need to change a few configuration files. The first file to edit is `/etc/modules`, in which we’re going to tell the kernel to load the `g_ether` module.

```
sudo nano /etc/modules
```

...and add `g_ether` at the bottom of the file. Ours looks like this:

```
# /etc/modules: kernel modules to load at boot time.
...
    i2c-dev
    g_ether
```

The other file that we need to change is `/etc/network/interfaces`:

```
Above Either of these will connect your Pi to your laptop. The one on the right will make it look cooler, though!
```

Above This is what you’ll need to set up your Pi Zero Sidecar

CHECK YOUR RNDIS CONNECTION STATUS

From Network and Sharing Center, select ‘Change adapter settings’. Right-click on the RNDIS interface (Local Area Connection 2) and select Status. We are running at 425.9Mbps!
Here, you need to add the following lines:

```
# interfaces(5) file used by ifup(8) and ifdown(8)
...
auto lo usb0
iface lo inet loopback
...
allow-hotplug usb0
iface usb0 inet manual
```

This will allow the Pi Zero to bring up the usb0 network interface and automatically configure an IP address.

All is ready for the long-awaited reboot, so let’s do just that!

```
sudo reboot
```

Once the Pi is off, remove the serial-to-TTL cable or the Pi Debug Clip and plug the micro USB connector into the USB data port of the Pi Zero – the other side obviously goes into your laptop or PC.

After a while, you should hear the familiar sound of a USB peripheral being detected by your Windows OS. A new RNDIS driver should be automatically downloaded and installed. Check in Device Manager that all is good. You should see the RNDIS network card amongst your others.

If this is the case, then you are truly very close to being able to SSH to your Pi Zero via USB!

Sorting out the networking

If you open up your Networking and Sharing Center, you should notice that the new Local Area Network created by the RNDIS driver is marked as public.

This might create some problems for the next few steps, as local firewalls will look at traffic coming from a public network as something bad – as they should. For our purposes, though, this will make things difficult and, until the setup is finished, we’d recommend you disable the local firewall and re-enable it only at the end. Once we know how things should look, we’ll be able to re-enable the firewall and configure it to allow for the necessary traffic only.

At this point, we want to be able to refer to the Pi as `raspberrypi.local` instead of an IP address, automatically configure the networking for the Pi, and be able to remotely connect to it via VNC.

The magic that allows you to resolve `raspberrypi.local` is called mDNS and it is natively supported in Raspbian, in Linux in general, in Mac OS X, but not in Windows. Worry not, though, because Apple is generous enough to provide a package to allow Windows to say ‘Bonjour’ to the Pi.

Simply download and install it from Apple’s website: magpi.cc/225SmmK.

Once Bonjour is running, you should be able to resolve `raspberrypi.local`. To test it, simply open a command line session by typing `cmd.exe` in ‘Search programs and files’ on the Start menu. Once the window opens up, simply type:

```
ping raspberrypi.local
```
...and you should get a few replies from your Pi. Your Pi and Windows can communicate at the IP level because they both support link-local address, but this won’t be enough for the Pi to connect to the internet.

To do so, we need to enable Internet Connection Sharing (ICS) on Windows, so that the Pi not only gets an IP address, but will also be able to use the Windows box as a gateway to the internet.

Enabling ICS is very easy. Under Network and Sharing Center on your Windows PC, select ‘Change adapter settings’.

We needed to share our Wireless Network Connection; in most cases, this will be the same for you too. Right-click on the Wireless Network Connection, go to Properties, move to the Sharing Tab, and select at least the checkbox on top. If you have more than two cards, you’ll also need to choose the Connection which you are going to share to. In our case, it was Local Area Connection 2 that was created by the RNDIS driver and to which the Pi Zero is connected.

This will configure the Local Area Connection 2 with the 192.168.137.1 IP address and enable the interface to work as a DHCP, thereby issuing an address like 192.168.137.x to the Pi.

Click OK on the window and try to ping raspberrypi.local, as we did earlier. Your Pi should now reply with its new 192.168.137.x IP address.

See the desktop

The last piece of the puzzle is to enable VNC. With PuTTY, we will now connect to the Pi Zero via SSH. Open a PuTTY connection to the Pi by using:

```
raspberrypi.local
```

As you log in, get back to the output of the commands we saved earlier on and compare it with the new results when issuing the same command as before. You should notice the more updated kernel and the g_ether module being loaded, as we expected.

From the command prompt, execute the following to install TightVNC Server:

```
sudo apt-get install tightvncserver
```

If all the steps above have been performed correctly, the package should be downloaded from the internet using your laptop’s wireless connection. Cool!

Next, enable the VNC Server:

```
vncserver -geometry 1280x800
```

1200×800 is just an example resolution – use whichever you want for your laptop screen, up to the full resolution. Note that running the command above will create a session on screen :1.

Time to run VNC Viewer from our Windows box and enjoy the fruits of our hard work: connect to your Pi Zero Sidecar by entering raspberrypi.local:1 in VNC Viewer.

The setup and configuration of this can be hugely improved and automated, and we’re sure it will become a lot easier in the future. Running the VNC server automatically on the Pi can, for example, already be done – you can find resources about this directly from the raspberrypi.org website. Also, it would be nice if the Pi would gracefully shut down as the laptop initiates its own shutdown. For the time being, just remember to shut down your Pi before shutting down your laptop. Simply run:

```
sudo reboot
```

...and wait a few seconds.

That’s it! We hope you enjoyed setting up your Pi Zero Sidecar. Use it to make your Pi more portable, and maybe revive a decrepit laptop you have hidden somewhere which can now have a second life.
Make use of the Raspberry Pi 3’s brand new Bluetooth capabilities to play audio and/or music over a wireless speaker, without using a dongle!

An oft-requested feature, Bluetooth support on the Raspberry Pi 3 board – along with its wireless LAN capability – has been pretty well received in the Pi and maker communities at large. How can you use it, though?

In this tutorial, we’ll cover the basics of how to get your Bluetooth up and running on the Pi 3, and how to connect to a Bluetooth speaker so you can play all your smooth Sonic Pi tunes that you’ve been learning from Sam Aaron’s tutorials.

>STEP-01
Set up the Raspberry Pi
While Bluetooth is on the Raspberry Pi 3, you need to install a few bits of software to make sure it works properly. It’s best to start by making sure your version of Raspbian Jessie (this won’t work on Wheezy) is up to date. Open the terminal and begin with:

```
sudo apt-get update
sudo apt-get dist-upgrade
```

Follow this up by installing the Raspberry Pi Bluetooth software and the excellent Blueman Bluetooth manager:

```
sudo apt-get install pi-bluetooth blueman
```

You may need to reboot after this, but you’ll probably be fine to carry on to the next step.

>STEP-02
Set up your Bluetooth speaker
Make sure your Bluetooth speaker is all charged up and ready to go, then switch it on. Ours has a satisfying beep once you do so. If there’s a syncing button or sequence for it to start searching to pair with devices, press it/do it and head back to the Raspberry Pi. If you want to check whether the speaker is actually looking, you could always find out if a mobile phone or tablet is able to see it. Don’t pair with it, though, as that might cause problems in the future.
>STEP-03
Connect the speaker up

Open up Blueman by going to the program menu, Preferences, and Bluetooth Manager. As long as the speaker is still trying to sync, clicking Search should make it show up in the interface. Right-click on it, then hit Pair. It should connect to the device, shown by a few information bars on the connection strength – if it then suddenly disconnects straight afterwards, you may need to right-click on it again and hit Connect. Test it out by playing a video on YouTube; it may work straight away like this!

>STEP-04
More setup

Depending on how your Pi is set up, the Bluetooth audio might not work at step 3. If this is the case, it’s best to install some extra software to try to get it working. Open up the terminal again and install PulseAudio and its Bluetooth module:

```
sudo apt-get install pulseaudio pavucontrol pulseaudio-module-bluetooth
```

If you open the PulseAudio panel now, it may not show much information, especially whether or not you can switch to the Bluetooth speaker. You’ll more than likely need to reboot the Raspberry Pi – do that now!

>STEP-05
Connecting with PulseAudio

After the Raspberry Pi has booted back up, check the Volume Control option in the Sound & Video category of the program menu. On output devices, it should list bcm2835 ALSA as the default output. Go and connect or re-pair with the Bluetooth audio device and it should then be picked up as an option in the Volume Control. Try playing a YouTube video again: you may need to mute ALSA and set the Bluetooth device as a fallback, but it should start playing the audio!

>STEP-06
Bluetooth uses

There are some quite obvious uses for Bluetooth speaker connections: not all monitors have audio out, so this solves that issue. This means videos, games, and music (especially the kind from Sonic Pi) are now available to you. You could also incorporate it into a project and create an internet radio player for yourself, activated with the touch of a button. It could be used in a scary Halloween decoration that houses multiple screams and whispers. There’s a lot you can do with this new functionality!
In this month’s deep dive into coding music with Sonic Pi, its creator Sam Aaron looks at the unique tick system...

Last month in this series, we took a deep technical dive into the randomisation system underpinning Sonic Pi. We explored how we can use it to deterministically add new levels of dynamic control over our code. This month, we’re going to continue our technical dive and turn our attention to Sonic Pi’s unique tick system. By the end of this article, you’ll be ticking your way through rhythms and riffs on your way to being a live-coding DJ.

Beat counting
When making music, we often want to do a different thing depending on which beat it is. Sonic Pi has a special beat counting system called tick to give you precise control over when a beat actually occurs, and even supports multiple beats with their own tempos.

Let’s have a play – to advance the beat, we just need to call tick. Open up a fresh buffer, type in the following, and press Run:

```ruby
puts tick #=> 0
```

This returns the current beat: 0. Note that even if you press Run a few times, it will always return 0. This is because each run starts a fresh beat, counting from 0. However, while the run is still active, we can advance the beat as many times as we want:

```ruby
puts tick #=> 0
puts tick #=> 1
puts tick #=> 2
```

Checking the beat
We’ve seen that tick does two things. It increments (adds one) and returns the current beat. Sometimes we just want to look at the current beat without having to increment it, which we can do via look.

```ruby
puts tick #=> 0
puts tick #=> 1
puts look #=> 1
puts look #=> 1
```

In this code, we tick the beat up twice and then call look twice. We’ll see the following values in the log:

0, 1, 1, 1

The first two ticks returned 0, then 1 as expected, then the two looks just returned the last beat value twice, which was 1.

Rings
So now we can advance the beat with tick and check the beat with look. What next? We need something to tick over. Sonic Pi uses rings for representing riffs, melodies and rhythms, and the tick system has been specifically designed to work very closely with them. In fact, rings have their own dot version of tick which does two things. Firstly, it acts like a regular tick and increments the beat. Secondly, it looks up the ring value, using the beat as the index. Let’s take a look:

```ruby
puts (ring :a, :b, :c).tick #=> :a
```

.tick is a special dot version of tick which will return the first value of the ring :a. We can grab each of the values in the ring by calling .tick multiple times:

```ruby
puts (ring :a, :b, :c).tick #=> :a
puts (ring :a, :b, :c).tick #=> :b
puts (ring :a, :b, :c).tick #=> :c
puts (ring :a, :b, :c).tick #=> :a
puts look #=> 3
```
Take a look at the log and you’ll see :a, :b, :c, and then :a again. Notice that \texttt{look} returns 3. Calls to \texttt{.tick} act just like they are regular calls to \texttt{tick} – they increment the local beat.

