
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Teachers’ Perspectives on Talk in the Programming Classroom :
Language as a Mediator (Authors’ pre-print version)

Sue Sentance
sue@raspberrypi.org

Raspberry Pi Foundation, Cambridge
Cambridge, UK

Jane Waite
j.l.waite@qmul.ac.uk

Queen Mary University of London
London, UK

ABSTRACT
Motivation. In education, classroom talk is a vital aspect of a les-
son, and programming education is no exception. While the role of
language and dialogue has been researched in depth in other school
subjects, there has been less research in the programming context.
Sociocultural theory highlights the importance of language as a
mediator for learning, alongside other tools.
Objectives. Drawing on sociocultural theory and models of dia-
logic education, the purpose of the study was to investigate the
ways in which programming teachers use classroom talk to support
learning, and to propose a model to frame our understanding of
this element of programming lessons.
Method. The qualitative study used phenomenological method-
ology to investigate and interpret teachers’ ‘lived experiences’ of
classroom talk. Interviews were conducted with 20 primary and
secondary computing teachers about the content and effect of class-
room talk in programming lessons. The context of the study was
PRIMM, a lesson structure which highlights the importance of talk
around a shared programming artefact.
Results. Analysis of data revealed four main themes: how talk oc-
curs in the classroom setting, how questioning is used to facilitate
talk, how students are encouraged to explain, and why teachers
feel it is important for students to use correct vocabulary.
Discussion. Building on research into models of dialogue in ed-
ucation and our findings we suggest a model to frame talk in the
programming classroom. We discuss the contribution of PRIMM to
our understanding of talk in programming lessons. More research
is needed to validate the proposed model and to investigate the
impact of classroom talk on learning outcomes in programming.

CCS CONCEPTS
• Social and professional topics→ K-12 education.

KEYWORDS
dialogue, K-12 computing education, PRIMM, programming, socio-
cultural theory, vocabulary

ACM Reference Format:
Sue Sentance and Jane Waite. 2021. Teachers’ Perspectives on Talk in the
Programming Classroom : Language as a Mediator (Authors’ pre-print ver-
sion). In Proceedings of the 17th ACM Conference on International Computing
Education Research (ICER 2021), August 16–19, 2021, Virtual Event, USA.ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3446871.3469751

Unpublished working draft. Not for distribution.ICER 2021, August 16–19, 2021, Virtual Event, USA
© 2021
ACM ISBN 978-1-4503-8326-4/21/08. . . $15.00
https://doi.org/10.1145/3446871.3469751

1 INTRODUCTION
Many countries are moving to a curriculum that includes more
emphasis on algorithms and programming [24, 26, 30, 74], and this is
reflected in an increase in programming education for K-12 research.
Research falls broadly into several camps, for example, tools and
environments to support programming, instructional approaches,
resource development, diversity, assessment and teacher education.
There is little research, however, on specific aspects of programming
lessons such as classroom talk, and how they can impact learning
[74]. This contrasts with other disciplines, where classroom talk
has been studied in more depth (see for example, [17, 43, 53, 54, 62]).
In programming lessons, classroom talk will include: the dialogue
that students have with each other and their teacher about their
programs, the use of technical language, the types of questions
teachers and students ask, and how concepts are explained and
exemplified. In so much as these impact on students’ progress in
their acquisition of knowledge and skills, it is important that we
understand the relative role of these elements of a lesson.

We owe much to sociocultural theory in enabling us to under-
stand how language can support learning. Through the theoretical
lens of the soviet psychologist Vygotsky, language can be seen as a
central form of mediation that enables thinking and internalisation
of concepts to take place [76]. As Jerome Bruner says of Vygotsky:

“His basic view was that conceptual learning was a
collaborative enterprise involving an adult who enters
into dialogue with the child in a fashion that provides
the child with hints and props that allow him to bring
a new climb, guiding the child in next steps even before
the child is capable of recognising their significance.”
[12, p.852]

There have been calls to take a more sociocultural approach within
computer science education and programming [48, 72] and particu-
larly regarding the role of language in teaching computer science
[18], but otherwise this is a largely unexplored area of research. Just
as in science teaching, where different ways of talking in class about
concepts lead to internalisation of the necessary concepts [41], in
computer science education we need to use talk to help students to
internalise the difficult concepts they face in programming.

