
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

An online platform for teaching upper secondary school
computer science (Authors’ pre-print version)

Jane Waite
The Raspberry Pi Foundation
Cambridge, United Kingdom
jane.waite@raspberrypi.org

Sue Sentance
The Raspberry Pi Foundation
Cambridge, United Kingdom

sue@raspberrypi.org

Andrea Franceschini
Department of Computer Science and

Technology
University of Cambridge

Cambridge, United Kingdom
andrea.franceschini@cl.cam.ac.uk

Matthew Patterson
Department of Computer Science and

Technology
University of Cambridge

mbp36@cam.ac.uk

James Sharkey
Department of Computer Science and

Technology
University of Cambridge

james.sharkey@cl.cam.ac.uk

ABSTRACT
The teaching of computing in schools is relatively new, with limited
research informing what to teach and how in upper secondary con-
texts. However, computing education has spawned the development
of many tools for use in such education settings.

Isaac Computer Science is a computer science (CS) learning plat-
form aimed at school students in England aged 16 to 19 years old
studying for formal A level CS qualifications. Over 34,000 students
and over 2,400 teachers have registered on the platform to date,
and over 1 million online questions have been attempted. The plat-
form is pre-populated with CS content and questions. Feedback is
tailored to respond to common mistakes. Hints and explanation
videos accompany questions. Question sets can be assigned to stu-
dents by teachers. Question types include Parsons problems, drag
and drop, multiple-choice and text-matching answers, including
Boolean Algebra responses. Students only see content, questions
and notation pertinent to their course of study. Isaac CS has a
centrally-organised ongoing provision of support, such as teacher
professional development and student events.

This tools design paper outlines the development of Isaac CS
through a review of design decisions and the effectiveness of its
features. The review is informed by literature, platform usage data
and teacher and student feedback. The discussion is framed in terms
of online learning theories and a knowledge appropriation model.
We suggest a new model, a Platform Pedagogy Matrix, which may
be of use to other platform developers and researchers.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Social and professional topics→K-12 education;Computer
science education; •Applied computing→Computer-assisted
instruction.

KEYWORDS
computer science education, blended learning, platform
ACM Reference Format:
JaneWaite, Sue Sentance, Andrea Franceschini, MatthewPatterson, and James
Sharkey. 2021. An online platform for teaching upper secondary school
computer science (Authors’ pre-print version). In Proceedings of PLEASE
SEE - United Kingdom and Ireland Computing Education Research conference.
(UKICER ’21). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
This tools design paper describes the computing education platform
Isaac Computer Science (CS). Isaac CS is a free educational resource
for students studying upper secondary school computer science
(aged 16 to 19 years old) and their teachers. As a holistic offer, the
resource comprises a content-rich educational website supported
by centrally coordinated face-to-face student and teacher events,
online student mentoring, and printed materials. Online resources
include coverage of England’s upper secondary A level1 CS subject
material and smart resources, such as embedded interactive ques-
tions with hints and tailored feedback, a tool for students to write
Boolean algebra, and a Parsons problems question feature. The
platform also incorporates more traditional online functionality of
text, images, animations, videos and multiple-choice questions.

Although students could independently follow a suggested order
to access Isaac CS material, students are expected to primarily
work with the platform as guided by their teacher during class, as
homework, or for revision. Teachers incorporate Isaac CS into their
teaching. The resource is not intended to be a MOOC or an “empty”
Learning Management System (LMS), but rather offers a solution
that includes all the necessary subject content without prescribing

1A level is an examination-based 2 year course delivered in England and some other
countries of the UK

https://orcid.org/0000-0002-0270-2124
https://orcid.org/0000-0002-0259-7408
https://orcid.org/0000-0001-8665-6147
https://orcid.org/0000-0001-9019-1274
https://orcid.org/0000-0002-1210-7273
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom Waite et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

how it is embedded into the teaching experience, with the aim of
providing support to learners and reducing teacher workload.

Although existing A level teachers are likely to have more exten-
sive subject knowledge than teachers of younger students, there is
a shortage of experienced upper secondary teachers [39]. A con-
tributing factor to the shortfall of teachers is that the number of
students enrolling in CS A level courses in England has more than
doubled from 4925 in 2015 to 10375 students in 2019 [13].

Isaac CS has been developed to address two main issues: firstly,
the limited resources with curated, trusted online content and in-
tegrated activities to support the teaching and learning of A level
CS in England [34, 37], and secondly, the shortfall of experienced
upper secondary school CS teachers in England [39].

Isaac CS is a government-funded project created and run by the
University of Cambridge and the Raspberry Pi Foundation. Isaac
CS was launched in July 2019 and is free for anyone to use. Isaac CS
teaching material is available under the Open Government Licence
v3.0, which permits anyone to use and adapt the work [38], and the
platform’s software is open source.

In reviewing the design of Isaac CS, we have developed a model,
the Platform Pedagogy Matrix, that relates the pedagogy that an
online CS platform may afford.

2 LITERATURE REVIEW
To situate our study, we first outline research on online learning in
general and then focus on research on education platforms designed
to support blended learning in the teaching of computing.

