Open-source syringe pump

If you’re unlucky enough to have required precise, timed doses of drugs through an IV in hospital; or if you’ve worked in a lab where controlled amounts of chemicals have needed to be added to an experiment on schedule, you’ll be intimately familiar with syringe pumps. They look like this.

syringe pump

And they’re expensive. The one in the picture above, which was the cheapest I could find (in an admittedly very quick and dirty Googling session) costs $750. As with a lot of specialised scientific equipment, that means that it’s difficult for hospitals with restricted incomes, or for labs with a lot of overheads, to get their hands on as many as they need for their work. This applies to cash-strapped university departments and hospitals in your town every bit as much as it applies to organisations in the developing world: equipment like this can be prohibitively costly wherever you are.

Joshua Pearce led a team of graduates and undergraduates from Michigan Tech‘s Open Sustainability Technology Lab in a project that intended to do something about that. They have created an open-source, 3D-printed syringe pump that can be made for a fraction of the cost of existing pumps, using an off-the-shelf motor and bearings, which is driven by a Raspberry Pi. The whole system comes in at about $50: that’s a fifteenth the price of the pump in the picture above, and it performs exactly the same task, in exactly the same way.

open syringe pump

The plastic parts are made with a 3D printer; a Raspberry Pi acts as a control and calibration unit.

Megan Frost is a biological researcher at Michigan Tech, who has been using the open-source syringe pump in her work with cell cultures. She says:

“What’s beautiful about what Joshua is doing is that it lets us run three or four experiments in parallel, because we can get the equipment for so much less,” she said. “We’d always wanted to run experiments concurrently, but we couldn’t because the syringe pumps cost so much. This has really opened doors for us.”

Cost can be a devastating barrier to entry to the sciences, and for basic health needs like pharmaceuticals delivery. One of the things we were trying to address when we created the Pi was the high cost of computing. We’re strong believers in democratising access to technology, and this project’s a perfect example of how to do that.