This paper describes an exploratory research study looking at
classroom talk in the context of programming education, from teach-
ers’ perspectives. The study is situated in the context of PRIMM,
a structure for programming lessons [66]. PRIMM particularly fo-
cuses on classroom discussion, specific questioning about code,
and asking students to talk to each other about code, based around
a sample program that has been carefully constructed to prompt
discussion and learning [67].

https://orcid.org/0000-0002-0259-7408
https://doi.org/10.1145/3446871.3469751
https://doi.org/10.1145/3446871.3469751

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 THEORETICAL FRAMEWORK
In this section we set out our theoretical perspective, in terms of
sociocultural theory, its influence on dialogic models and how it
relates to programming education.

2.1 Sociocultural theory
Social constructivism, in particular the work of the Soviet psycholo-
gist Vygotsky, can frame our understanding of novice programmers
and their learning. Vygotsky proposed that higher mental processes
were functions of mediated activity and that there were three major
classes of mediators: material tools, psychological tools (sometimes
called signs and symbols), and other human beings [37]. Media-
tion is a key focus of Vygotsky’s work [82], and includes both the
nature of the tools adopted and valued by society as well as the
appropriation of tools and how they are integrated into cognitive
activity during the processes of an individual’s development [68].
By understanding mediation and the process of appropriation better
in computing education, we may be more able to support novice
learners better, particularly with respect to programming.

There are a group of theories under the banner of sociocultural
theory [49] but here we focus on Vygotsky’s sociocultural theory
(SCT). In the context of school learning, Vygotsky states that a
child’s development within their Zone of Proximal Development
(ZPD) involves social interaction, dialogue, and mediated activity
between learners and with their teachers [77]. The term proximal
(nearby) indicates that the assistance provided goes slightly beyond
the learner’s current competence, complementing and building on
their existing abilities. This means identifying what students can
and cannot do, through tasks, then facilitating learning through
tasks carefully situated within the ZPD which enable the student
to carry out more complex cognitive tasks than they would be able
to do on their own, with the support of a ‘more knowledgeable
other’ (MKO). Students finally move to a stage where the student
can work independently and reach their own learning goals [77].

One of the psychological tools described by Vygotsky is language,
a central form ofmediation that enables thinking and internalisation
of concepts to take place [78]. As a communicative tool, language
facilitates individuals’ social interaction; as a psychological tool,
language enables individuals to internalize the knowledge and skills
in social interaction [16]. Language provides themeans for scientific
ideas to be talked through between people on the social plane,
before internalisation [41].

2.2 Computing education through a
sociocultural lens

There have been calls to take a more sociocultural approach within
computer science education and programming [48, 72], and so-
ciocultural approaches have strongly influenced a range of recent
computer science education work [6, 13, 63]. Other recent research
has specifically referenced or used Vygotsky’s ZPD [5, 35, 36], indi-
cating that the influence of sociocultural theory (SCT) is increasing
its prominence in computer science education.

Sentance et al. [67] highlight three key educational principles
from SCT that can guide the teaching of programming, and which
are embedded in the PRIMM framework:

(1) The role of the ’more knowledgeable other’ (MKO) in
ZPD. Students need teachers, asMKOs, to show them (model)
how to solve a problem. Students working together can be
paired so that one peer is the MKO. Resources, materials
and lesson structure are all mediating activity in Vygotsky’s
terms, but should be designed to be within the learners’ ZPD.
This requires a detailed understanding of progression and
which concepts are easier or harder for students [83].

(2) Learning moves from the social plane to the psycho-
logical plane. According to Vygotsky, the process of mas-
tering a semiotic tool typically begins on the ’social plane’,
which means the first stages of acquaintance typically in-
volve social interaction and negotiation between experts and
novices or among novices [81]. By participating in this social
interaction interpretations are first proposed and worked out
and, therefore, become available cognitively to individuals,
into what Vygotsky calls the ‘psychological plane’ [79]. Us-
ing starter or example programs and teaching strategies to
support the reading of code involves program code existing
on the social plane initially, before being understood inter-
nally by the student. Programming tasks should be carefully
chosen so they are within the ZPD of the student. Gradually
more complex programming tasks involving independent
problem solving and creativity will be possible by students
as understanding becomes internalised.

