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ABSTRACT
The teaching of computing in schools is relatively new, with limited
research informing what to teach and how in upper secondary con-
texts. However, computing education has spawned the development
of many tools for use in such education settings.

Isaac Computer Science is a computer science (CS) learning plat-
form aimed at school students in England aged 16 to 19 years old
studying for formal A level CS qualifications. Over 34,000 students
and over 2,400 teachers have registered on the platform to date,
and over 1 million online questions have been attempted. The plat-
form is pre-populated with CS content and questions. Feedback is
tailored to respond to common mistakes. Hints and explanation
videos accompany questions. Question sets can be assigned to stu-
dents by teachers. Question types include Parsons problems, drag
and drop, multiple-choice and text-matching answers, including
Boolean Algebra responses. Students only see content, questions
and notation pertinent to their course of study. Isaac CS has a
centrally-organised ongoing provision of support, such as teacher
professional development and student events.

This tools design paper outlines the development of Isaac CS
through a review of design decisions and the effectiveness of its
features. The review is informed by literature, platform usage data
and teacher and student feedback. The discussion is framed in terms
of online learning theories and a knowledge appropriation model.
We suggest a new model, a Platform Pedagogy Matrix, which may
be of use to other platform developers and researchers.
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1 INTRODUCTION
This tools design paper describes the computing education platform
Isaac Computer Science (CS). Isaac CS is a free educational resource
for students studying upper secondary school computer science
(aged 16 to 19 years old) and their teachers. As a holistic offer, the
resource comprises a content-rich educational website supported
by centrally coordinated face-to-face student and teacher events,
online student mentoring, and printed materials. Online resources
include coverage of England’s upper secondary A level1 CS subject
material and smart resources, such as embedded interactive ques-
tions with hints and tailored feedback, a tool for students to write
Boolean algebra, and a Parsons problems question feature. The
platform also incorporates more traditional online functionality of
text, images, animations, videos and multiple-choice questions.

Although students could independently follow a suggested order
to access Isaac CS material, students are expected to primarily
work with the platform as guided by their teacher during class, as
homework, or for revision. Teachers incorporate Isaac CS into their
teaching. The resource is not intended to be a MOOC or an “empty”
Learning Management System (LMS), but rather offers a solution
that includes all the necessary subject content without prescribing

1A level is an examination-based 2 year course delivered in England and some other
countries of the UK
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how it is embedded into the teaching experience, with the aim of
providing support to learners and reducing teacher workload.

Although existing A level teachers are likely to have more exten-
sive subject knowledge than teachers of younger students, there is
a shortage of experienced upper secondary teachers [39]. A con-
tributing factor to the shortfall of teachers is that the number of
students enrolling in CS A level courses in England has more than
doubled from 4925 in 2015 to 10375 students in 2019 [13].

Isaac CS has been developed to address two main issues: firstly,
the limited resources with curated, trusted online content and in-
tegrated activities to support the teaching and learning of A level
CS in England [34, 37], and secondly, the shortfall of experienced
upper secondary school CS teachers in England [39].

Isaac CS is a government-funded project created and run by the
University of Cambridge and the Raspberry Pi Foundation. Isaac
CS was launched in July 2019 and is free for anyone to use. Isaac CS
teaching material is available under the Open Government Licence
v3.0, which permits anyone to use and adapt the work [38], and the
platform’s software is open source.

In reviewing the design of Isaac CS, we have developed a model,
the Platform Pedagogy Matrix, that relates the pedagogy that an
online CS platform may afford.

2 LITERATURE REVIEW
To situate our study, we first outline research on online learning in
general and then focus on research on education platforms designed
to support blended learning in the teaching of computing.

Meta reviews of research on online education reveal a lack of
robust evidence for, and often conflicting views of, the effectiveness
of online educational platforms [3, 16, 26, 29, 30]. Despite this, on-
line platforms are used extensively in undergraduate courses and in
some school settings [3, 26]. The common use of online resources,
and a scarcity of robust evidence on their effectiveness to improve
student outcomes, has led to advice to teachers that they should
take much care when designing online learning activities, including
thinking carefully about pedagogy, implementing change, and con-
sidering what is most useful for different phases of education, and
different subject disciplines [9, 16, 24, 26]. Guidance has emerged as
to why online resources are used [26], and on recommended uses
[16] and processes to design blended teaching and learning, such
as the Arena Blended Connected process (ABC) [42]. In their 2014
review of research on online learning, Means et al. [26] suggested
six reasons why K-12 teachers turn to online resources to augment
their classroom activities:

“ broadening access to instruction, facilitating small-
group and one-to-one teacher-led instruction, serving
students with very diverse needs, providing more oppor-
tunity for productive practice, adding variety to instruc-
tion and enhancing student engagement and supporting
learning of complex, abstract concepts.” [26, p.101]

In their 2019 review of the literature on the use of digital technology
in schools, the Education Endowment Fund recommended three
potential uses of online tools: i) that this technology can be used to
improve the quality of explanations and modelling, ii) that it can
offer ways to improve the impact of pupil practice, and iii) that it
can play a role in improving assessment and feedback [16].

In online learning, the term “blended” is used to describe one
learning scenario. Horn and Staker define the term as follows:

“ Blended learning is any time a student learns at least
in part at a supervised brick-and-mortar location away
from home and at least in part through online delivery
with some element of student control over time, place,
path, and/or pace.” [20, p.3]

To transition from face-to-face to blended teaching, several univer-
sities use an online curriculum design process called Arena Blended
Connected process (ABC) [42]. In the ABC process, educators re-
view face-to-face learning activities and identify what student learn-
ing types are used, and design new sequences of blended teaching
events that provide a balanced coverage of all learning types [24, 42].
Based on the conversational framework proposed by Laurillard [24],
the ABC learning types are acquisition, investigation, discussion,
collaboration, practice and production [42].

As well as research on how to design blended and online instruc-
tional activities in general, research looking at the use of online
resources to support the teaching of CS has been undertaken. In
their 2008 review of how to better support university CS educa-
tion through learning management systems (LMS), Rößling et al.
suggested a Computing Augmented Learning Management System
(CALMS) [36]. CALMS is not a specific tool or toolset; instead it
lists components, functionality, and pedagogy patterns suggested
to support and improve CS LMS. Pedagogical patterns can include
active learning, cooperative learning, and feedback patterns such
as the feedback loop model where students use online resources for
personal study contributing to in-class experiences [36].

Rößling et al. [36] suggest that functionality to support the online
teaching and learning of CS should include:

• general pedagogy tools e.g. tools supporting authoring, col-
laboration, scaffolding, reflection, multiple representations

• augmented learning e.g. functionality to enable educators to
change elements for student requirements

• specialised LMS e.g. systems that include specific adaptions,
such as Interactive Development Environments (IDEs), func-
tionality that checks knowledge in specific CS topics and
often includes Computer Aided Assessment (CAA)

• algorithm and program visualisation tools
Computer Aided Assessment (CAA) refers to activities where

computers are involved in the assessment process beyond storage
and delivery [10]. An example of CAA would be a self-marking
system with automated feedback that is dependent on answers
provided or has questions adapted to the student [10]. CAA, IDE
and other LMS are often standalone systems and calls have been
made to improve their interoperability [22].

As well as algorithm and program tools that are integratedwithin
an IDE or visualisation software, some tools handle pseudocode
or code as text. An example of this are Parsons problems where
students reorder blocks of text representing code statements [32].
A rich thread of research, predominately conducted in an under-
graduate setting, comparing Parsons problems (and their many
variants) to code tracing and other code writing activities, has
been explored, with promising indication that students make more
progress when using Parsons problems [17, 18]. Research indicates
that Parsons problems are a particularly effective teaching approach
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Figure 1: Ley et al.’s Knowledge Appropriation Model [25,
p.107]

when dealing with problems with “non-novel” solutions [19], they
help identify student difficulties [14], can be used to help students
understand programming patterns [41], and increase student en-
gagement [14]. However, such studies require replication to provide
confidence about generalised benefits [14].

In their analysis of the use of an undergraduate CS e-book used
in a blended course, Ericson et al. found that online activities with
lower cognitive load, such as multiple choice questions and Parsons
problems, were more popular with students than higher cognitive
load activities, such as editing code [17, p.176].

Brusilovsky et al. reviewed university CS teaching and learning
platforms and identified online systems as often including eText-
books with smart content such as interactive examples, anima-
tions, and auto-assessment exercises [6]. These authors note that
approaches for marking, feedback, and reporting of open ended
coding solutions to complex problems are very different to the auto-
assessment of multiple choice and other simple format questions.
They highlight that, although functionality for learning program-
ming is a common focus for many CS education systems, some
systems focus on teaching and learning of abstract concepts [6].