Meta reviews of research on online education reveal a lack of
robust evidence for, and often conflicting views of, the effectiveness
of online educational platforms [3, 16, 26, 29, 30]. Despite this, on-
line platforms are used extensively in undergraduate courses and in
some school settings [3, 26]. The common use of online resources,
and a scarcity of robust evidence on their effectiveness to improve
student outcomes, has led to advice to teachers that they should
take much care when designing online learning activities, including
thinking carefully about pedagogy, implementing change, and con-
sidering what is most useful for different phases of education, and
different subject disciplines [9, 16, 24, 26]. Guidance has emerged as
to why online resources are used [26], and on recommended uses
[16] and processes to design blended teaching and learning, such
as the Arena Blended Connected process (ABC) [42]. In their 2014
review of research on online learning, Means et al. [26] suggested
six reasons why K-12 teachers turn to online resources to augment
their classroom activities:

“ broadening access to instruction, facilitating small-
group and one-to-one teacher-led instruction, serving
students with very diverse needs, providing more oppor-
tunity for productive practice, adding variety to instruc-
tion and enhancing student engagement and supporting
learning of complex, abstract concepts.” [26, p.101]

In their 2019 review of the literature on the use of digital technology
in schools, the Education Endowment Fund recommended three
potential uses of online tools: i) that this technology can be used to
improve the quality of explanations and modelling, ii) that it can
offer ways to improve the impact of pupil practice, and iii) that it
can play a role in improving assessment and feedback [16].

In online learning, the term “blended” is used to describe one
learning scenario. Horn and Staker define the term as follows:

“ Blended learning is any time a student learns at least
in part at a supervised brick-and-mortar location away
from home and at least in part through online delivery
with some element of student control over time, place,
path, and/or pace.” [20, p.3]

To transition from face-to-face to blended teaching, several univer-
sities use an online curriculum design process called Arena Blended
Connected process (ABC) [42]. In the ABC process, educators re-
view face-to-face learning activities and identify what student learn-
ing types are used, and design new sequences of blended teaching
events that provide a balanced coverage of all learning types [24, 42].
Based on the conversational framework proposed by Laurillard [24],
the ABC learning types are acquisition, investigation, discussion,
collaboration, practice and production [42].

As well as research on how to design blended and online instruc-
tional activities in general, research looking at the use of online
resources to support the teaching of CS has been undertaken. In
their 2008 review of how to better support university CS educa-
tion through learning management systems (LMS), Rößling et al.
suggested a Computing Augmented Learning Management System
(CALMS) [36]. CALMS is not a specific tool or toolset; instead it
lists components, functionality, and pedagogy patterns suggested
to support and improve CS LMS. Pedagogical patterns can include
active learning, cooperative learning, and feedback patterns such
as the feedback loop model where students use online resources for
personal study contributing to in-class experiences [36].

Rößling et al. [36] suggest that functionality to support the online
teaching and learning of CS should include:

• general pedagogy tools e.g. tools supporting authoring, col-
laboration, scaffolding, reflection, multiple representations

• augmented learning e.g. functionality to enable educators to
change elements for student requirements

• specialised LMS e.g. systems that include specific adaptions,
such as Interactive Development Environments (IDEs), func-
tionality that checks knowledge in specific CS topics and
often includes Computer Aided Assessment (CAA)

• algorithm and program visualisation tools
Computer Aided Assessment (CAA) refers to activities where

computers are involved in the assessment process beyond storage
and delivery [10]. An example of CAA would be a self-marking
system with automated feedback that is dependent on answers
provided or has questions adapted to the student [10]. CAA, IDE
and other LMS are often standalone systems and calls have been
made to improve their interoperability [22].

As well as algorithm and program tools that are integratedwithin
an IDE or visualisation software, some tools handle pseudocode
or code as text. An example of this are Parsons problems where
students reorder blocks of text representing code statements [32].
A rich thread of research, predominately conducted in an under-
graduate setting, comparing Parsons problems (and their many
variants) to code tracing and other code writing activities, has
been explored, with promising indication that students make more
progress when using Parsons problems [17, 18]. Research indicates
that Parsons problems are a particularly effective teaching approach

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

An online platform for teaching upper secondary school computer science (Authors’ pre-print version) UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Ley et al.’s Knowledge Appropriation Model [25,
p.107]

when dealing with problems with “non-novel” solutions [19], they
help identify student difficulties [14], can be used to help students
understand programming patterns [41], and increase student en-
gagement [14]. However, such studies require replication to provide
confidence about generalised benefits [14].

In their analysis of the use of an undergraduate CS e-book used
in a blended course, Ericson et al. found that online activities with
lower cognitive load, such as multiple choice questions and Parsons
problems, were more popular with students than higher cognitive
load activities, such as editing code [17, p.176].

Brusilovsky et al. reviewed university CS teaching and learning
platforms and identified online systems as often including eText-
books with smart content such as interactive examples, anima-
tions, and auto-assessment exercises [6]. These authors note that
approaches for marking, feedback, and reporting of open ended
coding solutions to complex problems are very different to the auto-
assessment of multiple choice and other simple format questions.
They highlight that, although functionality for learning program-
ming is a common focus for many CS education systems, some
systems focus on teaching and learning of abstract concepts [6].

Turning to younger students learning CS with online platforms,
Anohah investigated which pedagogy is best to support online
teaching of CS for high school students (ages 14 to 18) [2]. The
author concluded that no single pedagogy fits all, and that multiple
pedagogical approaches should be considered [2]. Nevertheless,
Anohah suggested that automatic feedback on programming exer-
cises, visualization of algorithms and representation of concepts in
animations or through physical activities are extremely important
to consider [2]. Physical activities are not conducted online, rather
they are done “offline” and are sometimes called unplugged learning
activities [4].