(3) Mediation through language. When learning to under-
stand how programs work, students should be encouraged
to discuss with each other through a social construction of
knowledge. This can be through pair programming, or collab-
orative tasks such as talking about segments of program code
to identify their function. Teaching should facilitate focused
discussion around programming constructs and concepts
and their implementation as code.

PRIMMhas been designed as a structure for programming lessons
drawing on these principles. A PRIMM lesson has four components:
the shared artefact of the program; the structure defined by the
PRIMM acronym (predict, run, investigate, modify and make); the
lesson resources; and structured talk. All four are mediators in the
Vygotskian sense. In addition, the MKO, whether this be a teacher
or a more knowledgeable peer, has a role to play in supporting
these mediating activities, and the lesson resources and structured
classroom talk should be within the ZPD of the students [67]. These
elements provide the model underlying PRIMM, of which classroom
talk is one significant part. This paper sets out to expand on the
language/talk element of this model.

2.3 Dialogic models
Across a number of disciplines, including mathematics and science
education, the role of language has been explored through various
models of how dialogue works. We next introduce four influential
models.

Firstly, Mercer and colleagues, drawing on SCT, developed the
idea of exploratory talk [53], in which partners engage critically
but constructively with each other’s ideas. Exploratory talk is con-
trasted with disputational talk and cumulative talk [55]. Compared

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Framework for dialogue in education [16, p. 11]

with the other two types, exploratory talk involves knowledge be-
ing made more publicly accountable, with reasoning being more
visible in the talk.

Another approach is Nystrand et al.’s dialogically organised in-
struction [59] which sets out three teacher discourse moves fre-
quently used by dialogic teachers to organise instruction coherently:
uptake (incorporating student ideas into subsequent questions of
other students), authentic questioning (used to explore views not
test knowledge), and high-level evaluation (where the teacher in-
corporates the response into elaborative comments).

A third approach is dialogic teaching [1]. Dialogic teaching fo-
cuses on the use of discussion and dialogue in the classroom, influ-
enced by the work of Vygotsky and Bruner. Alexander proposes
that teachers should promote dialogue that is collective, reciprocal,
supportive, cumulative and purposeful [2], thus emphasizing both
the classroom as a dialogic environment and the teaching goal of
classroom talk.

Finally, a fourth approach to dialogue centres on accountability
[56], whereby students should engage in respectful and grounded
discussion, should listen to each other, and understand wait time
and turn-taking. Talk should be accountable to the community (re-
spectful), accountable to knowledge (domain-specific), and account-
able to accepted standards of reasoning (supporting explanation
and self-correction) [56].

Much empirical work has been conducted to validate these differ-
ent theoretical frameworks for dialogue in education (see Section
3). Recently, Cui and Teo compared the four models to consider
similarities and differences [16]. Accountability to the learning
community embraces ideas similar to the principles of collectiv-
ity and reciprocity in dialogic teaching, while accountability to
knowledge echoes the principles of cumulation and purposefulness.
Thus they assert that Accountable Talk [56] has much in common
with the five principles of dialogic teaching [1], and that Thinking
Together [31, 54] has much in common with dialogically organized
instruction [59] and dialogic teaching, because all emphasize the im-
portance of cultivating a dialogic classroom culture by highlighting
the role of ground rules.

Cui and Teo [16] developed a framework with which to consider
the field of dialogue in the classroom as a whole, as shown in Figure
1. We can interpret the proposed framework with reference to a
programming lesson. Teaching goals may be syntax, programming
vocabulary, concepts, constructs, etc. The dialogic environment is
the classroom context facilitated by the teacher from moment to
moment. Dialogue moves may be types of questions, explanations,
challenges, and corrections. In this paper we use the insights from

Cui and Teo’s analysis to develop our understanding of language
and talk in the programming classroom in particular. By doing this
we develop a new model for talk in the programming classroom by
focusing on language as one of the core ingredients of a program-
ming lesson situated in a sociocultural approach to learning.