Turning to younger students learning CS with online platforms,
Anohah investigated which pedagogy is best to support online
teaching of CS for high school students (ages 14 to 18) [2]. The
author concluded that no single pedagogy fits all, and that multiple
pedagogical approaches should be considered [2]. Nevertheless,
Anohah suggested that automatic feedback on programming exer-
cises, visualization of algorithms and representation of concepts in
animations or through physical activities are extremely important
to consider [2]. Physical activities are not conducted online, rather
they are done “offline” and are sometimes called unplugged learning
activities [4].

Simply creating a new platform does not guarantee practical
adoption by teachers or learners. As shown in Figure 1, Ley et al.
have proposed a Knowledge Appropriation Model to help under-
stand the phases of becoming aware of (engagement with), scaf-
folding use of, and maturing the use of new tools and working
practices that lead to appropriation [25]. This model has been used
to analyse the introduction of tools in educational settings [35] and
the adoption of programming pedagogy in industry [40].

3 AIMS AND APPROACH
The overarching aim of this study is to contribute to the body of
research on school-focused teaching and learning CS platforms,
specifically on their features and how they relate to pedagogical
approaches. Our approach to meet these aims is to: i) reflect on
the design decisions of the key features of Isaac CS; ii) review the

testing and evaluation of the platform; and iii) using the literature
of the field, reflect on lessons learned that emerged during the
development of the platform to suggest overarching models to
support similar platform development.

4 PLATFORM DESCRIPTION
Rather than developing the platform from scratch, Isaac CS built
upon an existing educational platform called Isaac Physics, a learn-
ing platform aimed at improving students’ physics and associated
mathematics problem-solving skills. Isaac Physics has been success-
ful as a unique product that is simple to introduce, lowmaintenance,
trusted, and with carefully considered pedagogy focused on meet-
ing the needs of one group of teachers and their students [15, 21].

Isaac CS benefits from the features of Isaac Physics but for CS
communities of learners. Building upon an existing platform re-
duced development costs and provided a trusted brand that was
likely to be known to students and teachers. Issac CS, like Isaac
Physics, is a web-based, single-unit application with some internal
services, such as checking symbolic maths, but currently has no
integration with other software like school LMS. Users sign up indi-
vidually to Isaac CS, and teachers can view and manually download
student assessment data.

The major features of Isaac CS can be grouped into themes of
Pedagogy, Content, Appropriation (including engagement) and
General Functionality. We describe each in turn and then outline
the evaluation of the platform.

Pedagogy - A content-rich platform. A key feature of Isaac CS
is that it should support students to learn and acquire the content
of the syllabus through presentation of core material in text and
video format that students can read and watch as well as practising
questions about the content. To make the content more interactive,
“quick quiz” activities are used. These activities do not require stu-
dents to enter an answer; rather the answer is hidden, and students
click a button to reveal it.

Pedagogy - Question types for CS.. An early activity in the de-
velopment of Isaac CS was a review of the question types needed
for computer science. The Isaac Physics resource provides multiple
choice questions, single value numerical answer questions, and drag
and drop algebra questions. Through an analysis of previous A level
CS examinations, computer science questions were mapped to the
types of available question types, and gaps identified. For example,
most CS examination questions required paragraph-length answers
and many required students to draw diagrams. As a result, three
significant changes to question types were made to accommodate
CS requirements: i) The equation editor was adapted to support
Boolean Logic drag and drop questions; ii) A new Parsons problems
question type was added; iii) Text matching questions using string
matching and natural language processing were developed.

As discussed in Section 2, Parsons problems have been identified
as being of promise in improving student progress and engagement
when learning to program [14, 17, 18]. This format of question
was added to the platform, including reordering and indentation
of blocks of text. As well as using this question type for code,
pseudocode, and algorithm problems, the question type has also
been used in topics such as networks, architecture, and ethics.
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Long text answers are difficult to mark automatically [6]. How-
ever, text matching questions with short answers of one or two
words were added to the platform by developing a new string
matching and natural language processing question type. The text
matching functionality built upon and adapted OpenMark, a free-
text auto-marking system [7] developed at The Open University. To
use this question type, content designers must define rules related
to expected answers.