Simply creating a new platform does not guarantee practical
adoption by teachers or learners. As shown in Figure 1, Ley et al.
have proposed a Knowledge Appropriation Model to help under-
stand the phases of becoming aware of (engagement with), scaf-
folding use of, and maturing the use of new tools and working
practices that lead to appropriation [25]. This model has been used
to analyse the introduction of tools in educational settings [35] and
the adoption of programming pedagogy in industry [40].

3 AIMS AND APPROACH
The overarching aim of this study is to contribute to the body of
research on school-focused teaching and learning CS platforms,
specifically on their features and how they relate to pedagogical
approaches. Our approach to meet these aims is to: i) reflect on
the design decisions of the key features of Isaac CS; ii) review the

testing and evaluation of the platform; and iii) using the literature
of the field, reflect on lessons learned that emerged during the
development of the platform to suggest overarching models to
support similar platform development.

4 PLATFORM DESCRIPTION
Rather than developing the platform from scratch, Isaac CS built
upon an existing educational platform called Isaac Physics, a learn-
ing platform aimed at improving students’ physics and associated
mathematics problem-solving skills. Isaac Physics has been success-
ful as a unique product that is simple to introduce, lowmaintenance,
trusted, and with carefully considered pedagogy focused on meet-
ing the needs of one group of teachers and their students [15, 21].

Isaac CS benefits from the features of Isaac Physics but for CS
communities of learners. Building upon an existing platform re-
duced development costs and provided a trusted brand that was
likely to be known to students and teachers. Issac CS, like Isaac
Physics, is a web-based, single-unit application with some internal
services, such as checking symbolic maths, but currently has no
integration with other software like school LMS. Users sign up indi-
vidually to Isaac CS, and teachers can view and manually download
student assessment data.

The major features of Isaac CS can be grouped into themes of
Pedagogy, Content, Appropriation (including engagement) and
General Functionality. We describe each in turn and then outline
the evaluation of the platform.

Pedagogy - A content-rich platform. A key feature of Isaac CS
is that it should support students to learn and acquire the content
of the syllabus through presentation of core material in text and
video format that students can read and watch as well as practising
questions about the content. To make the content more interactive,
“quick quiz” activities are used. These activities do not require stu-
dents to enter an answer; rather the answer is hidden, and students
click a button to reveal it.

Pedagogy - Question types for CS.. An early activity in the de-
velopment of Isaac CS was a review of the question types needed
for computer science. The Isaac Physics resource provides multiple
choice questions, single value numerical answer questions, and drag
and drop algebra questions. Through an analysis of previous A level
CS examinations, computer science questions were mapped to the
types of available question types, and gaps identified. For example,
most CS examination questions required paragraph-length answers
and many required students to draw diagrams. As a result, three
significant changes to question types were made to accommodate
CS requirements: i) The equation editor was adapted to support
Boolean Logic drag and drop questions; ii) A new Parsons problems
question type was added; iii) Text matching questions using string
matching and natural language processing were developed.

As discussed in Section 2, Parsons problems have been identified
as being of promise in improving student progress and engagement
when learning to program [14, 17, 18]. This format of question
was added to the platform, including reordering and indentation
of blocks of text. As well as using this question type for code,
pseudocode, and algorithm problems, the question type has also
been used in topics such as networks, architecture, and ethics.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom Waite et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Long text answers are difficult to mark automatically [6]. How-
ever, text matching questions with short answers of one or two
words were added to the platform by developing a new string
matching and natural language processing question type. The text
matching functionality built upon and adapted OpenMark, a free-
text auto-marking system [7] developed at The Open University. To
use this question type, content designers must define rules related
to expected answers.

Pedagogy - Automated scaffolding through episode-related hints
which students choose to see or not. Before students attempt to an-
swer a question, they can choose to reveal a hint or not. As students
become more proficient, they can choose to fade the scaffolding
provided by the hint. There are levels of hints, providing help with
the content needed (declarative knowledge) and how to tackle the
problem (procedural knowledge). Research into the hint facility
within Isaac Physics indicated episode-related self-selected hints
enhanced problem-solving skills [11, 33].

Pedagogy - A practice pedagogy of student’s multiple tries to an-
swer questions (as many times as they like) and automated tailored
feedback. When attempting questions, if the student gets the an-
swer wrong, feedback is provided instead of the correct answer. If
the answer is associated with a common error, then tailored feed-
back is provided. Students can attempt a question as many times as
they like. Being able to practise problem-solving with immediate
and relevant feedback scaffolds learning and affords students a form
of low-stakes formative self-assessment [5], prompting increased
learning [8], self-efficacy, and self regulation [27].

Pedagogy - Blended teaching and learning. Teachers are expected,
and are supported through professional development, to blend Is-
sac activities into their lessons, homework and to recommend it
for student independent study. Many questions, as well as being
presented on the platform, are also distributed as physical books.
The books are sold at cost price to schools and students. It is antici-
pated that students will work in their books offline. Teachers may
mark student’s books for assessment purposes, helping teachers to
identify misconceptions.

Pedagogy - Providing examination-specific content. Through con-
sultation with teachers, it was decided that a feature should be
added to enable students to see only content and questions per-
tinent to their Awarding Body (AB) in order that students would
not be confused by material that was not pertinent to the examina-
tions they were studying for. An AB is an accredited organisation
recognised by government-appointed regulatory bodies that sets
and accredits examinations [12]. In England, there are numerous
ABs, including currently AQA and OCR [31].