3 RELATEDWORK
3.1 Dialogue and talk
3.1.1 Talk in computing education. In computing education, most
of the literature relating to language and communication as a vehi-
cle for learning centres on pair programming and peer instruction
[74], both privileging classroom talk and purposeful dialogue. Re-
search has shown that peer instruction positively impacts learning
outcomes [60, 87]. Pair programming has been shown to improve
program quality and confidence [7, 52], although in the school
context it may depend on the way that the collaborative work is
instantiated [45].

Tsan et al. [73] conducted a study of six pairs of fifth grade
students (ages 9–11) in the United States, on an elective program-
ming course. They examined students’ dialogue considering how
they balance dialogue, turn-taking and control when learning to
program. Their study revealed specific dialogue strategies used by
students such as ‘Let me help you’ or ‘Make Suggestion’ [73]. An-
other study which looked at interaction mechanisms in computing
students’ talk identified collaborative problem-solving, conversa-
tions expressing excitement, and more social conversations [33].

3.1.2 Dialogue in other discipline-based education research. Dia-
logic models were described as part of our theoretical framework.
Many empirical studies have been conducted to evaluate these, with
some examples given here.

To measure the impact of exploratory talk a series of research
projects were conducted under the banner of Thinking Together.
The research involved interventions that gave both teachers and
students new skills in using language for reasoning. In mathematics,
this was shown to enable them to use language more effectively as a
tool for working on maths problems together. One study involving
406 children and 14 teachers over a two-year period found that
improving the quality of children’s use of language for reasoning
together improved their learning and understanding of mathemat-
ics and that the teacher is an important model and guide for pupils’
use of language for reasoning [54]. Another study examined video
data from 72 demographically diverse classrooms, with pupils aged
10-11 studying mathematics, literacy and science. All classes in-
cluded productive teacher–student dialogue and this was measured
against outcomes including standardised UK student assessments
in literacy and mathematics. The study found that three aspects
of teacher-student dialogue strongly predicted pupil performance:
elaboration (building on contributions), querying (challenging a
contribution) and participation (where students engage with each
other’s ideas) [31]. In another recent large-scale randomised con-
trolled trial examining the impact of dialogue teaching [3], it was
found that focusing on meaningful dialogue had a positive impact
on primary school children’s attainment, engagement and over-
all learning. This study involved over 4000 9-10 year old pupils

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

split between control and intervention groups in over 70 schools in
England.

In these studies a key element of the interventions was profes-
sional development for teachers in supporting quality dialogue in
the classroom, in order that children could develop the linguistic
tools needed to develop ’productive talk’ [17]. As Dawes outlines
in the context of science:

“The sort of language tools used in science, are, for ex-
ample, questioning, explaining, putting things clearly,
repeating or rephrasing, predicting, reasoning, evaluat-
ing, deciding. But the child’s linguistic toolkit may not
be so extensive or develop. In addition, children may be
completely unaware of the potential power of talk with
their peers.”[17, p. 684]

Children asked to work collaboratively or talk together with their
peers about a problem are often not sure what they are expected to
do [54] and are not able to bring to the task the necessary skills. In
the Thinking Together project studies described above, teachers in
the intervention groups were given training that helped them learn
strategies for facilitating productive talk. They were also provided
with lesson plans in the subject areas (mathematics or science) that
included the development of talk skills such as critical questioning,
sharing information and negotiating a decision [54].

3.1.3 Questioning. There is a substantial and decades-long liter-
ature on the topic of questioning that is beyond the scope of this
paper including, amongst other topics, how teachers ask open and
closed questions [29], the value of wait time before answers [14],
and demographic differences relating to who teachers ask which
questions to [85]. One area of questioning that has led to some
debate is the use of Initiation-Response-Feedback (IRF) style of
questions [70] to elicit answers from students where the answers
to the questions are already known. These types of questions have
been criticised for inhibiting classroom talk and the development
of ideas [17, 84]. However, IRF questions have their place, although
in the framework of the dialogic models we introduced in Section
2, the focus is more likely to be on open, exploratory questions.

In the studies described above, a central part of the analysis was
the questions used by the teachers, in particular the degree to which
teachers used ’why’ questions.