Pedagogy - Automated scaffolding through episode-related hints
which students choose to see or not. Before students attempt to an-
swer a question, they can choose to reveal a hint or not. As students
become more proficient, they can choose to fade the scaffolding
provided by the hint. There are levels of hints, providing help with
the content needed (declarative knowledge) and how to tackle the
problem (procedural knowledge). Research into the hint facility
within Isaac Physics indicated episode-related self-selected hints
enhanced problem-solving skills [11, 33].

Pedagogy - A practice pedagogy of student’s multiple tries to an-
swer questions (as many times as they like) and automated tailored
feedback. When attempting questions, if the student gets the an-
swer wrong, feedback is provided instead of the correct answer. If
the answer is associated with a common error, then tailored feed-
back is provided. Students can attempt a question as many times as
they like. Being able to practise problem-solving with immediate
and relevant feedback scaffolds learning and affords students a form
of low-stakes formative self-assessment [5], prompting increased
learning [8], self-efficacy, and self regulation [27].

Pedagogy - Blended teaching and learning. Teachers are expected,
and are supported through professional development, to blend Is-
sac activities into their lessons, homework and to recommend it
for student independent study. Many questions, as well as being
presented on the platform, are also distributed as physical books.
The books are sold at cost price to schools and students. It is antici-
pated that students will work in their books offline. Teachers may
mark student’s books for assessment purposes, helping teachers to
identify misconceptions.

Pedagogy - Providing examination-specific content. Through con-
sultation with teachers, it was decided that a feature should be
added to enable students to see only content and questions per-
tinent to their Awarding Body (AB) in order that students would
not be confused by material that was not pertinent to the examina-
tions they were studying for. An AB is an accredited organisation
recognised by government-appointed regulatory bodies that sets
and accredits examinations [12]. In England, there are numerous
ABs, including currently AQA and OCR [31].

Although one might expect the content of the curriculum speci-
fications for an examination to be identical across ABs this is not
the case for A level CS in England. Differences include the speci-
fication of pseudocode, Boolean Algebra notation, and assembly
language commands. By enabling students and teachers to select
their preferred AB, the platform presents the appropriate content
and notation.

Pedagogy - Provision of an IDE.. An interactive development
environment (IDE) for programming activities has been cited as an

Figure 2: Isaac CS Menu (with menus expanded)
important feature of CS platforms [6, 17, 23]. However, for Isaac CS,
it was decided that an integrated IDE was not required at this stage.
The rationale for this decision was: i) there were many IDEs already
in use by teachers; ii) developing a new IDE was not practical in the
timescales and funding provided; iii) programming practice through
Parsons problems and other question types was to be provided.

Content. A team of experienced computer science educators is
responsible for the development of the content for the platform.
Content topics include Computer Networks, Computer Systems,
Cybersecurity, Data & information, Data structures & algorithms,
Impacts of digital technology, Maths for CS, Programming fun-
damentals, Programming paradigms, Software Engineering, and
Theory of computation. Further content covering other AB specifi-
cations is scheduled to be added to the platform over the project’s
lifetime.

Appropriation (including engagement). To raise awareness about
the platform, an Isaac CS team devises and runs marketing cam-
paigns and events such as student masterclasses, teacher profes-
sional development, and student and teacher mentoring sessions.
To help educators and students learn how to use and adapt the
platform, to appropriate it to their teaching and learning, the plat-
form is used in events. Student events include industry sessions
relating to careers and university-led sessions on CS topics and
higher education opportunities.

General Functionality. To adapt Isaac Physics, a CS-specific user
interface was designed for Isaac CS; the menu structure for Isaac
CS is shown in Figure 2. Isaac CS is a standalone platform accessed
through a web interface. The sign-up process has been designed
to be very simple and easy to use. Teachers create student groups
and invite students to sign up using a QR code or an invitation
link. Students must choose whether or not they want to share their
data about questions completed with their teacher. In other words,
students can choose to use the platform and not share their data.
Individuals signed up to Isaac CS can request a teacher account. The
upgrade is verified by the platform team using a manual process.
All users on the site (students, teachers and platform developers)
may assemble “gameboards”. A gameboard is a set of up to 10
questions selected from existing questions on the platform. To
help students monitor their progress, a “progress page” is provided
showing a breakdown by topic of the total number of questions
they attempted and answered correctly. To support teaching and
assessment, teachers are provided with a summary page, called
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a “markbook”. The markbook shows the number of correct and
incorrect submitted answers per student per question assigned.
This page does not show the number of attempts or details on the
students’ incorrect answers.