A live loop arpeggiator

The real power comes when you mix \texttt{tick} with rings and live loops. When combined, we have all the tools we need to both build and understand a simple arpeggiator. We need just four things:

1. A ring containing the notes we want to loop over.
2. A means of incrementing and obtaining the beat.
3. The ability to play a note based on the current beat.
4. A loop structure to keep the arpeggiator repeating.

These concepts can all be found in the following code:

```ruby
notes = (ring 57, 62, 55, 59, 64)

live_loop :arp do
  use_synth :dpulse
  play notes.tick, release: 0.2
  sleep 0.125
end
```

Let’s look at each of these lines. First, we define our ring of notes which we’ll continually play. We then create a \texttt{live_loop} called \texttt{:arp} which loops round for us. Each time round the \texttt{live_loop}, we set our synth to \texttt{:dpulse} and then play the next note in our ring using \texttt{.tick}. Remember that this will increment our beat counter and use the latest beat value as an index into our notes ring. Finally, we wait for an eighth of a beat before looping round again.

Multiple simultaneous beats

A really important thing to know is that ticks are local to the \texttt{live_loop}. This means that each \texttt{live_loop} has its own independent beat counter. This is much more powerful than having a global metronome and beat. Let’s take a look at this in action:

```ruby
notes = (ring 57, 62, 55, 59, 64)

with_fx :reverb do
  live_loop :arp do
    use_synth :dpulse
    play notes.tick, release: 0.2
    sleep 0.125
  end
end
```

Even though each \texttt{live_loop} has its own independent beat counter, we’re calling \texttt{.tick} twice within the same \texttt{live_loop}. This means that the beat will be incremented twice every time round. This can produce some interesting polyrhythms, but is often not what you want. There are two solutions to this problem. One option is to manually call \texttt{tick} at the start of the \texttt{live_loop} and then use \texttt{.look} to look up the current beat in each ring. The second solution is to pass a unique name to each call to \texttt{.tick}, such as \texttt{.tick(:foo)}. Sonic Pi will then create and track a separate beat counter for each named tick you use. That way, you can work with as many beats as you need! See the section on named ticks in 9.4 of the built-in tutorial for more information.

Bringing it all together

Let’s bring all this knowledge of ticks, rings and live loops together for a final fun example. As usual, don’t treat this as a finished piece. Start changing things and play around with it, and see what you can turn it into. See you next time...
Adding a Sense HAT to your Raspberry Pi can transform it from an amazingly small computer into a powerful scientific measuring device. In the first Sense HAT Science article last issue, we looked at the LED matrix and the properties of light and colour. The Sense HAT also has an array of useful sensors that can measure various environmental conditions, and we’re going to take a look at a couple of these over the next few months. We’ll kick things off with some atmospheric pressure fun, using the Pi as a digital barometer.

Attach the Sense HAT to your Pi and power it up. Open IDLE 3 and, as we always do when using the Sense HAT, import the library and connect to the board:

```python
from sense_hat import SenseHat
sh = SenseHat()
```

Taking a pressure reading is simple and can be done with a single line:

```python
sh.get_pressure()
```

This should produce a number like 1016.87158203125 (if you just get back a 0 the first time, run the command again). The number represents the atmospheric pressure (sometimes also called barometric pressure) at your location, in millibars. This is defined as the pressure exerted by the weight of air in the Earth’s atmosphere above the measurement point.

Pressure variances

You’ve probably heard pressure mentioned during the weather forecast, and the barometer was one of the earliest tools used to predict the weather. People noticed that the atmospheric pressure tends to be lower during stormy, unsettled periods and higher when conditions are fine. Most countries have a network of online local weather stations, and you can compare the values for atmospheric pressure reported by your Sense HAT with those of nearby stations; in the UK, go to metoffice.gov.uk. These measurements can then be collated for surface weather analysis to help find surface troughs, high pressure systems, and frontal boundaries.

Unless you’re in a sealed environment like the International Space Station, you’ll find that pressure varies all the time. Let’s turn our Pi and Sense HAT into a mobile pressure recorder so that we can explore these local variations more easily.

Download or type up the code from the listing and then restart the Pi on battery power. Start the
A little experiment

If you’re too impatient and want to mess around with some quicker pressure changes, here’s a simple experiment. A bicycle pump with a needle adapter for inflating sports balls is ideal for this, but a normal tyre adapter or a balloon pump will also work. Take a sealable sandwich bag and make a small hole in the side with the pointy bit of the pump, then use sticky tape to make an airtight seal around the input from the pump. Close up the normal end of the bag and check that you can inflate it like a balloon.

Now open the bag and pop the Pi, Sense HAT and battery pack into it. Seal it up again and start pumping. You should see the pressure measurements displayed on the LED matrix rise quite rapidly. Typically, you should be able to cause a rise in pressure of at least 5–10 millibars.

What is happening? You can see that as you start pumping, the volume of air in the bag increases and starts pushing the sides out. This is because we’re increasing the amount (and therefore the total weight) of air in the bag, so that it’s at a greater pressure that the air outside. If we sucked the air out of the bag, there would be greater pressure outside and the bag would crumple inwards.

It’s worth remembering that there’s roughly a ton of air pressing down on you all the time. You don’t notice it because the force is exerted in all directions, balancing itself out.
In this simple, easy-to-follow tutorial, we’ll be showing you how to hook up your Pi Zero to a TV via an RCA cable. That’s right – believe it or not, the Pi Zero isn’t limited to just HDMI video. By soldering a header pin, hooking up a couple of jumper wires, and adding a screw terminal RCA connector, you can easily access the RCA video output so you can use an old CRT TV in your next Raspberry Pi project.

We’re going to be soldering two pin headers onto the Pi Zero. Start by soldering a pin header to the square pad labelled ‘TV’ on your Pi, then solder another header onto the circle pad next to the square pad. Both pads are contained within a white outline. See Fig 1 for reference.

You could solder wires directly to these pins, but by using pin headers you get a nice neat solution that…
RCA OUTPUT FOR YOUR PI ZERO

allows your connection to be removed when required. Once the headers have been soldered to your Pi, you can then move on to attaching the jumper wires to your RCA screw terminal. Using the male side of the jumper wire, attach them to each of the terminals, making sure to screw them up nice and tight. Make a note of which wire is plugged into the positive pin and negative pin.

Now plug each of the wires into the pin headers you previously soldered onto your Pi. Make sure the wire connected to the positive terminal is connected to the pin labelled ‘TV’.

That’s it for setting up the hardware. Now your Pi should automatically detect which video method you’re using, either HDMI or RCA. If it doesn’t, however, read on and follow our software configuration to get it working.

Setting up the software

First things first: either SSH into your Raspberry Pi, or open up a terminal window.

We need to make some changes to the config.txt file, but before we do that it’s probably a good idea to make a backup of the original, just in case:

```
sudo cp /boot/config.txt /boot/config.txt_backup
```

Now we have our backup, we can edit the original and make some changes. Start by opening config.txt in your editor of choice. We’ll be using nano:

```
sudo nano /boot/config.txt
```

There are two lines in the file that you need to edit. Firstly, you need to remove the comment ‘#’ from the following line:

```
#sdtv_mode=2
```

So it should now look like this:

```
sdtv_mode=2
```

Then we need to add a comment ‘#’ to the following line:

```
hdmi_force_hotplug=1
```

So it should now look like this:

```
# hdmi_force_hotplug=1
```

That’s it. Remember to save your file – if you used nano, press CTRL+X to exit, then, when asked if you want to save changes, enter Y then press RETURN.

Now you can plug your RCA cable into your TV/monitor, and you should hopefully see the video output. Happy days!
Last month in the Pi Bakery, we showed you how to make an Infinity Mirror using the Pi Zero. This month, we add a time display with a difference. Have you noticed how technology promises to make your life easier, but most of the time it adds layers of complications? Well, this time display is different: it promises to make your life more difficult and it delivers on that promise! This display tells you the time in words, but it leaves you with a bit of work to do. This sort of time check is much beloved by fans of BBC 6Music’s breakfast show with Shaun Keaveny, who calls it a ‘rubbish time check’. It’s just the thing to get your brain working in the morning.

The project
The idea is to take the time from a network connection, translate it into words and show it on the OLED display. This is incorporated into the Infinity Mirror so that each time the distance sensor detects a change in the distance to someone in front of the mirror, a new time – or version of the time – will be displayed. When there’s nothing in front of the mirror, then no time is displayed.

Normally, time is expressed as some time to or past the hour. Here there’s another layer, with the time being expressed as some time to or from… some time to or from the hour. This first time is quantised into five-minute intervals, whereas the second time is not.
As an example, if the time is two minutes past twelve, then it could be expressed as ‘twenty-five to twenty-seven minutes past twelve’. The same time could be expressed in a number of different ways, all depending on how the first time is expressed. Note that the words follow the syntactic rules of English; for example, you can say half past but never half to, like you can in some other languages.

The design

Basically, you just need to add on the OLED connections to last month’s project – the connections required are shown in Fig 1. Note that as this uses the SPI interface, there is little leeway in the pins you can use. See the ‘Fitting the OLED display’ step-by-step boxout for full details of the construction. When completed, the display shines through the mirror.

The software

The first thing you need to do is to install the drivers for the display. Full step-by-step instructions can be found in this Adafruit guide: magpi.cc/IuFlKkL.

The display interfaces through SPI, and there’s a bit of Linux-fu you need to enable this interface that’s fully described in that link. However, in use it’s quite straightforward – it’s basically a print statement giving the X and Y coordinates of where you want to print, and the string you want to print. The difficulty is in making it print what you need. The hard_time.py listing (overleaf) shows a standalone program that will print the time in this quirky format. The time is taken from the network interface using the \texttt{time.strftime("%X")} method. The \texttt{draw_text2} method takes a parameter that will determine the text size – we used double-size text for the initial time to/from and for the hour, and single-size text for the other stuff. A random number determines the initial from/to and a quantised offset. The code then works out how far away from this offset the real time is, and prints it out in words.
Integrating with the mirror software
Unfortunately, there’s a bit of a problem with the software we used last month. At the Bakery, we always get software to access the GPIO using the real (BCM) GPIO pin numbers. The writer of the OLED drivers took the opposite approach and used the ‘fake’ pin numbers from the pre-production drawings. As the wiringPi driver can’t work in two modes at once, something had to give. Therefore, in order for the distance sensor to be used with the OLED display, we need to switch modes. Fortunately, this involves changing only three lines from last month’s code:

```python
io.wiringPiSetup() # the wiringPi pin mode
sensorPins = [0,5,4,2] # these have to be in the WPI mode
shutDownPin = 25 # this has to be in the WPI mode
```

These define the mode and what pin numbers to use. Now add in all the functions and code from the hard_time.py listing, with the exception of the main function to last month’s code, and replace the checkForDistance() function with the one in the Integration.py listing. Alternatively, see our GitHub repository (magpi.cc/1NqJjmV) for it all in one.