3.2 Vocabulary
Another aspect of language is the use of technical discipline-specific
language that helps students understand their subject.

3.2.1 Computing vocabulary. Diethelm and Goschler highlight the
lack of attention to computing-specific vocabulary [18] and consider
that specific items of computing vocabulary may be ambiguous
or have different meanings in everyday life from their scientific
meaning. They suggest a need for ameta-discourse around language
such that pupils in school can learn to distinguish between everyday
and scientific meanings of terms, and that teachers should be more
deliberate about vocabulary [19]. There is clearly scope for more
detailed investigation into how young learners acquire and use the
technical vocabulary in programming.

3.2.2 Vocabulary in other disciplines. There has been a consider-
able focus on the language of school science, and how students can

acquire and use it in the classroom, highly influenced by a much-
cited text by Lemke [43]. Lemke purports that students do not just
talk about science, but that they do science through the medium of
language, and that the acquisition of vocabulary and semantics is
essential to understanding. The language of any subject is not just
its special vocabulary, but also the semantic relations constructed
between the words as we use them [43]; thus understanding of
science and language go hand in hand [17, 50].

Vocabulary is also important in mathematics education: teachers
need support in understanding where elements of vocabulary cause
difficulty for students [62]. Leung [44] suggests that in mathematics
education there are three related processes involved in vocabulary
learning: learning formal and semantic features of words in different
contexts, learning the concepts associated with the words, and
incremental meaning-making as understanding develops. We can
relate this to programming education: using the example of the
term ‘iteration’ the school student may at first be introduced to the
word, then the concept through many examples, and then develop
their own understanding incrementally as they use the construct
in practical programming examples.

3.3 PRIMM for programming lessons
PRIMM [66] is an approach to structuring programming lesson.
Lessons (or sequences of lessons) are structured using the following
activities:

• Predict what code will do
• Run the code to test predictions
• Investigate the structure of code
• Modify the code to add functionality
• Make a new program using the same/modified structures.

A central element of the approach is that a piece of code is in
the ‘social plane’ initially as a shared artefact for discussion and
comprehension. The PRIMM lesson involves discussion between
teacher-class, teacher-student and student-student about a piece
of code, while unpacking its structure and function. The ‘investi-
gate’ element of the PRIMM structure relates to the Block Model
framework and how it frames program comprehension [34, 64]. The
Block Model highlights aspects of the program such as function of
the whole, structure of a block, execution of an atomic item within
the code, etc. and a PRIMM lesson includes questions and activities
that are designed to engage students in discussion about all aspects
of how the code works and is structured. The Modify-Make stages
of PRIMM are also similar to the Use-Modify-Create model [42],
although the earlier stages are quite different. In addition, PRIMM
focuses on reading and understanding code. Code comprehension
is already readily accepted in programming education literature,
including the importance of reading code and being able to trace
what it does before writing new code[46, 47]. Research has demon-
strated that novices require a 50% tracing code accuracy before they
can independently write code with confidence [47, 75].

PRIMM has been used in primary and secondary school class-
rooms, particularly in England, since 2018. Several studies have
investigated its impact, including amixed-methods study conducted
in 2018 involving around 500 students aged 11 to 14 [67]. In this
study, a quasi-experimental design was used to investigate the

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

impact of a series of PRIMM-structured lessons on learner out-
comes. Teachers delivered programming lessons using the PRIMM
approach for 8 to 12 weeks. Data was collected via a combination
of a baseline test, a post test to compare control and experimental
groups, and teacher interviews. The results showed a statistically
significant difference in the score between the control and experi-
mental groups for all students favouring the experimental group.
Qualitative results highlighted that teachers particularly value the
collaborative approach taken in PRIMM, and the structure given
to the lessons [66]. Another study involving PRIMM illustrated its
use for games programming in higher education [40].

3.4 Summary and research question
We have seen that research in mathematics and science education
seems to demonstrate that if teachers and students are provided
with guidance and training in effective dialogue in the classroom,
there will be improvement in learning outcomes. Research into
discourse in school computing lessons is an emerging field, includ-
ing exploring talk in pair programming and vocabulary use more
generally.