Although one might expect the content of the curriculum speci-
fications for an examination to be identical across ABs this is not
the case for A level CS in England. Differences include the speci-
fication of pseudocode, Boolean Algebra notation, and assembly
language commands. By enabling students and teachers to select
their preferred AB, the platform presents the appropriate content
and notation.

Pedagogy - Provision of an IDE.. An interactive development
environment (IDE) for programming activities has been cited as an

Figure 2: Isaac CS Menu (with menus expanded)
important feature of CS platforms [6, 17, 23]. However, for Isaac CS,
it was decided that an integrated IDE was not required at this stage.
The rationale for this decision was: i) there were many IDEs already
in use by teachers; ii) developing a new IDE was not practical in the
timescales and funding provided; iii) programming practice through
Parsons problems and other question types was to be provided.

Content. A team of experienced computer science educators is
responsible for the development of the content for the platform.
Content topics include Computer Networks, Computer Systems,
Cybersecurity, Data & information, Data structures & algorithms,
Impacts of digital technology, Maths for CS, Programming fun-
damentals, Programming paradigms, Software Engineering, and
Theory of computation. Further content covering other AB specifi-
cations is scheduled to be added to the platform over the project’s
lifetime.

Appropriation (including engagement). To raise awareness about
the platform, an Isaac CS team devises and runs marketing cam-
paigns and events such as student masterclasses, teacher profes-
sional development, and student and teacher mentoring sessions.
To help educators and students learn how to use and adapt the
platform, to appropriate it to their teaching and learning, the plat-
form is used in events. Student events include industry sessions
relating to careers and university-led sessions on CS topics and
higher education opportunities.

General Functionality. To adapt Isaac Physics, a CS-specific user
interface was designed for Isaac CS; the menu structure for Isaac
CS is shown in Figure 2. Isaac CS is a standalone platform accessed
through a web interface. The sign-up process has been designed
to be very simple and easy to use. Teachers create student groups
and invite students to sign up using a QR code or an invitation
link. Students must choose whether or not they want to share their
data about questions completed with their teacher. In other words,
students can choose to use the platform and not share their data.
Individuals signed up to Isaac CS can request a teacher account. The
upgrade is verified by the platform team using a manual process.
All users on the site (students, teachers and platform developers)
may assemble “gameboards”. A gameboard is a set of up to 10
questions selected from existing questions on the platform. To
help students monitor their progress, a “progress page” is provided
showing a breakdown by topic of the total number of questions
they attempted and answered correctly. To support teaching and
assessment, teachers are provided with a summary page, called

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

An online platform for teaching upper secondary school computer science (Authors’ pre-print version) UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

a “markbook”. The markbook shows the number of correct and
incorrect submitted answers per student per question assigned.
This page does not show the number of attempts or details on the
students’ incorrect answers.

5 TESTING AND EVALUATION
The platform has been tested and evaluated through numerous
processes that can be categorised into four themes: Functionality
testing, Content testing, Pedagogy testing and Platform evaluation
covering functionality, content, pedagogy and appropriation.

Functionality testing. The new user interface was tested during
an iterative process of prototyping and testing with a user group of
nine students and three teachers. In the testing period, participants
completed realistic tasks such as setting and completing homework,
tracking progress, and finding curriculum content. Changes to
the Isaac Physics platform such as the AB specific functionality,
handling Boolean Algebra, new Parsons problem questions and text
matching questions were tested by the platform team. Manual and
automated tests were performed, as well as regression testing.

Content testing. Before going live, each unit of content follows
a quality assurance process to ensure accuracy and trustworthi-
ness. The process includes an internal and external review, pilot of
content with teachers, and documented incorporation of feedback.
Each unit of content is then reviewed annually. In addition users
can report content and technical issues. Issues raised by users are
recorded in a ticketing system that is regularly monitored by the
platform team.

Pedagogy testing. It is difficult to test how teachers and students
use the platform and how content and questions support knowl-
edge building and overcoming misconceptions. One indication of
what learning is taking place is provided by students’ incorrect
answers. Teachers can view the results of students’ attempts of
assigned gameboards, but they can only see how many answers
were correct or incorrect. The Isaac CS team receives reports detail-
ing what incorrect responses were given, and the number of such
attempts. The team uses this information to reflect on potential
misconceptions and improve content, questions, hints and tailored
feedback. For example, a misconception related to queue abstract
data types and dequeued elements was discovered. To help address
this misconception, a tailored feedback response was added, and
content changes made.

Platform evaluation including functionality, content, pedagogy
and appropriation. Evaluation of the platform is obtained in three
main forms: from an advisory group of teachers, through student
and teacher surveys (of events and the platform in general), and
from the review of platform usage statistics.

To support the development of the platform, a panel of represen-
tative teachers was appointed, meeting four times a year. Before
each meeting, the practitioners complete a survey to capture issues
and ideas for improvement of the content and pedagogy of Isaac
CS. An example of feedback from the panel was that static pictures
and text may not help students to learn about procedural aspects of
topics such as sorting and searching algorithms. Teachers suggested

the inclusion of an animation or video that steps students through
each stage; as a result of this, animations are being added.