Taking it further
You can change the code so it updates the time displayed every so often, instead of when the display pattern changes. Or you can alter the code so it says the words in a less convoluted fashion. You can also have a more conventional clock-like display; there is code to do this in our GitHub repository.

hard_time.py

01. # Hard time standalone - Magic mirror
02. # By Mike Cook - February 2016
03.
04. `import` `time, os, random`
05. `import` `gaugette.ssd1306`
06.
07. `random.seed()`
08. `numberText = ["zero","one","two",
 "three", "four", "five", "six",
 "seven", "eight", "nine", "ten",
 "eleven", "twelve", "thirteen",
 "fourteen", "fifteen", "sixteen",
 "seventeen", "eighteen", "nineteen"]`
09. `upperNumberText = ["teen","twenty",
 "thirty","forty","fifty"]`
10. `pastText = [" ", "Five", "Ten", "1/4",
 "20", "25", "Half"]`
11. `pastTextFull = ["nothing", "five", "ten",
 "quarter", "twenty", "twenty five",
 "half"]`
12. `toText = [" ", "Five", "Ten", "Quarter",
 "Twenty", " 25", " Half"]`
13. `RESET_PIN = 15`
14. `DC_PIN = 16`
15. `ROWS = 64`
16.
17. `display = gaugette.ssd1306.`
18. `SSD1306(reset_pin=RESET_PIN, dc_pin=DC_`
19. `PIN, rows = ROWS)`
20. `display.begin()`
```
   display.clear_display()
```

21.
22. `def` `main():`
23. `print"Time test"`
24. `while` `True:`
25. `timeText = time.strftime("%X")`
26. `print` `timeText`
27. `printHardTime(int(timeText[0:2]),int(timeText[3:5]))`
28. `t(timeText[3:5])`
29. `print`
30. `time.sleep(5.0)`
31.
32. `def` `printHardTime(hardH, minsR):
33. `display.clear_display()`
34. `offset = 0`
35. `past = True`
36. `if(random.randint(0,10) > 5) :`
37. `past = False`
38. `if(past):`
39. `offset = random.randint(1, 6)`
40. `else :`
41. `offset = random.randint(1, 5)`
42.
INFINITY MIRROR

42. display.draw_text2(0,0,pastText[offset] + " past",2)
43. hardM = minsR - (offset * 5)
44. if hardM < 0 :
45. hardM += 60
46. hardH -= 1
47. else :
48. hardM = minsR + (offset * 5)
49. if(hardH > 23) :
50. hardH = 1
51. else :
52. hardH += 1
53. hardM -= 60
54. printTimeW(hardH,hardM);
55. display.display();
56.
57. def printWords(number,y,s):
58. if(number < 20):
59. display.draw_text2(0,y,numberText[number],s)
60. return
61. else :
62. display.draw_text2(0,y,upperNumberText[(number-10) / 10] + " ",s)
63. if number % 10 != 0 :
64. n = len(upperNumberText[(number-10) / 10])*6
65. display.draw_text2(n,y,numberText[number% 10],s)
66.
67. def printTimeW(h, mins):
68. if(mins > 30):
69. mins = 60 - mins;
70. timeText = time.strftime("%X")
71. if(pattern != close+1) :
72. pattern = close+1
73. patternStep = 0
74. display.draw_text2(0,32,"minutes to ",1)
75. else :
76. display.draw_text2(0,32,"minute to ",1)
77. printWords(h,48,2)
78. else :
79. display.draw_text2(0,32,"minute past ",1)
80. printWords(h,48,2)
81. # Main program logic:
82. if __name__ == '__main__':
83. main()
MAKE TIME-LAPSE VIDEOS WITH YOUR RASPBERRY PI & DATA DROP

With the Raspberry Pi camera, the Wolfram Language makes it easy to record many pictures over a period of time, then compose them into a video.

STEP-01
Camera setup
Set up your Camera Module. We stuck ours onto a hard drive, but anywhere with adequate lighting is fine. Take a test shot to make sure that the exposure is acceptable.

```math
\text{cam} = \text{DeviceOpen["RaspiCam"]}
\text{DeviceRead[cam]}
```

STEP-02
Adjust images with Wolfram Language
If the images are hard to see, or you’re just really particular about pictures, the Wolfram Language can be used to adjust them. The easiest method is to use the \text{ImageAdjust} function, which automatically adjusts the lightness and darkness of an image to even it out. You can read about more image manipulation functions in the Images section of \text{reference.wolfram.com}.

```math
\text{ImageAdjust[DeviceRead[cam]]}
```

STEP-03
Create a new databin
At this point, you’ll need to set up a Wolfram ID. You may already have one if you use Wolfram|Alpha or Data Drop. Go to \text{datadrop.wolframcloud.com} and either sign in or register (if necessary). Using the same email and password used to sign in...
TIME-LAPSE VIDEO WITH DATA DROP

in online, you can connect your open instance of the Wolfram Language to your account. This will enable you to easily pass images to Data Drop. Once your account is connected, use the CreateDatabin function to make a new databin, in which you can store any type of data you can create. For now, we'll just store the images taken by the Camera Module.

```wolfram
CloudConnect["email-wolframID","password"];
bin=CreateDatabin[]
```

>STEP-04

Set up a ScheduledTask

RunScheduledTask is a very powerful function in the Wolfram Language. Much like a cron job in Unix systems, it allows a function (or set of functions) to be run periodically. The first parameter in RunScheduledTask is the function we want to run, and the second is the amount of time in seconds the ScheduledTask will wait between runs.

```wolfram
intervalometer=RunScheduledTask[DatabinAdd[bin, ImageAdjust[DeviceRead[cam]]],360]
```

>STEP-05

Wait!

Since we've set up the Wolfram Language to run automatically, we can just sit back and let the Raspberry Pi do all the work. You can take this time to read about more Wolfram Language functions at reference.wolfram.com, or read the rest of this issue of The MagPi.

>STEP-06

Check your databin

Make sure that the images being taken on the Pi are being sent to Data Drop correctly. One example of how it should appear is at wolfr.am/3GgU-jf4, which is the databin we have used writing this tutorial. Your images should be stored in a different databin attached to your own account. You can see it by clicking on the 'My Databins' link in the upper-right corner of the Data Drop page after signing in.

>STEP-07

Compile the animated GIF

Using the Values function, we'll load all of the images stored in the databin with the pictures. Then we'll use the Export function to create a GIF with all of these images.

```wolfram
frames = Values[bin];
Export["resurrected_plant.gif", frames]
```

If you want to get a little more complex, you can use the Reverse function on the set of images to animate the pictures in reverse order as well.

```wolfram
Export["resurrected_plant_2.gif", Join[frames, Reverse[frames]]]
```

>STEP-08

Stop the ScheduledTask

The ScheduledTask we started earlier will continue to run indefinitely, so we need to stop it with the StopScheduledTask function.

```wolfram
StopScheduledTask[intervalometer]
```
Will you witness the reveal?

RASPBERRY PI CREATIVE TECHNOLOGISTS NEW WORKS EXHIBITION

@RasPiCT
www.RPiCT.io
WHO
9 Young Individuals
with varied skillsets working alongside Raspberry Pi and industry professionals to create unique and equally awesome projects

WHAT
An Exhibition
That showcases the accomplishments of a year's hard work and shows how diverse technology can be when it comes to being creative

WHERE
Raspberry Pi HQ
30 Station Road, Cambridge
CB1 2RE

WHY
Art Meets Tech
We want to show that art can be created through technology to make more interesting and immersive projects.

WHEN
23rd April 2016
ight, now pay attention 007: we have gathered some special projects, all made using the best of British microcomputer technology – our beloved Raspberry Pi.

Our agents in the field have been working with the Raspberry Pi components, and have been creating experimental spy projects that can foil even the craftiest double agents.

If you want to eavesdrop on a conversation, well, we’ve got just the thing: a light bulb that can surreptitiously transcribe spoken dialogue. On the other hand, if you’re worried about your voice being detected, our voice distortion box will help you out.

Or if you prefer the visual approach, why not build a classic spy camera? Our pinhole cameras can be hidden in any location, or you can wear our bow tie spy camera. No, I never joke about my work, 007.

If you want to find out where somebody is heading, make sure you set up our GPS tracker. We even have motion detection cameras for long-range spying, and a Raspberry Pi–powered Geiger counter for those trickier missions. Self-respecting secret agents should keep their equipment out of sight, so we’ve got a computer that hides inside your lunch box.

Need I remind you, 007, that you have a licence to kill, not to break the law? Do not use this equipment for nefarious purposes. This is a training mission only, so please remember to spy on operatives who are part of your assignment and not random members of the public. Good luck out there in the field, Mr Bond, and do please try to return the equipment in one piece this time.
[TOP SECRET]

AUDIO SPYING..............{68}
Conversnitch is a network-enabled listener that plugs into a light socket and listens in to conversations. The Raspberry Pi transcribes the words to text and shares them.

VOICE CHANGER...........{68}
Use the Raspberry Pi Voice Distorter to change the sound of your voice. Perfect for keeping your secret identity intact.

HIDDEN CAMERA..........{71}
Pinhole spy cameras can be placed anywhere, but the boldest secret agents will wear a hidden camera.

GPS TRACKER...............{72}
Don’t lose track of your suspects. Attach a GPS device to a Raspberry Pi and you can follow people around from a distance.

GEIGER COUNTER...........{73}
Nuclear radiation can be deadly, and you never know when some is around. Our Geiger counter is vital on those more dangerous missions.
Conversnitch is one of the coolest spy devices we’ve seen created using a Raspberry Pi. Created by two Brooklyn-based artists, it impersonates a light bulb and records nearby conversations. These audio recordings are then sent to Amazon’s Mechanical Turk program and are cheaply transcribed by hand.

Kyle McDonald and Brian House created the device to raise questions about the nature of public spaces, but it’s certainly one of the most impressive spy devices we’ve seen.

Conversnitch costs less than $100 to build. The parts are simple: it uses a Raspberry Pi board, microphone, and a WiFi dongle. An Edison screw light bulb fitting is hacked to provide power to the Raspberry Pi, and the whole unit is housed in a plastic circular case.

Bryan House explains: “The device continually records ten-second snippets of audio, analyses them for potential voice content, and sends promising files to Mechanical Turk for transcription. The system then posts these transcriptions to Twitter.”

A video showing the build process is available on Vimeo (vimeo.com/87564506) and all of the source code is on GitHub (magpi.cc/1QRRSin).