PRIMM, as an approach in which programming is taught through
an apparently discourse rich series of activities, draws on the idea
of language as a mediator for learning, central to SCT. To explore
classroom talk a context needs to be selected. Given that there is
much still we need to understand about the teaching and learning
of programming the focus of this study is to explore the role of
classroom talk in the PRIMM context. This leads us to the following
research question: In what ways do teachers develop classroom talk
to support the learning of programming?

4 THE STUDY
A study was conducted to investigate teachers’ use of classroom
talk in programming lessons. Drawing on the literature described
above, the purpose was to explore the nature of classroom talk
in the programming classroom and develop a model representing
teachers’ experiences of classroom talk and programming that could
be evaluated and potentially used in the classroom and for future
research.

4.1 Methodology
Qualitative research was chosen for this study to provide the rich-
ness and detail needed to answer the research question [38]. To
ensure an interpretive approach to data collection and analysis, we
adopted hermeneutic phenomenological methodology. Phenomeno-
logical research seeks to reveal and describe ‘lived experiences’
and to achieve a deeper understanding of the meaning of expe-
rience, generating an in-depth and comprehensive description of
the phenomenon [57], and can be descriptive or interpretive; a
hermeneutic (interpretive) phenomenological approach involves
interpreting and making meaning out of participants’ lived expe-
riences. Hermeneutic phenomenology emerged from the work of
hermeneutic philosophers, including Heidegger, Gadamer, and Ri-
coeur, who argue for our embeddedness in the world of language
and social relationships, and the inescapable historicity of all un-
derstanding [20].

When using hermeneutic (interpretive) phenomenology as a
methodology, it is not just the analysis and interpretation of data
that draws on the phenomenological principles. The recruitment
of participants, sampling, data collection and interview structure
should also reflect an interpretive approach [22]. In terms of the
data analysis, reflexivity can help interpret the meanings discovered
[71]. Reflexivity involves intensive scrutiny about how something
is known and/or understood [32] and involves researchers being
conscious of and reflective of how their questions, methods and
subject position might impact the data [71].

With the goal of a true examination of shared experience, qual-
itative data analysis remains as close to the data as possible and
focuses on what participants say and how they say it [61]. Themes
can be viewed as written interpretations of lived experience [71].
Identifying themes is an iterative and recursive process and starts
with the researcher’s engagement with the data during data collec-
tion and the early stages of reading and re-reading the data.

4.2 Participants
Hermeneutic phenomenological research necessitates a homoge-
nous group of individuals; participants should demonstrate expe-
rience of the same phenomenon [15] but be diverse enough to
enhance possibilities of “rich and unique stories” [39, p. 29]. For
this reason, purposeful sampling was employed, given our respon-
sibility to select participants who had an important and meaningful
experience of the phenomenon [86]. We focused our purposive
sampling on teachers who had used PRIMM. Participants were
recruited through email and social media.

4.3 Data collection
An interview schedule was designed as shown in Table 2, which
focused on open questions around the teachers’ experiences of in-
teractions and talk in the programming classroom. Interviews were
held online and scheduled over two weeks in 2020; each interview
lasted 30-45 minutes. Interviews were audio-recorded before being
professionally transcribed. Participants were given the opportu-
nity to check their transcripts for accuracy and add any further
reflections, and the data was then carefully anonymised.

4.4 Data analysis
Reflexive thematic analysis is a theoretically-flexible data analysis
approach which involves searching across a data set to find re-
peated patterns of meaning [8], and is an appropriate guide for data
analysis for phenomenological researchers. It involves prolonged
engagement with the data, including reflexive journalling by the
researcher [58], using detailed notes and memos during the entire
process. Reflexive thematic analysis procedures centre on organic
and recursive coding processes, and the importance of deep reflec-
tion on and engagement with data [9]. The process we used for data
analysis is shown in Figure 2, primarily aligned to that described
in [58], and incorporating multiple stages of interpretation [39].