Surveys are used to capture platform data. 94 teachers and 253
students responded to the 2020 annual survey. Reporting about the
benefits of the platform, 64% of the teachers said that using the
Isaac CS helped them save an average of 3 hours teacher workload
hours per week [28]. Also, in the 2020 annual survey, teachers and
students were asked about the platform and quality of the content.
94% of teachers and students rated the platform as easy to use. 88%
of teachers and 84% of students rated the platform as having good
quality written material. 90% of teachers and 79% of students rated
the platform with good quality questions.

Platform usage statistics provide data on how many users are
using the system. As at the end of May 2021, over 26,000 students
and 2000 teachers from England had registered and over 1 million
question attempts have been made.

6 DISCUSSION
We review the features of Isaac CS in two ways. First, as shown in
Figure 3, we consider the pedagogy of the platform using the in-
structional approaches suggested by Anderson and Dron [1], which
we have correlated to the learning types proposed by Laurillard
[24], and functionality of online CS resources of Rößling et al. [36].
Secondly, we evaluate the coverage of functionality using the six
purposes of blending instruction proposed by Means et al. [26].

As shown in Figure 3, the pedagogy of Isaac CS focuses on a
cognitive behaviourist acquisition learning type as well as construc-
tivist practice. Functionality that only shows students their AB
content augments the learning for student needs [36] and supports
learning through acquisition. Question types, including Boolean
logic, Parsons problems [32], and text matching, can be viewed as
LMS specific adaptations for CS [36] providing practice learning
opportunities. Included in practice learning is immediate marking,
context-specific feedback, and scaffolding hints which can be clas-
sified again as augmented functionality [36], a form of computer
aided assessment [10]. Referring to the final row of Figure 3, there
are opportunities to investigate whether the offline workbook is be-
ing used to exploit the learning types of investigation, production,
discussion and collaboration within a more socio-constructivist
instructional approach [1] as suggested by Anohah [2] for teach-
ing this age group of learners of CS. However, analysing Isaac CS
against the matrix, there are some gaps, with an apparent lack of
system-specific opportunities for investigation, production, discus-
sion and collaboration. These are addressed through professional de-
velopment sessions where classroom discussions, investigation and
collaborative production activities are suggested and demonstrated.
To what extent these modelled activities are being appropriated
into practice requires further study.

To reflect upon the effectiveness of the features of the Isaac CS
we use the six purposes of blending instruction proposed by
Means et al. [26] (see Section 2). Firstly, with tens of thousands of
registered students who have made more than 1 million question
attempts in the last two years, Isaac CS may be providing students
in schools with broadening access to instruction. This may be
in one of two ways: first, students with less experienced teachers
may find their teachers blend the platform into class activities to

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom Waite et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Isaac CS Pedagogy Matrix

strengthen instruction. Second, students who have suitable online
home access may use the platform independently, but this needs to
be evidenced.

In terms of adding variety to instructions and enhancing
learner engagement, Isaac CS provides free access to online ma-
terial to read and videos to watch, a variety of question types to
answer with episode-related self-selected hints and tailored feed-
back. From the 2020 student survey there is indication that most
learners think the resources are of good quality. For productive
practice, there is indication of this through the 1 million question
attempts and the 2020 survey results of reported teacher satisfac-
tion with the quality of questions. But, investigation is needed to
be sure of how productive this practice is.

The provision of content, questions and videos on CS affords
the opportunity to support the learning of complex, abstract
concepts but how effective this learning is requires study. Similarly,
whether teachers have appropriated [25] the use of Isaac CS to
effectively serve students with diverse needs and whether and
how they have adapted and matured their use of Isaac CS in class to
facilitate small group and 1:1 teacher led instruction requires
further investigation.

7 CONCLUSION, LESSONS LEARNED AND
NEXT STEPS

As in other countries, there is a shortage of teachers of computer
science at upper secondary level in England [39]. Teachers new to
the subject are being employed while still needing support in the
underlying content [39], and there are few context-specific content-
trusted resources with embedded activities available to them [34,
37]. To address this shortfall of resources and to support teachers
and students, Isaac CS has been developed as a holistic content-
rich A level CS online platform with wraparound support to help
teachers blend the platform into their teaching. The open source
nature of the content and platform means, although designed for
this specific audience, the tool can be adapted to other CS contexts.

In this paper, we outlined the key design decisions made in
developing Isaac CS and reflected on the testing and evaluation
of these, and have drawn out four themes of Content, Pedagogy,
Appropriation and General Functionality.

Lessons learned from the development and early use of Isaac CS
include: i) General functionality: for platform developers, not all
functionality is easy to apply, or of the same cost: questions involv-
ing natural language processing were found to be difficult to set up,
and videos can be expensive to create and replace; ii) Pedagogical:
student practice through answering questions can be augmented
with multiple-tries, episode-related self-selected hints and tailored
feedback functionality; iii) Appropriation: to ensure that teachers
and students use an online platform, careful and sustained effort
is needed; iv) Content: what upper secondary school CS content
should include or look like has not yet been universally agreed but
teachers are looking for content targeted to their requirements.

Future research could explore the Pedagogy Matrix, including
theoretical foundations, providing examples of each dimension and
comparing different tools and approaches with Isaac CS. Research
could be undertaken to investigate how Issac CS impacts teachers’
subject knowledge, knowledge of misconceptions and self-efficacy.
Another interesting line of inquiry would be to study how each
feature of the platform is blended with other online tools (such
as IDEs) and face to face teaching activities to create pedagogy
patterns [2, 6, 24]. Research could also focus on question type usage,
such as whether Parsons problems are preferred by students to
multiple choice questions, and what rate of multiple-attempts is
most useful for learning, where we can compare to preferences and
consider desirable difficulty [17]. In addition, more studies could
investigate platform use by students and the effect on knowledge,
progress, misconceptions, self-efficacy, and student communities of
practice; such studies could inform our understanding of the ways
that students in this age group learn CS.