Conversnitch is a frighteningly easy project to put together. Perhaps the hardest part would be hacking a light bulb connection to provide power to a Raspberry Pi, although devices like the GE Socket Adapter or Leviton 2-Outlet Socket make life much easier.

Getting people to be more aware about the laws that are in place to protect us is the aim, reveals Kyle. "Some artists, like Brian and myself, see it as their responsibility to make work that’s about culture right now. Security and surveillance are one of the main topics we’re dealing with."

“I hope that what happens is that people become scared and frustrated, and more aware of the laws around privacy and wiretapping, just by having something to look at. “Conversnitch automatically tweets overheard conversations, bridging the gap between (presumed)
private physical space and public space online,” Kyle explains. Once assembled, the small light bulb plugs into any standard Edison screw fixture, and will connect to a local WiFi network – in demonstrations, it was set up in coffee shops. The audio from the microphone is streamed to Amazon’s Mechanical Turk (mturk.com) service, where it is transcribed by anonymous workers. Mechanical Turk specialises in HIT (Human Intelligence Tasks); these are low-cost, short tasks that are performed by humans around the world. In this case, they quickly translate the recorded snippets of audio to text.

Once the hardware is assembled, the Raspberry Pi continuously records ten-second samples and analyses them for interesting audio. If it finds some, it uploads the audio to an Amazon S3 bucket and reports to the server. The server then creates an MTurk HIT task with a link to the audio. A cron process then checks the HITs for completion and, if it finds one, posts the result to Twitter.

According to the project’s README.md document, “Conversnitch complicates the divisions between the physical and virtual, illegal and playful, human and machine, spoken and textual, exposure and illumination.”

There are lots of projects around for creating surreptitious spy cameras, and it really couldn’t be easier. The Raspberry Pi Camera Module is small enough to go undetected in many situations, and with a bit of concealment can be hidden in all kinds of ways. We like Raymond Wong’s Spy Bow Tie (dai.ly/x2pjw8u) and Tetranitrate’s Spy Shirt (magpi.cc/1QRSh4o). If you want something truly inauspicious, then Adafruit’s Spy Camera (magpi.cc/1pvuXwM) is much smaller than the regular Camera Module. It can be hidden inside clothing, so long as there’s a pinhole for the camera to see out. They’ll never spot you recording.
A display is mounted inside the Lunch Box case. It is fixed to the interior of the box using foam tape.

You’ll need two batteries for this build: one to power the Raspberry Pi, and another to power the display.

A clear plastic case houses the Raspberry Pi, WiFi and Bluetooth dongles are used to connect the Raspberry Pi to the internet and keyboard.

A Bluetooth keyboard is attached (with foam tape) to the inside of the lunch box’s lid. When opened up, it acts just like a regular laptop.

You’ll need:
- Custom lunch box
- 10,000 mAh USB battery
- Raspberry Pi 2 with micro SD card
- Clear Raspberry Pi case
- 5-inch LCD
- Bluetooth keyboard
- 6,800 mAh 2v rechargeable battery
- USB cables

No secret agent outfit is complete without a briefcase, and no spy’s briefcase is complete without a stash of secrets.

There are lots of Raspberry Pi computer projects around, but we think you’ll admire this Lunch Box Computer by the cryptically named hacker, D10D3. It has all the components you need to run Raspberry Pi code on the move, and hides your Pi safely inside an inconspicuous box. It’s ideal for places where computers are not allowed, and impromptu hacking projects.

[MAKER PROFILE]

D10D3
A maker, a hardware and software hacker, an artist, and general dreamer. He has an insatiable need to build things and modify them. He’s a lover of science fiction, fantasy, cyberpunk, comic books, computers, and role-playing games. In short, he’s a geek and a jack of all trades.

magpi.cc/1QRSkwR
Feature

JAMES BOND SPY PROJECTS

VIDEO CAPTURE UNIT

Long-term video recording is a great idea for any spy. After all, you can’t be at a stakeout all day and night. It’s pretty easy to capture video on the Raspberry Pi with any webcam or the Raspberry Pi Camera Module, but we admire Matt Hawkins’s Video Capture Unit (magpi.cc/1pvwEdI).

This project is a simple video capture unit that records video in a loop, with the minimum amount of hardware and setting up. “I wanted a standard setup I could quickly deploy around the house, garden, car, or bike,” explains Matt. “The software needed to be easy to set up so I could use it at short notice.”

USB DEAD DROPS

Spies need to share information – and with hackers everywhere, the time-honoured means of sharing secret documents is the ‘dead drop’. This espionage trick is used to pass items between two people, without them ever having to meet each other. The USB dead drop is a modern take on the classic trick, which uses USB flash drives embedded (physically) into a wall. Greg Horton is a web developer from San Francisco, and his USB Dead Drops project (magpi.cc/1QRSqEO) is an excellent primer. You’ll need a USB flash drive, plumber’s tape, a drill, and some patching cement. Check out Dead Drops (deaddrops.com) for further information.

MOTION DETECTION ALARM SYSTEM

“It’s a good first Raspberry Pi project,” says D10D3, “since it requires no coding, soldering, or tooling of any kind. All you have to do is acquire the parts, plug everything in, and secure it in the lunch box.”

“The Raspberry Pi isn’t a very fast machine, but it’s extremely versatile and easy to use. This rig will have all the functionality of a WiFi netbook, albeit a slow one, with a subtle screen.”

D10D3 uses a Raspberry Pi Model B in his tutorial, but we’d advise using the newer Raspberry Pi 2 (or Pi 3) with its faster processor. Two chargers are required: an RCA for the screen, and the other for the Raspberry Pi. We’d be tempted to swap out the 5-inch display used here for a Raspberry Pi Touch Display, which connects directly to the Raspberry Pi’s DSI port using a ribbon cable.

Start by charging up the batteries and installing Raspbian Jessie on the SD card. Then plug the WiFi dongle into the Pi (if not using a Pi 3) and attach the Bluetooth dongle. Connect the Raspberry Pi to the display, and attach power to the Pi and display. “Make sure everything works,” advises D10D3, “You might need to configure the WiFi dongle or change the screen size. If it defaults to a resolution that’s too high, it’ll be hard to read the text, so you can always plug an HDMI monitor into it while you configure it.”

Once you know everything works, you can use some foam tape to mount everything in the lunch box. “I only used tape on the front edge of the keyboard, so I could swing it up to turn it on and change its batteries. Make sure that you arrange things so you have room to get into it to charge stuff later. Also, make sure there’s room to unplug the Pi when you’re done using it, since the Pi doesn’t have an on/off switch.”

There are lots of ways to do a project like this, so feel free to deviate from D10D3’s plans: “All of the parts are modular, and you can change its abilities by using different parts.”

The Lunch Box Computer is a great project for budding spies and sleuths. It’s a quick hack for hiding a Raspberry Pi, and allows you to carry your portable hacking device into places with tight security. Just be careful not to share your sandwiches, 007.
Racker devices are a classic spy staple, and building a GPS tracker from a Raspberry Pi is entirely possible — as David Sulpy, co-founder and CTO of Initial State, shows. His GPS Tracker combines a Raspberry Pi tethered to a mobile phone with an Adafruit GPS module (magpi.cc/1Ufpyre).

The combined project tracks the location of the device and streams it over the mobile data connection to you. This GPS data is parsed through Initial State (initialstate.com), a data visualisation web dashboard enabling you to view the GPS Tracker’s location in a real-time map view.

“I researched many ways to accomplish this task without having to utilise superfluous hardware,” says David. “The Raspberry Pi’s proliferation as a mobile computing platform makes it the perfect candidate for projects like this.”

This GPS Tracker is a project for a future member of Q Branch to get their teeth into. It combines a variety of quirky parts with a lot of interesting code, and gathers a lot of data.

The Adafruit Ultimate GPS Breakout board comes with the board, some header pins, and a CR1220 battery charger. An antenna is connected to the Ultimate GPS Breakout board. The antenna has to be in view of the satellites overhead.

The GPS data is translated into a visual map using Initial State’s web dashboard. A WiFi dongle is used to connect the device to a nearby smartphone acting as a hotspot. This network is used to transmit the GPS data to a remote device.

You’ll Need
- Raspberry Pi
- Adafruit Ultimate GPS Breakout
- Battery charger
- Smartphone or WiFi hotspot device
- Adafruit SMA-to-uFL adapter
- Antenna
- WiFi dongle
- Female-to-female jumper wires

Keep track of movements with this hand-built GPS tracker

David Sulpy
David is a computer scientist, software and security engineer, and founder/CTO of InitialState.com, a data analytics service for Internet of Things devices. thegoodbits.sulpy.com

[MAKER PROFILE]
RASPBERRY PI GEIGER COUNTER

Radiation is deadly, and all spies should be able to get out of a dangerous spot in a hurry. That’s why we think Cooking Hacks’ Radiation Sensor Board for Arduino and Raspberry Pi (magpi.cc/1Ufr7oU) is a great piece of kit. The board is connected to a Raspberry Pi using an Arduino Shield Connection Bridge. The device uses a J305β Geiger tube, along with a piezo speaker and LED display, to provide information on radiation levels. It can detect alpha, beta, and gamma radiation levels, as well as background radiation. Geiger tubes measure the number of pulses generated, and you’ll need to convert them into sieverts to obtain workable readings. This project is an excellent learning programme for all secret agents, and you’ll get to know what levels of radiation different areas and activities have (and what safe levels are).

JAMES BOND HARD DRIVE

No spy is complete without a theme tune, and James Bond has the best theme tune of them all. But who wants to hear it played out of ordinary speakers, when you can get eight old floppy drives and belt it out using a Raspberry Pi to control them? That’s right – old floppy drives have been hacked into musical instruments!

Daniel Kuksiela’s James Bond Theme On Eight Floppy Drives (youtu.be/P3jOitAgCtI) does what it says. “I used the Raspberry Pi and proprietary software,” explains Daniel. “This makes it possible to move the head with a specific frequency, thus issuing the correct head sounds. Properly selected frequencies make it possible to ‘play’ music on diskettes.” You’ll find more information (in Polish) on PCCode (pccode.pl).

JAMES BOND SPY PROJECTS

Sitting on the dashboard of a car, the GPS Tracker beams its location to a remote computer.

battery holder. Wires are soldered to the board and then connected to the GPIO pins on the Raspberry Pi. “If you’ve never done any soldering before, I recommend you get some spare header pins, a breadboard, and a perma-proto board to practise on,” says David. A uFL-to-SMA connector is then used to connect the Ultimate GPS Breakout board to an antenna.

“Make sure the antenna is placed in an area where it has a clear line of sight to some sky,” advises David. “GPS requires at least three satellite fixes to triangulate a geographic position, and at least four to get an altitude.”

With the GPS hardware established, you’ll need to get to grips with configuring the device and testing that it works. All of the code is available on Initial State’s GitHub page (magpi.cc/1QJf4sC).