The qualitative data analysis (QDA) software NVivo was used
to work with the data, and both authors were involved in the anal-
ysis of the data. The first author conducted the interviews, wrote
detailed memos and carried out detailed coding of each interview,

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Experience and characteristics of study participants

Phase
Teaching Experience 12 years or more 4 - 11 years Up to 3 years
PRIMM experience <= 1 year >1 year <= 1 year >1 year <= 1 year >1 year

Gender

Primary Male
Teacher L
Teacher N
Teacher Q

Female

Secondary
Male

Teacher B Teacher G Teacher D Teacher A Teacher I
Teacher E Teacher H Teacher K Teacher P Teacher O
Teacher M Teacher R Teacher T
Teacher S

Female Teacher C
Teacher J Teacher F

Interview questions

General background
Experience of teaching
Experience of teaching programming
Experience of teaching PRIMM

Talk-related questions

Types of talk that take place in programming lessons?
Prompt if needed: experience of any of the following
- Teacher talks to whole group (instructions, explanations)
- Teacher asks questions (individual, group)
- Students/pupils ask questions (of teacher, of each other)
- Students/pupils talk to each other
Talk differences in lessons structured/not structured with PRIMM
Difficulties students/pupils have in talking about programming
Role in fostering discussion amongst your students

Open comment Any other comments
Table 2: Themes of interview questions

Figure 2: The data analysis process

capturing and labelling the comments that represented lived ex-
periences [22] of the use of language and talk in the context of
programming lessons, and other opinions and reflections of the
teachers. The second author followed through these processes, be-
coming familiar with the data through reading and re-reading, and
carried out independent coding.

The thematic map [10] was developed by both authors as a
composite summary of all the interviews and was a precursor to
the development of specific themes that captured the contributions

being made through the interviews. Developing the thematic map
involved reviewing, combining and recombining descriptive codes,
and was discursive and iterative. Interpretation and discussion
is the key aspect of a phenomenological analysis: consensus and
agreement are not reported in this approach [51].

After summarising the interviews, the thematic map was cate-
gorised into domains of interest (general topics) and those domains
that were pertinent to the research question were identified as
primary themes for further synthesis. A theme is understood as
a set of experiences that many teachers referred to in the inter-
views, whereas a domain of interest refers to the general topic that
teachers talked to, guided in part by the interview structure. A
jointly-conducted iterative process continued to develop the sub-
themes to further guide the analysis and discussion. A sub-theme
enables the analysis to be more finely grained, but not all teachers
may refer to each sub-theme. The process used was to “move in
and out of the detail iteratively” [22, p.10] through re-reading and
discussion amongst the researchers.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4.5 Validity and credibility
Interpretive research is not driven by an absolute definition of real-
ity in the way that more positivist and quantitative approaches to
qualitative research are [65]. The validity of interpretive research
can be seen as the extent to which the constructions of the re-
searcher are grounded in the constructions of those being studied
[21]. To address validity of the data analysis process we used Guba
and Lincoln’s notion of trustworthiness [28], as expanded on more
recently by Shenton [69]. Trustworthiness is now widely accepted
as a way of ensuring validity and reliability in qualitative data
analysis [61]. The four elements of trustworthiness are credibil-
ity, transferability, dependability and confirmability, which align
respectively to internal validity, external validity, reliability and
objectivity in quantitative research [27]. We attended to credibility
following Shenton’s criteria, by using established research methods,
by ensuring we were completely familiar with the context of the
participating teachers, developing a relationship with the partic-
ipants that would support integrity and honesty in their reports,
by focusing on their lived experiences rather than opinions, and
by using field notes memos within the QDA software as a reflec-
tive commentary [69]. Transferability is achieved in part by thick
descriptions, and contextual information about the participants.
Following Shenton [69], we have provided some information about
the participants in terms of their background and have detailed the
process of data collection. However, more detail of each particpant’s
context is prohibited due to the number of teachers involved in the
study. For dependability and confirmability, we have reported the
decisions made in our study in as much detail as space provides,
and used the iterative interpretive process to examine our own
biases and ensure the analysis reflects the lived experiences of each
participant.

4.6 Ethical considerations
Ethical procedures outlined in [11] were followed; participants
gave consent to the use of their data for specific purposes and full
information was given. After transcription, participants were able
to check their interview transcripts.

5 FINDINGS
The thematic mapwas developed as part of the data analysis process
(see Figure 2) and is shown in Figure 3. From this we can see that
teachers discussed a range of different aspects of interaction and
talk in their classrooms.