5 TESTING AND EVALUATION
The platform has been tested and evaluated through numerous
processes that can be categorised into four themes: Functionality
testing, Content testing, Pedagogy testing and Platform evaluation
covering functionality, content, pedagogy and appropriation.

Functionality testing. The new user interface was tested during
an iterative process of prototyping and testing with a user group of
nine students and three teachers. In the testing period, participants
completed realistic tasks such as setting and completing homework,
tracking progress, and finding curriculum content. Changes to
the Isaac Physics platform such as the AB specific functionality,
handling Boolean Algebra, new Parsons problem questions and text
matching questions were tested by the platform team. Manual and
automated tests were performed, as well as regression testing.

Content testing. Before going live, each unit of content follows
a quality assurance process to ensure accuracy and trustworthi-
ness. The process includes an internal and external review, pilot of
content with teachers, and documented incorporation of feedback.
Each unit of content is then reviewed annually. In addition users
can report content and technical issues. Issues raised by users are
recorded in a ticketing system that is regularly monitored by the
platform team.

Pedagogy testing. It is difficult to test how teachers and students
use the platform and how content and questions support knowl-
edge building and overcoming misconceptions. One indication of
what learning is taking place is provided by students’ incorrect
answers. Teachers can view the results of students’ attempts of
assigned gameboards, but they can only see how many answers
were correct or incorrect. The Isaac CS team receives reports detail-
ing what incorrect responses were given, and the number of such
attempts. The team uses this information to reflect on potential
misconceptions and improve content, questions, hints and tailored
feedback. For example, a misconception related to queue abstract
data types and dequeued elements was discovered. To help address
this misconception, a tailored feedback response was added, and
content changes made.

Platform evaluation including functionality, content, pedagogy
and appropriation. Evaluation of the platform is obtained in three
main forms: from an advisory group of teachers, through student
and teacher surveys (of events and the platform in general), and
from the review of platform usage statistics.

To support the development of the platform, a panel of represen-
tative teachers was appointed, meeting four times a year. Before
each meeting, the practitioners complete a survey to capture issues
and ideas for improvement of the content and pedagogy of Isaac
CS. An example of feedback from the panel was that static pictures
and text may not help students to learn about procedural aspects of
topics such as sorting and searching algorithms. Teachers suggested

the inclusion of an animation or video that steps students through
each stage; as a result of this, animations are being added.

Surveys are used to capture platform data. 94 teachers and 253
students responded to the 2020 annual survey. Reporting about the
benefits of the platform, 64% of the teachers said that using the
Isaac CS helped them save an average of 3 hours teacher workload
hours per week [28]. Also, in the 2020 annual survey, teachers and
students were asked about the platform and quality of the content.
94% of teachers and students rated the platform as easy to use. 88%
of teachers and 84% of students rated the platform as having good
quality written material. 90% of teachers and 79% of students rated
the platform with good quality questions.

Platform usage statistics provide data on how many users are
using the system. As at the end of May 2021, over 26,000 students
and 2000 teachers from England had registered and over 1 million
question attempts have been made.

6 DISCUSSION
We review the features of Isaac CS in two ways. First, as shown in
Figure 3, we consider the pedagogy of the platform using the in-
structional approaches suggested by Anderson and Dron [1], which
we have correlated to the learning types proposed by Laurillard
[24], and functionality of online CS resources of Rößling et al. [36].
Secondly, we evaluate the coverage of functionality using the six
purposes of blending instruction proposed by Means et al. [26].

As shown in Figure 3, the pedagogy of Isaac CS focuses on a
cognitive behaviourist acquisition learning type as well as construc-
tivist practice. Functionality that only shows students their AB
content augments the learning for student needs [36] and supports
learning through acquisition. Question types, including Boolean
logic, Parsons problems [32], and text matching, can be viewed as
LMS specific adaptations for CS [36] providing practice learning
opportunities. Included in practice learning is immediate marking,
context-specific feedback, and scaffolding hints which can be clas-
sified again as augmented functionality [36], a form of computer
aided assessment [10]. Referring to the final row of Figure 3, there
are opportunities to investigate whether the offline workbook is be-
ing used to exploit the learning types of investigation, production,
discussion and collaboration within a more socio-constructivist
instructional approach [1] as suggested by Anohah [2] for teach-
ing this age group of learners of CS. However, analysing Isaac CS
against the matrix, there are some gaps, with an apparent lack of
system-specific opportunities for investigation, production, discus-
sion and collaboration. These are addressed through professional de-
velopment sessions where classroom discussions, investigation and
collaborative production activities are suggested and demonstrated.
To what extent these modelled activities are being appropriated
into practice requires further study.