The project uses the pynmea2 module (magpi.cc/1QR5y7b) for parsing NMEA (National Marine Electronics Association) sentences, whose output looks like this: ‘$GPGGA,183345.000,3606.9007’. This obviously isn’t very readable, so it’s parsed through a dashboard account at Initial State (initialstate.com). “We turn sensor and event data into information that matters, by making it easy to visualise and interact with data from internet-connected devices,” explains the Initial State website.

“When you log into your Initial State account,” says David, “you should see a ‘GPS Tracker’ bucket. When you select this bucket and choose the ‘Tiles’ application, you should see a map with the GPS coordinates.”

The final part is to make the whole thing mobile, and for that you’ll need a mobile phone to provide a WiFi hotspot. You can create WiFi hotspots with most smartphones, including iPhone and Android devices. The Raspberry Pi is powered by a battery and connected to the smartphone via a WiFi dongle. The result is a clever project that broadcasts its position, no matter where it goes.
WHAT DO I NEED TO DO TO UPGRADE AN SD CARD?

Raspbian Jessie
Raspbian Jessie is the preferred operating system for the Raspberry Pi 3, so if you have a relatively recent SD card written from that, you can get it ready for the Pi 3 by updating it in the terminal with `sudo apt-get update` and then `sudo apt-get dist-upgrade`.

Raspbian Wheezy
It’s entirely possible you’re still using an older SD card for this, and we completely understand why. You’ll need to write a new SD card with Jessie on it from raspberrypi.org/downloads, though, to make sure it works properly on Pi 3.

Adding Bluetooth
The final step to make sure your SD card is ready is to install the Bluetooth drivers. Open a terminal and type `sudo apt-get install pi-bluetooth`. For a guide on how to connect to Bluetooth devices, check our Bluetooth audio tutorial in this issue.

WHAT ARE THE PHYSICAL DIFFERENCES ON THE BOARD?

Radio chip
Under the Pi 3 board (or at least on the side with the SD card slot on), there’s a new, very small silver chip that contains the radio – i.e. the wireless LAN and the Bluetooth. It’s very shiny and situated right next to the SD card slot.

Antenna
The antenna for the wireless LAN is on the top side of the board, next to the GPIO pins. It’s right above where it says ‘Made in the UK’, on the opposite side to the USB ports. Don’t cover it with aluminium foil!

LEDs
A very minor change you may not have noticed is that the LEDs have moved from where the antenna is to the opposite side, right next to the power port. You’ll notice this more if you put a Pi 3 into an old official Pi case.

HOW CAN I PORT PROJECTS TO THE PI 3?

Physical
The GPIO ports and all other standard ports on the Pi 3 are the same as the Pi 2, so moving over the physical side of the project should be just a case of setting it up the same way as it was before on the old Raspberry Pi.

Swapped SD card
If you can do the dist-upgrade on Jessie, as mentioned previously, you should be able to simply put the SD card from your other Pi straight into the Pi 3. Double-check everything works before displaying it, though!

New SD card
If you have a new card, you’ll have to transfer files over from the old one, either via a PC and a card reader or transferring with USB storage. Once that’s done, install all your necessary software and you’ll be up and running again.
What do I get when I buy a Raspberry Pi?
You get the Raspberry Pi board itself. A power supply and SD card are not included, but can be purchased at the same time from most places that sell the Raspberry Pi. You can also purchase pre-loaded SD cards too; we recommend buying these from us or our licensed distributors rather than from third parties on eBay: our software is being updated all the time and cards sold by third parties can quickly become outdated.

How much does the Raspberry Pi cost?
The Model A+ costs $20, the Model B+ costs $25, the Pi 2 costs $35, the Pi 3 costs $35, and the Pi Zero costs $5, plus local taxes and shipping/handling fees.

Is the Raspberry Pi available internationally?
Yes.

Where can I buy a Raspberry Pi?
You can buy a Raspberry Pi via our website (raspberrypi.org/products), from either of our main distributors: Premier Farnell/Element14 and RS Components/Allied Electronics. These distributors sell all over the world. There are also many resellers of Raspberry Pis, both online and in bricks-and-mortar stores.

Is there a buy-one-give-one programme for the Raspberry Pi?
Not at the current time. We may implement a programme of this sort one day, but we’ve come to appreciate that the scale of a programme like this may be something our small team isn’t equipped to handle without taking on extra staff. You can, of course, just buy an extra Pi to donate to the person or organisation of your choice.
There is a thriving community building up around the ESP8266 platform.

The addition of wireless and Bluetooth to the Raspberry Pi 3 has piqued our interest in IoT devices, but what about the Pi Zero? The smallest board in the Raspberry Pi range is ideal for low-cost IoT builds, but it doesn’t feature built-in wireless.

While it’s tempting to think of the ESP8266 IOT pHAT as WiFi for your Raspberry Pi Zero, this is a mistake, or at the very least an understatement. Sure, it can add WiFi to your Pi Zero, but if all you want to do is head online, you’re much better off using a USB WiFi dongle.

The ESP8266 IOT pHAT is a way to get started with ESP8266, an extremely low-cost WiFi chip with a full TCP/IP stack and SoC (system on chip). ESP8266 was created by Chinese-based Espressif Systems, and hackers quickly realised it would be incredibly useful (and cheap) for building IoT devices. Hackaday’s Richard Baguley explains: “It can connect to 802.11b/g/n networks on the 2.4GHz band. It can be addressed with SPI or a serial connection, and has an AT command set that makes it behave rather like an old-style modem. It has everything you would need to connect a device to a WiFi network.”

A wireless Zero
The chip itself came out in late 2014 and, during 2015, Western IoT enthusiasts translated its datasheets into English. Pimoroni has taken the ESP8266 and turned it into a HAT-like board, enabling you to combine the processing power of the Raspberry Pi with the wireless capabilities of the ESP8266. Setup is moderately complex, and you’ll need to solder the pins to the board. If you haven’t done so already, you’ll also need to solder the GPIO header to the Raspberry Pi Zero. Both are quite fiddly tasks, although we found soldering the pHAT easier than the Pi Zero. But it’s still a job for confident solderers.

Once you’ve soldered the board, you’ll need to install Minicom (magpi.cc/1RcdWop), a text-based communications program similar to MS-DOS Telix. Raspberry Pi enthusiast Richard Hayler has created a superb guide (richardhayler.blogspot.co.uk).

The community has done a fabulous job of translating the ESP8266 dataset from Chinese, but it’s still a complex and niche area. IoT enthusiasts should certainly take a closer look.

Last word
The ESP8266 is an attractive chip, and the combination of robust TCP/IP communication and Raspberry Pi power is a compelling one. One for serious IoT project makers.
Raspberry Squid Combo Pack

Using the included Raspberry Leaf GPIO template, attach an RGB LED and push buttons directly to the GPIO pins of a Raspberry Pi. The switches are panel-mountable and perfect when putting your Raspberry Pi project into an enclosure.

- Includes one RGB LED Squid and two Squid Buttons and a Raspberry Leaf GPIO template
- RGB LED and switches plug directly into Raspberry Pi GPIO pins
- Simple to use Python library for RGB LED control and switch debouncing

£9.65 / $14.95

Electronics Starter Kit

This kit contains everything you need (apart from a Raspberry Pi) to create ten electronic projects.

- 10 easy to follow project cards
- Quality 400 tie-point breadboard
- 20 jumper wires
- All Python code in one easy download

£15 / $25

RasPiRobot Board v3

A simple to use motor controller for the Raspberry Pi. This board is designed to simplify the process of making small roving robots and controlling medium power loads using a Raspberry Pi.

- Dual bi-directional motor control using TB6612FNG dual H-bridge
- Dual open drain 2A MOSFET outputs
- Socket for HC-SR04 Rangefinder
- Socket for 5V I2C Interface
- Provides regulated power to Raspberry Pi
- 2 x user controllable LEDs
- 2 x header pins for switches
- Reverse polarity protection
- Open Source Python Software library
- Screw terminals for motor and power connections
- Reverse polarity protection
- Open Source Python Software library
- Screw terminals for motor and power connections

£17.50 / $25 - $29.95

GET A 10% DISCOUNT when you buy through amazon.com or amazon.co.uk

Enter promo code: MAGPINOW

www.monkmakes.com | twitter@monkmakes

Please note: Illustration of possible use only, chassis, Raspberry Pi, motors, rangefinder etc. not included
Our build already works on both the RPi 2 and the RPi 3.

One of the news stories we have this issue is about the OpenGL driver making its way into Raspbian, but it’s been available to people in general for a while now. One of the things that the OpenGL driver allows for is more software and operating systems to eventually arrive on the Raspberry Pi, so it wasn’t surprising that the ChromiumRPI project was started up to port Chromium OS over to the Raspberry Pi.

We’ve been following the ChromiumRPI project with some interest for a while now, as Chromium OS is an intriguing and lightweight OS. For those not in the know, Chrome OS is the closest thing Google has to a desktop operating system. It runs on the firm’s Chromebooks and other computers, and is based almost entirely around Google’s Chrome browser. Chromebooks and other PCs (sometimes known as ‘Chrometops’) boot into a very basic desktop that lets you browse the web and use all your Chrome apps and settings. There’s a slightly different settings menu and a basic file explorer, but that’s your lot. Why Chromium OS, then, and not Chrome OS? Well, Chromium is the (sort of) open-source version of the browser that’s then turned into the slightly more proprietary Chrome. The same thing happens with Chromium OS and Chrome OS, which is why Chromium OS is the one coming to Raspberry Pi.

For developers
Currently, the project is still very much in development – at the time of writing, there’s no support for any WiFi dongles or even the wireless LAN on the Raspberry Pi 3. The 0.4.1 release did only come out a day or two after the Pi 3 was released, though, so they can be forgiven for that. However, it does mean that you currently need a wired internet connection to use it, in fact, you won’t be able to even set it up without an internet connection.

The setup is quick and simple, using the standard and very fast method in Chromium OS – all you need to do is log in with your Google account. Once that’s done, it downloads all your settings and Chrome apps that you’ve allowed to sync.

On first boot, which takes noticeably longer, you’ll probably be ready to start using ChromiumRPI within a couple of minutes. Each boot after setup is a
Google’s Chrome-based operating system is being ported to the Raspberry Pi. How good is the current developer build?

Get started

Once you’re set up, booted up, and ready to go, you’re in full Chromium OS. It’s exactly the same experience as you’d get with a normal Chrome OS product. At least, most of the time: this is a development build, after all. On both the Pi 2 and the Pi 3, the OS has a habit of slowing down or even completely seizing up during use. It’s a lot more noticeable on the Pi 2, which leads us to believe the extra power supplied by the Pi 3 helps out here.

The trick seems to be that you need to perform one task at a time on ChromiumRPI and give it a moment to make sure it’s completed most of or all of a task before carrying on using it. This makes it slightly slower than Raspbian to use in general, although arguably you can do more online with it.

It’s a shame because except for some performance issues, ChromiumRPI is looking excellent. YouTube videos play out of the box, connections to Google Drive work fine, and even third-party apps seem to operate OK.