Our review of Isaac CS has led us to the development of a Plat-
form Pedagogy Matrix which we will continue to investigate. We
hope this model may be useful for others to evaluate and build
upon when creating or studying similar resources.

ACKNOWLEDGMENTS
This work was funded by the Department for Education as part of
the Isaac Computer Science Project. The authors thank the devel-
opers & content writers who supported the writing of this paper.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

An online platform for teaching upper secondary school computer science (Authors’ pre-print version) UKICER ’21, September 2–3, 2021, Glasgow, United Kingdom

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

REFERENCES
[1] Terry Anderson and Jon Dron. 2011. Three Generations of Distance Education

Pedagogy. The International Review of Research in Open and Distributed Learning
3 (2011), 80–97. https://doi.org/10.19173/irrodl.v12i3.890

[2] Ebenezer Anohah. 2016. Pedagogy and Design of Online Learning Environment
in CS Education for High Schools:. International Journal of Online Pedagogy and
Course Design 6, 3 (2016), 39–51. https://doi.org/10.4018/IJOPCD.2016070104

[3] Michael K Barbour. 2019. The Landscape of K-12 Online Learning: Examining
the state of the field. In Online Learning (4th ed.), Michael Moore and William
Diehl (Eds.). Routledge, 521–524.

[4] Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley. 2009. Computer
science unplugged: School students doing real computing without computers.
The New Zealand Journal of Applied Computing and Information Technology 13, 1
(2009), 20–29. https://www.citrenz.ac.nz/jacit/

[5] Paul Black and Dylan Wiliam. 2010. Inside the Black Box: Raising Standards
through Classroom Assessment. Phi Delta Kappan 92, 1 (2010), 81–90. https:
//doi.org/10.1177/003172171009200119

[6] Peter Brusilovsky, Ken Koedinger, David A. Joyner, and Thomas W. Price. 2020.
Building an Infrastructure for Computer Science Education Research and Practice
at Scale. In Proceedings of the Seventh ACMConference on Learning@ Scale (Virtual
Event USA, 2020-08-12). ACM, 211–213. https://doi.org/10.1145/3386527.3405936

[7] Philip G Butcher and Sally E Jordan. 2010. A comparison of human and computer
marking of short free-text student responses. Computers & Education 55, 2 (2010),
489–499. https://doi.org/10.1016/j.compedu.2010.02.012

[8] Andrew C. Butler. 2018. Multiple-Choice Testing in Education: Are the Best
Practices for Assessment Also Good for Learning? Journal of Applied Research
in Memory and Cognition 7, 3 (2018), 323–331. https://doi.org/10.1016/j.jarmac.
2018.07.002

[9] Carmen Carrillo and Maria Assunção Flores. 2020. COVID-19 and teacher edu-
cation: a literature review of online teaching and learning practices. European
Journal of Teacher Education 43, 4 (2020), 466–487. https://doi.org/10.1080/
02619768.2020.1821184 00063.

[10] Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick, John English, William
Fone, and Judy Sheard. 2003. How Shall We Assess This? SIGCSE Bull. 35, 4 (June
2003), 107–123. https://doi.org/10.1145/960492.960539

[11] Stephen Cummins, Alistair Stead, Lisa Jardine-Wright, Ian Davies, Alastair R.
Beresford, and Andrew Rice. 2016. Investigating the Use of Hints in Online
Problem Solving. In Proceedings of the Third (2016) ACM Conference on Learning @
Scale (Edinburgh Scotland UK). ACM, 105–108. https://doi.org/10.1145/2876034.
2893379

[12] Department for Education. 2020. Apply to have your qualifications regulated.
https://www.gov.uk/guidance/apply-to-have-your-qualifications-regulated

[13] Department for Education. 2020. A level and other 16 to 18 results 2019 to 2020.
https://analytics.ofqual.gov.uk/apps/Alevel/Outcomes/

[14] Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2021. A Review of Research
on Parsons Problems. In Proceedings of the Twenty-Second Australasian Computing
Education Conference (Melbourne VIC Australia, 2020-02-03). ACM, 195–202.
https://doi.org/10.1145/3373165.3373187

[15] Jessie Durk, Ally Davies, Robin Hughes, and Lisa Jardine-Wright. 2020. Impact of
an active learning physics workshop on secondary school students’ self-efficacy
and ability. Physical Review Physics Education Research 16, 2 (2020), 020126.
https://doi.org/10.1103/PhysRevPhysEducRes.16.020126

[16] Education Endowment Fund. 2019. Using Digital Technology to Improve Learning
– Guidance Report. https://educationendowmentfoundation.org.uk/public/files/
Publications/digitalTech/EEF_Digital_Technology_Guidance_Report.pdf

[17] Barbara J. Ericson, Mark J. Guzdial, and Briana B. Morrison. 2015. Analysis
of Interactive Features Designed to Enhance Learning in an Ebook. In Pro-
ceedings of the eleventh annual International Conference on International Com-
puting Education Research (Omaha Nebraska USA). ACM, 169–178. https:
//doi.org/10.1145/2787622.2787731

[18] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research (Koli Finland, 2017-11-
16). ACM, 20–29. https://doi.org/10.1145/3141880.3141895