To reflect upon the effectiveness of the features of the Isaac CS
we use the six purposes of blending instruction proposed by
Means et al. [26] (see Section 2). Firstly, with tens of thousands of
registered students who have made more than 1 million question
attempts in the last two years, Isaac CS may be providing students
in schools with broadening access to instruction. This may be
in one of two ways: first, students with less experienced teachers
may find their teachers blend the platform into class activities to
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Figure 3: Isaac CS Pedagogy Matrix

strengthen instruction. Second, students who have suitable online
home access may use the platform independently, but this needs to
be evidenced.

In terms of adding variety to instructions and enhancing
learner engagement, Isaac CS provides free access to online ma-
terial to read and videos to watch, a variety of question types to
answer with episode-related self-selected hints and tailored feed-
back. From the 2020 student survey there is indication that most
learners think the resources are of good quality. For productive
practice, there is indication of this through the 1 million question
attempts and the 2020 survey results of reported teacher satisfac-
tion with the quality of questions. But, investigation is needed to
be sure of how productive this practice is.

The provision of content, questions and videos on CS affords
the opportunity to support the learning of complex, abstract
concepts but how effective this learning is requires study. Similarly,
whether teachers have appropriated [25] the use of Isaac CS to
effectively serve students with diverse needs and whether and
how they have adapted and matured their use of Isaac CS in class to
facilitate small group and 1:1 teacher led instruction requires
further investigation.

7 CONCLUSION, LESSONS LEARNED AND
NEXT STEPS

As in other countries, there is a shortage of teachers of computer
science at upper secondary level in England [39]. Teachers new to
the subject are being employed while still needing support in the
underlying content [39], and there are few context-specific content-
trusted resources with embedded activities available to them [34,
37]. To address this shortfall of resources and to support teachers
and students, Isaac CS has been developed as a holistic content-
rich A level CS online platform with wraparound support to help
teachers blend the platform into their teaching. The open source
nature of the content and platform means, although designed for
this specific audience, the tool can be adapted to other CS contexts.

In this paper, we outlined the key design decisions made in
developing Isaac CS and reflected on the testing and evaluation
of these, and have drawn out four themes of Content, Pedagogy,
Appropriation and General Functionality.

Lessons learned from the development and early use of Isaac CS
include: i) General functionality: for platform developers, not all
functionality is easy to apply, or of the same cost: questions involv-
ing natural language processing were found to be difficult to set up,
and videos can be expensive to create and replace; ii) Pedagogical:
student practice through answering questions can be augmented
with multiple-tries, episode-related self-selected hints and tailored
feedback functionality; iii) Appropriation: to ensure that teachers
and students use an online platform, careful and sustained effort
is needed; iv) Content: what upper secondary school CS content
should include or look like has not yet been universally agreed but
teachers are looking for content targeted to their requirements.

Future research could explore the Pedagogy Matrix, including
theoretical foundations, providing examples of each dimension and
comparing different tools and approaches with Isaac CS. Research
could be undertaken to investigate how Issac CS impacts teachers’
subject knowledge, knowledge of misconceptions and self-efficacy.
Another interesting line of inquiry would be to study how each
feature of the platform is blended with other online tools (such
as IDEs) and face to face teaching activities to create pedagogy
patterns [2, 6, 24]. Research could also focus on question type usage,
such as whether Parsons problems are preferred by students to
multiple choice questions, and what rate of multiple-attempts is
most useful for learning, where we can compare to preferences and
consider desirable difficulty [17]. In addition, more studies could
investigate platform use by students and the effect on knowledge,
progress, misconceptions, self-efficacy, and student communities of
practice; such studies could inform our understanding of the ways
that students in this age group learn CS.

Our review of Isaac CS has led us to the development of a Plat-
form Pedagogy Matrix which we will continue to investigate. We
hope this model may be useful for others to evaluate and build
upon when creating or studying similar resources.
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