It’s important to note that the ChromiumRPI OS isn’t ready for general use – it isn’t intended to be yet – but the pure potential of it is astonishing. It’s already in a surprisingly pretty good state for a prototype, there’s still a lot of work left for the project developers to do, but it will be a fantastic addition to the Raspberry Pi’s selection of operating systems when it’s done.

Above A limited file manager connects to Google Drive

Above YouTube is supported out of the box

Last word

It’s not quite there yet, but it will be fantastic when it’s done. All the prominent features are already there – it just needs a few bugs ironed out to make it usable.

raspberrypi.org/magpi
For anyone wanting to get the most out of their new Raspberry Pi Zero

The Pi Hut

The Pi Hut’s Essential Kit

Just got yourself a Raspberry Pi Zero? You might need a little more to get it working; is the Pi Hut’s kit that little more?

While it may since have been overshadowed by the arrival of a new big brother with even more power, the Pi Zero is still an excellent little computer with a tiny footprint. After getting one, though, you may need a few other bits and pieces to get it connected up, most notably USB and HDMI adapters, although there’s much more you could feasibly add to it.

Since launch, there have been a few starter kits to get you going. Most of them seem to come with the USB and HDMI adapters, along with a set of GPIO pins to solder to the board – a decent set of basics. The Pi Hut’s Essential Kit, though, offers a little more over these barebones kits – namely, it comes with a broad variety of different GPIO pins that you can add to your Pi Zero. As well as the standard 40-pin set that will make your GPIO ports into something like a normal Raspberry Pi’s, you get an excellent right-angle pin set and two 20-pin strips so you can just solder one side of pins. This offers a lot more options for using the Pi Zero, especially in specific projects where space is tight. With right-angled pins, you can keep circuitry relatively low; with a single line, you could also solder some wires directly to other pins. There’s even a GPIO pin set of female headers much like a breadboard – this can allow for even faster prototyping.

The micro USB and mini HDMI adapters are both pretty solid – the USB adapter uses a cable rather than a fixed brick, whereas the HDMI is of the brick variety, with no cables between mini- and normal-sized HDMI. Little rubber feet are also included in the pack, which are quite cute but largely pointless unless you plan to use the tin it comes in to store and use your Pi; it’s exactly the right size for the Pi Zero, so you can keep it in there with its soft padding when not in use.

All in all, this is an excellent little kit for anyone starting out with a Zero.

Last word

A great little kit with a bit more than the bare essentials, while still selling for a great price. Also, the tin can be used as a nice little Pi Zero case if you haven’t got one yet.
A bright RGB LED with built-in resistors

Monk Makes

RASPBERRY SQUID COMBO PACK

An RGB LED that makes learning code quick and fun, while also being useful for other projects

There are many coding examples available for the LED which rely on a central squid.py library – this acts a lot like GPIO in that you just need to tell it what you want the LED to do, without too much setting up of the GPIO pins in Python. There are many examples to go through and learn from; with a little bit of poking around in squid.py (and even in GPIO Zero), you can figure out how to use it a little more manually.

There are also a couple of chunky red push buttons that come with the full combo pack, so that you can add interaction to scripts. There are some example programs and a library for them as well, which just use the button on their own; however, it should be pretty easy to figure out how to get everything working together to create your own cool little displays. Even when you’re done with the original learning side of the components, they’ll be good for other projects and can easily be repurposed.

The Squid Combo Pack is a great little kit that, while maybe a touch steep price-wise, features some great components and tools that will be useful for years to come.

Last word

A great beginner’s set for learning physical computing that can easily be used for any other projects you might have in the future.

Related

NEOPIXEL RING

Available in many different sizes and prices, albeit with no buttons, but still great LEDs for projects.

£9 / $10

magpi.cc/1XuAvmk

RASPBERRY SQUID COMBO PACK

£10 / $15

magpi.cc/1XuzXNf

Review

One of the first things people usually do with physical computing is work out how to light an LED. A pinout, a resistor, and a ground pin are all you need to get it to work on a Raspberry Pi – and the coding can be done in many ways, depending on what language you’re using. The Raspberry Squid Combo Pack takes this concept and allows you to go even further with it by adding buttons and an RGB element to the LED.

The Squid makes everything very easy to get started with; it comes pre-made so that the relevant resistors are in place and it has female pins so you can attach it straight to the Raspberry Pi. There’s even a handy overlay for the GPIO so you know where everything is supposed to go.
There’s a lot going on beneath the surface of an operating system that can also be found running on most of the world’s top supercomputers. From startup scripts to network troubleshooting, there are tools and techniques to help keep your Pi, or your supercomputer cluster, running smoothly. Binnie delves deeply into more than a dozen problem areas, helping you to get the most from some very powerful command-line tools.

Practical Linux Topics is aimed at sysadmins, and those drawn into sysadmin tasks through DevOps, but contains plenty that regular GNU/Linux users could benefit from. The Unix principal of tools that ‘do just one thing, but do it well’ means that short chapters focus on single problem areas, making great references. The first chapter shows the best way to run netstat to find network problems, then shows why iftop is almost always better; the systemd chapter is for everyone still catching up with the generational change to Linux startup; everything from SSH security to managing disks gets a useful, detailed examination; humble tools like wget are dusted off and shown in all their flexible utility. Add in live kernel patching, GPG, and sudo, and you can see this slim volume packs plenty of useful admin know-how.
Machine learning sits at the heart of tackling big data problems, and Gollapudi’s far-reaching work is framed by a whole ecosystem of machine learning and big data tools. Using a stack of R, Apache Mahout, Python scikit-learn, Julia, and Apache Spark, she takes the programmer through all of the tools needed to attack real problems from a number of angles.

Starting with the fundamentals of machine learning and predictive analysis, the author drills down through definitions of machine learning to arrive at the fundamental “mechanism for pattern search” that underlies “how machines perceive the environment.” Training datasets and performance measures lay the groundwork for datasets, and some machine learning challenges.

You’ll need a little Python or R to keep your head above water here, but will also be introduced to the fascinating Julia language – becoming very popular with data scientists. Several components of the Hadoop ecosystem, including Apache Mahout and Spark libraries, round out our toolkit. These introduced, we move through decision trees; instance and kernel based learning methods; association rules; clustering methods; Bayesian learning; regression analysis; neural networks; reinforcement learning; and ensemble methods. An impressive set of tutorials, complemented by plenty of downloadable code examples.

The book’s subtitle is ‘Python programming for kids and other beginners’, and Heitz manages that rare trick of assuming the audience knows little of the subject, but never talking down to them, which – combined with gentle humour and occasional silliness – keeps the reader engaged with Python through learning several concepts and techniques. With its regular boxes explaining computer terms, clearly annotated code listings, and good introductions to hardware components and their use, Hello Raspberry Pi is a model introduction for learners of any age.
THE MONTH IN RASPBERRY PI

Everything else that happened this month in the world of Raspberry Pi

RASPBERRY PIS BOLDLY GO

Last month, we reported on the Astro Pi case being available for 3D printing. It didn’t take long for 3D printers around the world to start whirring into life as people made their very own space cases for their Raspberry Pis. Here are some of the builds we’ve seen over the last month.

A very important 3D printed case was made by the UK Space Agency (UKSA) to present to a representative of the United Arab Emirates (UAE) Space Agency. It’s been specially printed and finished to look wonderfully smooth, and it was installed with a Raspberry Pi, Sense HAT, and all the necessary buttons. The finished product can be seen in the image above being handed over by David Parker, chief executive of the UKSA, to Khalifa Mohammed Al Rumaith, chairman of the UAE Space Agency. Read all about it here: magpi.cc/21wFRyv.

ASTRO PI GIVEN TO UNITED ARAB EMIRATES SPACE AGENCY

A very important 3D printed case was made by the UK Space Agency (UKSA) to present to a representative of the United Arab Emirates (UAE) Space Agency. It’s been specially printed and finished to look wonderfully smooth, and it was installed with a Raspberry Pi, Sense HAT, and all the necessary buttons. The finished product can be seen in the image above being handed over by David Parker, chief executive of the UKSA, to Khalifa Mohammed Al Rumaith, chairman of the UAE Space Agency. Read all about it here: magpi.cc/21wFRyv.

Right A beautiful 3D print of the Astro Pi case, sans hardware

Right top A multicoloured effort from Patrick Wiatt just needs some hardware to finish it

Right bottom You won’t lose these fluorescent Astro Pi cases very easily!

Above This very bright orange case from John Chinner is complete and ready to go
CROWDFUND THIS!
The best crowdfunding hits this month for you to check out...

ZEROBORG
kck.st/1RJsQ1Y
The robo-experts of PiBorg are no strangers to the pages of The MagPi, with a few of their robots and kits featured for one reason or another. Right now, they have a new piece of kit they want to show off: the ZeroBorg. It’s a brand new motor controller board with the form factor of a Raspberry Pi Zero, and it also includes some analogue inputs for sensors and such. At the time of writing, they’ve hit their target and if you hurry, you’ll be able to take advantage of the backer rewards for it as well.

SMARTPI
This one is a little more niche, but nevertheless an excellent use of the Raspberry Pi – the SmartPi allows you to turn a Raspberry Pi into a smart meter for electricity. It’s an add-on board that measures voltage and current: “Current is measured via contactless inductive current sensors. In the standard version, currents up to 100A can be measured. By exchanging the series resistor to use other sensors, [measurement of] currents up to 300A is feasible.”

PISEC – SECURITY SHIELD
kck.st/1W4wGUD
“Protect your Raspberry Pi from all angles,” says the Kickstarter for PiSec, an add-on board that adds an extra layer of tough hardware security to your Raspberry Pi. The developers believe this is a good deterrent if you’re using it as an IoT device and want to protect your home, or if you’re an industry type and want more protection on your hardware. It’s still requiring funding on Kickstarter at the time of writing, though, so give it a look if you want added security for your Pi.

BEST OF THE REST
Here are some other great things we saw this month

PI-SAT
As it was Pi Day while writing this magazine, a few tech companies did a little something to celebrate. One of the coolest things we saw was NASA’s Pi-Sat, a tiny little satellite cube that’s based on a Raspberry Pi. It’s 3D printed and looks really quite cute.

WD PIDRIVE
A 34GB USB hard drive launched on Pi Day, and with special optimisations for Raspberry Pi that means it should draw less power than other USB drives, while still operating at maximum speed. It also currently costs $31.42 (£22), so they’re going full-on with the Pi theme.
Behind the hype of the ‘northern powerhouse’ lies a real success story for the tech industry of Manchester and the North West. New tech businesses are starting, and existing ones are growing rapidly. But success can bring new problems.

Manchester Digital, the regional trade body, took a Skills Audit for 2016 of the local tech industry. The worrying results – presented at the conference day of the 2016 Digital Skills Festival – show a shortage of people with tech skills to fill local jobs, a severe gender imbalance in the industry, and spiralling wages as a result of the shortage. None of this will be news to anyone with even half an eye on tech, but the conference was about tackling the problem at every stage, and, from Code Club to Picademy, positive solutions were presented.