[19] Carl C. Haynes and Barbara J. Ericson. 2021. Problem-Solving Efficiency &
Cognitive Load for Adaptive Parsons Problems vs. Writing the Equivalent Code.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama Japan, 2021-05-06). ACM, 1–15. https://doi.org/10.1145/3411764.
3445292

[20] Michael B Horn and Heather Staker. 2011. The Rise of K–12 Blended Learning.
Innosight Institute, Inc. 18 pages. https://aurora-institute.org/resource/the-rise-
of-k-12-blended-learning/

[21] Lisa Jardine-Wright. 2018. Isaac Physics Impact and Engagement Summary V6. Uni-
versity of Cambridge. https://cdn.isaacphysics.org/isaac/publications/impact_
summary_201804_v6.pdf

[22] Ville Karavirta, Petri Ihantola, and Teemu Koskinen. 2013. Service-Oriented
Approach to Improve Interoperability of E-Learning Systems. In 2013 IEEE 13th

International Conference on Advanced Learning Technologies (Beijing, China). IEEE,
341–345. https://doi.org/10.1109/ICALT.2013.105

[23] Ari Korhonen, Rocky Ross, Clifford A. Shaffer, Thomas Naps, Charles Boisvert,
Pilu Crescenzi, Ville Karavirta, Linda Mannila, Bradley Miller, Briana Morri-
son, and Susan H. Rodger. 2013. Requirements and design strategies for open
source interactive computer science eBooks. In Proceedings of the ITiCSE working
group reports conference on Innovation and technology in computer science educa-
tionITiCSE -WGR ’13 (Canterbury, England, United Kingdom). ACM Press, 53–72.
https://doi.org/10.1145/2543882.2543886

[24] Diana Laurillard. 2012. Teaching as a design science: building pedagogical patterns
for learning and technology. Routledge. https://doi.org/10.4324/9780203125083

[25] Tobias Ley, Ronald Maier, Stefan Thalmann, Lena Waizenegger, Kai Pata, and
Adolfo Ruiz-Calleja. 2020. A Knowledge Appropriation Model to Connect Scaf-
folded Learning & Knowledge Maturation in Workplace Learning Settings. Vo-
cations and Learning 13, 1 (2020), 91–112. https://doi.org/10.1007/s12186-019-
09231-2

[26] Barbara Means, Marianne Bakia, and Robert Murphy. 2014. Learning online :
what research tells us about whether, when and how. Routledge, Taylor & Francis
Group, New York.

[27] James Moore. 2020. Mark it yourself, it’s good for you! A case study examining
the impact of self-assessment on student learning and motivation in a year 12
physics class studying energy. Journal of Trainee Teacher Education Research 11
(2020), 38.

[28] National Centre for Computing Education. 2021. Blog Post: Isaac Computer
Science learning resources save teachers three hours a week. Retrieved June 2,
2021 from https://blog.teachcomputing.org/isaac-computer-science-learning-
resources-save-teachers-3-hours-a-week/

[29] Organization for Economic Cooperation \and Development (OECD). 2015. Stu-
dents, Computers and Learning: Making the Connection. OECD. https://doi.org/
10.1787/9789264239555-en

[30] Organization for Economic Cooperation \and Development (OECD). 2020.
Education responses to covid-19: Embracing digital learning and online collabo-
ration. https://read.oecd-ilibrary.org/view/?ref=120_120544-8ksud7oaj2&title=
Education_responses_to_Covid-19_Embracing_digital_learning_and_online_
collaboration&_ga=2.52549928.1475366060.1620910560-2096753378.1620234231

[31] Ofqual. 2021. Register of Regulated Qualifications. https://register.ofqual.gov.uk/
[32] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun

and Effective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[33] Henk J. Pol, Egbert G. Harskamp, Cor J. M. Suhre, and Martin J. Goedhart. 2008.
The Effect of Hints and Model Answers in a Student-Controlled Problem-Solving
Program for Secondary Physics Education. Journal of Science Education and
Technology 17, 4 (2008), 410–425. https://doi.org/10.1007/s10956-008-9110-x

[34] Pye Tait Consulting. 2017. After the Reboot: The State of Computing Education in
UK Schools and Colleges Final Report September 2017. Technical Report. The Royal
Society. https://royalsociety.org/~/media/policy/projects/computing-education/
pye-tait-teacher-survey-report.pdf

[35] María Jesús Rodríguez-Triana, Luis P. Prieto, Tobias Ley, Ton de Jong, and Denis
Gillet. 2020. Social practices in teacher knowledge creation& innovation adoption:
a large-scale study in an online instructional design community for inquiry
learning. International Journal of Computer-Supported Collaborative Learning 15,
4 (01 Dec 2020), 445–467. https://doi.org/10.1007/s11412-020-09331-5

[36] Guido Rößling, Mike Joy, AndrésMoreno, Atanas Radenski, Lauri Malmi, Andreas
Kerren, Thomas Naps, Rockford J. Ross, Michael Clancy, Ari Korhonen, Rainer
Oechsle, and J. Ángel Velázquez Iturbide. 2008. Enhancing Learning Management
Systems to Better Support Computer Science Education. SIGCSE Bull. 40, 4 (Nov.
2008), 142–166. https://doi.org/10.1145/1473195.1473239

[37] Sue Sentance and Andrew Csizmadia. 2017. Computing in the curriculum: Chal-
lenges and strategies from a teacher’s perspective. Education and Information
Technologies 22, 2 (2017), 469–495. https://doi.org/10.1007/s10639-016-9482-0

[38] The National Archives. 2014. Launch of Open Government Licence
3.0. https://webarchive.nationalarchives.gov.uk/ukgwa/+/http://www.
nationalarchives.gov.uk/news/970.htm

[39] The Royal Society. 2019. Policy briefing on teachers of comput-
ing. https://royalsociety.org/-/media/policy/Publications/2019/21-08-19-policy-
briefing-on-teachers-of-computing.pdf

[40] Jane Waite, Paul Curzon, and Jo Brodie. 2021. Sharing research-informed pro-
gramming pedagogy with IT Professionals - submitted. (2021).