The challenge that is facing Graham Benson, the new chair of Manchester Digital (MD), is the region’s acknowledged skills shortage. MD’s Skills Audit revealed that two thirds of businesses had struggled to fill developer roles in the last year, 44% had had to inflate salaries to compete, and – most worrying – a third had turned down work, for lack of resources to grow to take it on. Richard Leese, leader of Manchester City Council, looked forward to “digital skills embedded across the curriculum”, acknowledging that this will require teacher training and new equipment.

The North West needs coders as its tech economy looks set to boom. The Digital Skills Festival looked at the short- and long-term solutions, with a little help from Code Club and Lego.

SKILLS AUDIT
You can see more of the North West’s challenges in Graham Benson’s presentation at: magpi.cc/1UaHHXh

Mind the gender gap
With only 30% of tech roles being filled by women, and one in five local tech businesses being all-male, there’s an obvious waste of potential female tech talent. Again, this isn’t news, but with ‘developer’ reported as the hardest post to fill, it was great to hear from Manchester’s many community groups involved in coder training, from Coder Dojo to Manchester Digital Laboratory (MadLab) – a grass-roots innovation organisation focused on science and technology, arts, and culture. Innovation charity NESTA’s research shows only 17% of tech jobs taken by women, and a forecast one million tech jobs going unfilled by 2020: a very real economic cost to tech’s sad lack of diversity. MadLab run a range of creative in action

Town and gown
Representatives of every stage of education were there with answers – if not always in agreement – for training the next generation. Salford University’s Professor Robin Bargar outlined plans for an industry collaboration to “incubate for the needs of future jobs.” One local art college, looking to expand their UX course, told The MagPi that the real problem was getting students with the blend of art, psychology, and maths skills – a path that schools are not offering creative students. Sixteen–plus tech education is also where the gender gap in tech becomes apparent, as Loreto College computing A-level student Katie – on the ‘Beyond the Curriculum’ panel – told the Festival audience, as one of the only girls she knew interested in the subject.
CODE CLUB, IN SPACE — AND BEYOND!

One of the (many) highlights of the Astro Pi contest was Cranmere Primary School’s Code Club entry. The ten- and eleven-year-old children, on being told that their entry would be coded up by developers at the Raspberry Pi Foundation, said a polite “no thanks: that’s what we do; we’ll do it ourselves,” and they did.

This was one of several inspiring tales that Liz Smart, North West co-ordinator for Code Club, gave the Skills Festival audience, before putting in a plea for more volunteers. We got chatting to Smart about how the Pi was helping to open up coding for young people: “We see primary school children using Pis in class and at Code Clubs, secondary school children heading to the Pi table at their local Coder Dojo, and college students attending Pi hackathons run by learning networks like Hive Manchester,” she told us. “There are now opportunities for youth of all ages to develop their skills and grow their interest in digital making; the fact that these activities are affordable, both to run and for the young people to continue at home, is key.”

She told us of a primary school in Salford, which had no computers the children could use. They were trying to set up a Code Club, with the students using the teachers’ laptops: “but the teachers would all need to stay behind, there was a risk to their files, and it just wasn’t practical.” Around the same time, MadLab opened a new co-working space in Salford and stepped in to run a club for that school, and others. “They were able to get a bunch of Raspberry Pis for the kids to use without spending too much money… Since then, the club has grown: they’ve introduced soldering (a session run by Mitch Altman of TV-B-Gone fame which the kids loved!), Codebug (run by MadLab themselves), and attended a World Scratch Day competition at the National Football Museum. The kids wouldn’t have accessed coding or experienced any of those amazing additions if there hadn’t been a low-cost computer available to start their journey.”

INNOVATION CHARITY NESTA FORECASTS ONE MILLION TECH JOBS GOING UNFILLED BY 2020

Raspberry Jam, to their work with local libraries using Pis to run training. Training enough women into the workforce is a vital task, but for long-term change, schools need to give early opportunity to all young learners.

The changes to the national curriculum, introducing coding and computational thinking, are a big help here. Code Club has been offering help to teachers, as well as primary school children, as has Picademy – offering two days’ training, and the coveted swag bag – and in Manchester, community groups like Coder Dojo have been hosting Picademy events, as Steven Flower outlined at the Festival. Further west, Edge Hill University’s free computing workshops for teachers include Sonic Pi (KS2/3), Geocraft – Programming Minecraft using the Raspberry Pi (KS2/3), Logic Gates (KS3/4), and Python (KS3/4).

Duck!

While industry figures challenged educationalists to work more closely with them, the day finished with the audience being challenged: “Make a duck,” commanded Gareth Boldsworth, director of Lego Education, handing out six Lego bricks, and the results showed just how many possibilities there were for turning blocks into birds. “Failure is an option in Lego Education,” said Boldsworth, explaining how his Lego division is building the engineers of tomorrow. Within the EU, he said, between 8 and 22% of students go on to careers in their university discipline, and “65% of the jobs in 2020 don’t exist today.” The 21st century’s most important skills are “creativity, critical thinking, collaboration, and problem-solving.”

CODE CLUB NEEDS YOU!

Plenty of primary schools would love to have a Code Club, but need a volunteer. Download the Scratch teaching materials and take a look: you could do that! Find out more at: codeclub.org.uk/start-a-club/volunteers.
RASPBERRY JAM EVENT CALENDAR

Find out what community-organised, Raspberry Pi-themed events are happening near you...

PUT YOUR EVENT ON THE MAP
Want to add your get-together? List it here: raspberrypi.org/jam/add

1 2ND ANNUAL HISAR CODING SUMMIT
 When: Saturday 9 April
 Where: Hisar School, Istanbul, Turkey
 event.hisars.com
 The goal is to share essential knowledge of programming and algorithmic thinking.

2 3RD PETERBOROUGH RASPBERRY JAM
 When: Saturday 9 April
 Where: University Centre Peterborough, UK
 magpi.cc/1R0Z7l5
 Offering an assortment of activities including talks, workshops, and show-and-tells.

3 FABLAB TACOMA RASPBERRY JAM
 When: Sunday 10 April
 Where: 1938 Market Street, Tacoma, WA, USA
 magpi.cc/1wppl0x
 A two-hour workshop ($85) to get you started with a Raspberry Pi. You even get to go home with one.

4 SPRING 2016 ROANOKE RASPBERRY JAM
 When: Saturday 16 April
 Where: CoLab - Innovation Lab, Roanoke, VA, USA
 magpi.cc/1wpwR3Z
 Topics will include building a robot with the Raspberry Pi and projects with the RaspberrySTEM kit.

5 HULL RASPBERRY JAM
 When: Saturday 23 April
 Where: Malet Lambert School, Hull, UK
 magpi.cc/1pwqRVM
 Explore the opportunities of the Raspberry Pi and help launch a Mars mission... sort of.

6 PLYMOUTH RASPBERRY JAM
 When: Saturday 23 April
 Where: Thinqtanq, Plymouth, UK
 magpi.cc/1R13OuV
 Either work on some supplied projects to learn about Pi, or work on your own projects and get some help.
2ND ANNUAL HISAR CODING SUMMIT
Istanbul, Turkey

3RD PETERBOROUGH RASPBERRY JAM
Peterborough, UK

PLYMOUTH RASPBERRY JAM
Plymouth, UK

HULL RASPBERRY JAM
Hull, UK

EDINBURGH RASPBERRY JAM
Edinburgh, UK

When: Saturday 9 April Where: University Centre Peterborough, Peterborough, UK

PRESTON RASPBERRY JAM
Preston, UK

When: Monday 2 May Where: Media Innovation Studio, Preston, UK

DON’T MISS: PETERBOROUGH RASPBERRY JAM

When: Saturday 9 April Where: University Centre Peterborough, Peterborough, UK

The third Peterborough Raspberry Jam will have a packed schedule, including workshops on FUZE, the Sense HAT, and the EduKit 1. There will also be talks from members of the community, along with a show-and-tell area and marketplace full of vendors of Pi-related merchandise. It should be a great day for people of all ages and skill levels. For more details, check out the event page: magpi.cc/1R2715
Add a blueberry to your Raspberry Pi

Turn your Raspberry Pi into a Multi-Purpose IoT Controller Board

The Blueberry IoT Controller for the Raspberry Pi is a versatile device designed to interact with the real world by reading sensors, controlling electrical equipment and using popular communication channels. It is supported by a range of other devices which can turn your Raspberry Pi into the nerve centre of a simple or complex monitoring and control system.

CONTROL

gates, garage doors, air-conditioning, irrigation systems and much more.

Use the power and connectivity of the Pi or the on-board GSM to control your system from anywhere in the world or receive reports and alerts via email or texts (SMS).

www.rapidonline.com
Rapid Electronics part of the Conrad Group

Made in the UK

iQaudio
Audiophile accessories for the Raspberry Pi

Pi-DAC+
- Raspberry Pi HAT, no soldering required
- Full-HD Audio (up to 24bit/192MHz)
- Texas Instruments PCM5122
- Variable output to 2.1v RMS
- Headphone Amplifier / 3.5mm socket
- Out-of-the-box Raspbian support
- Integrated hardware volume control
- Access to Raspberry Pi GPIO
- Connect to your own Hi-Fi’s line-in/aux
- Industry standard Phono (RCA) sockets
- Supports the Pi-AMP+

Pi-AMP+
- Pi-DAC+ accessory, no soldering required
- Full-HD Audio (up to 24bit/192MHz)
- Texas Instruments TPA3118
- Up to 2x35w of stereo amplification
- Provides power to the Raspberry Pi
- Software mute on GPIO22
- Auto-Mute when using Pi-DAC+ headphones
- Input voltage 12-19v
- Supports speakers from 4-8ohm

Pi-DigiAMP+
- Raspberry Pi HAT, no soldering required
- Full-HD Audio (up to 24bit/192MHz)
- Texas Instruments TAS5756M
- Up to 2x35w of stereo amplification
- Out-of-the-box Raspbian support
- Integrated hardware volume control
- Provides power to the Raspberry Pi
- Software mute on GPIO22
- I/O (2c, 3v, 5v, 0v, GPIO22/23/24/25)
- Just add speakers for a complete Hi-Fi
- Input voltage 12-19v
- Supports speakers from 4-8ohm

Twitter: @IQ_audio
Email: info@iqaudio.com
WWW.IQAUDIO.COM

iQaudio Limited,
Swindon, Wiltshire,
Company No.: 3481903
BUILD YOUR OWN MOTION-ACTIVATED SECURITY CAMERA

THE SECURITY CAMERA SOLUTION FOR THE RASPBERRY PI FROM SB COMPONENTS

SPI-BOX is the first Raspberry Pi case specifically designed to mount both the PIR and Raspberry Pi camera modules. The perfect solution for your PIR/camera project.