[41] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama
Japan, 2021-05-06). ACM, 1–4. https://doi.org/10.1145/3411764.3445228

[42] Clive Young and Nataša Perović. 2016. Rapid and Creative Course Design: As
Easy as ABC? Procedia - Social and Behavioral Sciences 228 (2016), 390–395.
https://doi.org/10.1016/j.sbspro.2016.07.058

https://doi.org/10.19173/irrodl.v12i3.890
https://doi.org/10.4018/IJOPCD.2016070104
https://www.citrenz.ac.nz/jacit/
https://doi.org/10.1177/003172171009200119
https://doi.org/10.1177/003172171009200119
https://doi.org/10.1145/3386527.3405936
https://doi.org/10.1016/j.compedu.2010.02.012
https://doi.org/10.1016/j.jarmac.2018.07.002
https://doi.org/10.1016/j.jarmac.2018.07.002
https://doi.org/10.1080/02619768.2020.1821184
https://doi.org/10.1080/02619768.2020.1821184
https://doi.org/10.1145/960492.960539
https://doi.org/10.1145/2876034.2893379
https://doi.org/10.1145/2876034.2893379
https://www.gov.uk/guidance/apply-to-have-your-qualifications-regulated
https://analytics.ofqual.gov.uk/apps/Alevel/Outcomes/
https://doi.org/10.1145/3373165.3373187
https://doi.org/10.1103/PhysRevPhysEducRes.16.020126
https://educationendowmentfoundation.org.uk/public/files/Publications/digitalTech/EEF_Digital_Technology_Guidance_Report.pdf
https://educationendowmentfoundation.org.uk/public/files/Publications/digitalTech/EEF_Digital_Technology_Guidance_Report.pdf
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/3411764.3445292
https://doi.org/10.1145/3411764.3445292
https://aurora-institute.org/resource/the-rise-of-k-12-blended-learning/
https://aurora-institute.org/resource/the-rise-of-k-12-blended-learning/
https://cdn.isaacphysics.org/isaac/publications/impact_summary_201804_v6.pdf
https://cdn.isaacphysics.org/isaac/publications/impact_summary_201804_v6.pdf
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1145/2543882.2543886
https://doi.org/10.4324/9780203125083
https://doi.org/10.1007/s12186-019-09231-2
https://doi.org/10.1007/s12186-019-09231-2
https://blog.teachcomputing.org/isaac-computer-science-learning-resources-save-teachers-3-hours-a-week/
https://blog.teachcomputing.org/isaac-computer-science-learning-resources-save-teachers-3-hours-a-week/
https://doi.org/10.1787/9789264239555-en
https://doi.org/10.1787/9789264239555-en
https://read.oecd-ilibrary.org/view/?ref=120_120544-8ksud7oaj2&title=Education_responses_to_Covid-19_Embracing_digital_learning_and_online_collaboration&_ga=2.52549928.1475366060.1620910560-2096753378.1620234231
https://read.oecd-ilibrary.org/view/?ref=120_120544-8ksud7oaj2&title=Education_responses_to_Covid-19_Embracing_digital_learning_and_online_collaboration&_ga=2.52549928.1475366060.1620910560-2096753378.1620234231
https://read.oecd-ilibrary.org/view/?ref=120_120544-8ksud7oaj2&title=Education_responses_to_Covid-19_Embracing_digital_learning_and_online_collaboration&_ga=2.52549928.1475366060.1620910560-2096753378.1620234231
https://register.ofqual.gov.uk/
https://doi.org/10.1007/s10956-008-9110-x
https://royalsociety.org/~/media/policy/projects/computing-education/pye-tait-teacher-survey-report.pdf
https://royalsociety.org/~/media/policy/projects/computing-education/pye-tait-teacher-survey-report.pdf
https://doi.org/10.1007/s11412-020-09331-5
https://doi.org/10.1145/1473195.1473239
https://doi.org/10.1007/s10639-016-9482-0
https://webarchive.nationalarchives.gov.uk/ukgwa/+/http://www.nationalarchives.gov.uk/news/970.htm
https://webarchive.nationalarchives.gov.uk/ukgwa/+/http://www.nationalarchives.gov.uk/news/970.htm
https://royalsociety.org/-/media/policy/Publications/2019/21-08-19-policy-briefing-on-teachers-of-computing.pdf
https://royalsociety.org/-/media/policy/Publications/2019/21-08-19-policy-briefing-on-teachers-of-computing.pdf
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1016/j.sbspro.2016.07.058

	Abstract
	1 Introduction
	2 Literature Review
	3 Aims and approach
	4 Platform description
	5 Testing and Evaluation
	6 Discussion
	7 Conclusion, Lessons Learned and Next Steps
	Acknowledgments
	References