BASE KIT INCLUDES:
- SPI-BOX case (available in white or black)
- Instructions for setting up the security kit
- GPIO connectors
- PIR module

www.spi-box.co.uk
Call 0203 514 0914

At SB Components we strive to offer our customers the best prices for the best products. Our product team works tirelessly to source top quality affordable components from around the world.

At SB Components we strive to offer our customers the best prices for the best products. Our product team works tirelessly to source top quality affordable components from around the world.

STORAGE FOR PI. SPACE TO CREATE.

Introducing WD PiDrive 314GB

Engineered for your DIY projects

Lower power consumption. With custom data recording and electrical design, the WD PiDrive 314GB is engineered to draw less power for use with Raspberry Pi.

Fully customizable. Build storage-hungry projects to your desired needs, whether a media player, security camera or NAS. The WD PiDrive 314GB is as versatile as your Raspberry Pi.

Free WDLabs Berryboot download for new users. Includes additional Raspberry Pi applications just for HDD storage usage.

Limited Time Promo Price

Learn more at wdlabs.wd.com/magpi314
YOUR LETTERS

Pay it forward
I wish to thank you for making The MagPi downloadable, as I now live in Costa Rica and having The MagPi sent here would be a total waste, if it ever got here. I am just beginning to work with a Raspberry Pi B and 3, as well as Arduino. I began my association with computers in 1960 as a guidance system tech with the Bomarc IM-99A. That was my first experience with programming on a breadboard. I have not been active much with computers in this way for many years, except for using them for day-to-day tasks. This will be a new challenge for an older fellow. It is almost like starting over, but it will be very enjoyable. Keep up the good work with The MagPi. I now want to find out how to make donations to The MagPi.
Thanks for all you do.
Arthur Sulenski

Green magazine
Firstly, let me state what a great magazine you produce; it’s full of useful, well-written, informative articles.
In a world where we are all told that we need to cut our carbon emissions in order to save the planet from certain annihilation, I choose to subscribe electronically to your magazine. It is the obvious carbon-neutral choice, yet I’m left wondering why people who buy the print version get extra bonuses, when we digital subscribers are the ones saving the planet?
Derek Hughes

Hi Arthur. Thanks for getting in touch. We’re very pleased you’re enjoying the PDFs of the magazine! In terms of donating, it doesn’t quite work like that, as all our profits go to the Raspberry Pi Foundation to fund their charitable mission anyway. If you wish to do this through us, the main way is by buying our issues from our app on your tablet or smartphone. That way, there’s no extra cost for shipping to Costa Rica, you get a better reading experience, and we can send our profits straight up the ladder to the Foundation.

We see where you’re coming from, Derek. However, we’d like to state for the record that the printed magazine itself is extremely green. We make it a point to only use paper from sustainable forests, and the printers that actually make the magazine operate with environmental management systems conforming to ISO 14001. The magazine itself is also completely recyclable!
Unfortunately, due to the limited number of Raspberry Pi Zeros at launch, we had to attach them to a finite supply of physical magazines. It’s also very difficult to attach a physical computer to a digital product – logistically it would’ve been impossible.
I was excited to see that you’ve now printed out the Essentials e-books as actual real books. However, as I live in the US, I was wondering how long I was going to have to wait until it shows up in my local Barnes & Noble. It’s normally a month or so, but I was wondering if there was a way I could get them right now?

Bill C

Currently, we don’t actually have anywhere lined up that will stock them physically – we’re only selling them online. The good news about that, though, is that our new store delivers to America and many other places around the world. You can get to the store here: magpi.cc/MagPiStore

Alternatively, they will probably be making their way to Amazon soon too and, much like the Official Projects Book, will be available for Prime shipping.

Above The books are available from our store and we deliver to many countries

We’re not sure a version like that would work from the standard PDFs, as we use a lot of colour and images when creating the magazine. At the moment, we’re not really in a position where we can create a version that would work better on Kindle, due to the amount of time needed to create the magazine in general. However, the magazine is Creative Commons BY-NC-SA licensed, so if someone wishes to take the PDF and create a more readable version for basic e-readers, they can certainly give it a go!
TAKE US ANYWHERE

FREE: DOWNLOAD ALL 30 ORIGINAL ISSUES

Subscribe from
£2.29 or £26.99
rolling subscription full year subscription

Available now
for smartphones & tablets

Download it today - it’s free!
- Get all 30 legacy issues free
- Instant downloads every month
- Fast rendering performance
- Live links & interactivity

SAVE 25%
with a Newsstand subscription
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)

DO SCIENCE WITH THE SENSE HAT
WITH OUR NEW ESSENTIALS E-BOOK
AVAILABLE ON THE MAGPI APP!

ONLY £2.99 $3.99

DOWNLOAD ALL 30 ORIGINAL ISSUES FREE:
with a Newsstand subscription
SAVE 25%
(limited time offer)
WHAT EXPERIMENTS WOULD YOU DO WITH A UCREATE ASTRO PI KIT?

Tell us by 25th April for your chance to win!

The UCreate AstroPi Kit

It contains everything you need to replicate ESA Astronaut Tim Peake’s experiments in the ISS and devise your own.

ucreatekit.co.uk/astropi

Simply email competition@raspberrypi.org with a 100-word (max) overview of your idea.
t the front of a packed lecture hall at the University of Cambridge Computer Laboratory, Eben Upton welcomed everyone to Raspberry Pi’s Big Birthday Bash. He made the observation that when you’re working on Raspberry Pi so closely, it feels like things move slowly. But when you take a step back and look at the work done over the past year, it’s quite incredible how much the world of Raspberry Pi has advanced and grown.

Since it was recently Raspberry Pi’s birthday, it’s a great time to take stock of things that have happened over the past year. Everything was off to a fast start with the new Raspberry Pi 2, the first Raspberry Pi with a quad-core processor. We then released the official enclosure into the wild and the long-awaited multi-touch display followed soon after. Just a few months ago, we made a huge splash with the $5 Raspberry Pi Zero, the cheapest computer we’ve ever made, and attached it to the cover of issue 40 of The MagPi. On our birthday, Raspberry Pi 3 was released, adding the much-desired on-board wireless LAN and Bluetooth. Of course, we kept the price at $35 for our newest top-of-the-line model.

But this year isn’t just about new hardware – it’s also new software, projects, programming, and people that have enhanced Raspberry Pi’s community and ecosystem.

Software enhancements in the last year have included the upgrade of Raspbian to the Jessie version of Debian, the addition of a new GUI configuration tool, and many enhancements to the desktop experience. Eric Anholt has been making strong progress on the open-source GPU driver, which you can test-drive in the latest build of Raspbian.

In the last year, hardware hacking became more easily accessible within Python with the release GPIO Zero and the implementation of sudo–less access to the GPIO pins. And thanks to the work of Gottfried Haider, an official build of the Java-based Processing language for graphical and creative coding was released for Raspberry Pi, and it supported the hardware capabilities of Raspberry Pi on day one.

More than hardware

Raspberry Pi Foundation’s outreach programmes had a very successful year as well. Two Raspberry Pis with Sense HATs were launched to the International Space Station. They were loaded up with applications designed and written by schoolchildren as part of our Astro Pi program, a partnership with the European Space Agency. Down here on Earth, we trained many teachers to become Raspberry Pi Certified Educators, including 40 in the first-ever Picademy held in the United States. And right now, nine young Raspberry Pi Creative Technologists are wrapping up their year-long exploration of the intersection of art and technology with an exhibition at Pi Towers at the end of April.

And best of all, our team is growing. We welcomed Philip Colligan as the Foundation’s new CEO. Since he started, Philip has worked towards clarifying and communicating our charity’s mission and goals. He also merged the Raspberry Pi Foundation with Code Club, welcoming a group of fantastic people who run a global network of volunteer-led after-school coding clubs for children aged 9 to 11.

In the world of Raspberry Pi, a lot happens in just one year. That’s not to mention all the Raspberry Jams, projects, books, blogs, magazines, videos, and community growth we’ve seen. I wish I could go on, but I don’t want to waste any more time reminiscing about the past when there’s so much potential ahead of us. So here’s to another big year of Raspberry Pi!
The FUZE T2 Case Special Edition

- Protect your Pi from physical & static damage
- UK keyboard* & 4 Extra USB ports
- FUZE I/O Board with 40 way GPIO pass-through
- Clearly labelled input output ports
- 2 Amp power supply and on/off switch!
- Adds analogue ports, 4 in & 1 out
- 840 pin solderless breadboard (black)

£99.99
FUZE T2-C-SE

* USA & German keyboard layouts are also available. Prices include VAT but not shipping - see fuze.co.uk for details

©2015 FUZE & the FUZE logo are trademarks of FUZE Technologies Ltd. Raspberry Pi and the Raspberry Logo are trademarks of the Raspberry Pi Foundation and are used with permission. All rights reserved.

Compatible with Raspberry Pi V1 & V2

BONUS
Includes 8GB SD pre-configured with FUZE BASIC

Computer active
BUY IT AWARD

PC PRO Recommended
...makes the Pi more accessible than ever

micro mart
EDITOR’S CHOICE
...it’s certainly the best we’ve ever tested

Available from www.fuze.co.uk

FUZE Technology Ltd
+44 (0) 1844 239 432 - contact@fuze.co.uk
ESSENTIALS
MUSIC WITH LIVE CODE & CREATE AMAZING SOUNDS ON YOUR Raspberry Pi

Written by Sam Aaron

MAKE 10
ESSENTIALS
[MAKE MUSIC WITH SONIC PI]
[CHAPTER TWO]
CODED BEATS

Sonic Pi creator Sam Aaron continues his essential new series with one of the most influential drum breaks in music history…

Below
The Akai MPC 2000, a classic early sampler

magpi.cc/sonic-pi-book
Expand your Pi
Stackable expansion boards for the Raspberry Pi

Serial Pi Plus
RS232 serial communication board. Control your Raspberry Pi over RS232 or connect to external serial accessories.

Breakout Pi Plus
The Breakout Pi Plus is a useful and versatile prototyping expansion board for the Raspberry Pi.

ADC Differential Pi
8 channel 18 bit analogue to digital converter. I²C address selection allows you to add up to 32 analogue inputs to your Raspberry Pi.

IO Pi Plus
32 digital 5V inputs or outputs. I²C address selection allows you to stack up to 4 IO Pi Plus boards on your Raspberry Pi giving you 128 digital inputs or outputs.

RTC Pi Plus
Real-time clock with battery backup and 5V I²C level converter for adding external 5V I²C devices to your Raspberry Pi.

1 Wire Pi Plus
1-Wire® to I²C host interface with ESD protection diode and I²C address selection.

Now Available for the Pi Zero

www.abelectronics.co.uk
SAVE 15% "MagPi15" discount code

BrickPi
Build a LEGO robot with your Raspberry Pi!
$89 / £59

GoPiGo
Everything you need to build a Raspberry Pi robot!
$89 / £59

GrovePi
Connect hundreds of sensors to your Raspberry Pi!
$89 / £59

www.dexterindustries.com