5.1 Identification of themes
After the conclusion of the process described in Section 4.4, nine
themes were identified across the data as a whole:

• Student difficulties and differences when learning to program
• Using writing and annotating to learn to program
• How programming talk occurs in the classroom
• How questions are used in the classroom
• Why students’ verbal explanations about the code are im-
portant and how they are encouraged

• Why students’ use of correct programming vocabulary mat-
ters and how it is encouraged

• How PRIMM effects talk or about PRIMM in general

Figure 3: Thematic Map

• How PRIMM had impacted teachers’ learning
• Emotional responses about talk and PRIMM in general

These themes were then categorised within three overarching do-
mains of interest: programming in general, PRIMM in general, and
classroom talk for programming. This categorisation is shown in
Figure 3 via the vertical parallel lines. As our domain of interest is
classroom talk for programming the four themes fully within this
scope were selected for analysis:

• Theme 1: How programming talk occurs in the classroom
• Theme 2: How questions are used in the classroom
• Theme 3: Why students’ verbal explanations about the code
are important and how they are encouraged

• Theme 4: Why students’ use of correct programming vocab-
ulary matters and how it is encouraged

From these themes we see that encouragement around language
was very pertinent to teachers’ experiences. Sub-themes were iden-
tified and are shown, along with relevant cases in Table 3. Each
theme will be discussed in turn, and for each sub-theme, we identify
common attributes and outliers where applicable.

5.2 Theme 1: How programming talk occurs in
the classroom

In describing how talk was encouraged in the classroom, three
sub-themes emerged:

• What the example program contributes
• What the teacher contributes
• What student-student interaction contributes

These sub-themes often overlapped, for example, when teachers
referenced their dialogue with students about the program. The sig-
nificance of the example or starter program (an aspect of a PRIMM
lesson) was vital for many teachers.

Teachers repeatedly mentioned students referring to the shared
example program when they were talking in computing classes.
They commented on how having tasks around a program, rather
than starting with a blank screen, resulted in greater focus and
high-quality talk. One teacher experienced that this would keep
students ‘on task’:

“ [the talk] is more focused because they’re already into
the task and it avoids that situation of the student going,
I just can’t do this, I’m going to talk to my mate about

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Themes, sub-themes, and occurrences

Theme Sub-theme Teachers

Theme 1: How programming a) What the example program contributes All except H
talk occurs in the b) What the teacher contributes B-E, G-T
classroom setting c) What student-student interaction contributes B-G,I,J,L,N-P,R-T
Theme 2: How a) How questions relate to the example program B,C,F,L,N,P-S
questions are used and activities
in the classroom b) Questions generated by the teachers M,O,P,R,S,T

c) Questions generated by students C,F,G,I,M-O,R
Theme 3:Why students’ a) Explanations centred around program code A-J,Q,S,T
verbal explanations about the b) Teachers’ explanations A,B,F,I,L,R,T
program code are important c) Students’ explanations A-G,I,J,P,Q,R,T
and how encouraged
Theme 4:Why students’ a) Vocabulary to pass examinations C,E-H,P,R,S,T
use of correct b) Vocabulary to support accurate mental model G-J,L,N,O,P,S,T
programming vocabulary c) Vocabulary-specific activities B,J,L,O,P,S,T
matters and how encouraged d) Teacher modelling vocabulary use A,E,F,H-N,Q-T

e) Students using programming vocabulary A-G,I,K,L,M,N,Q-T

the footy and stuff because there’s no point.” (Teacher
M) (Theme 1 sub-theme a)

Another teacher, fairly new to teaching, talked about how having
example code led to discussion that had more depth:

“... the level of discussion I’m having is much deeper.
Where kids don’t seem to be as concerned with. . . there
might still be some syntactical errors, which is fine, that
they’re dealing with, but it’s not just about how to get
something basic running; it is a little bit that. They’re
going a lot deeper.” (Teacher O) (Theme 1 sub-theme
a)

Teachers often mentioned their role in classroom talk, including
leading whole class discussions, instigating one to one or small
group discussions and responding to pupils’ requests to talk about
the code or an activity. A change in the type of talk was highlighted,
such as becoming more of a facilitator by using structured activities.
This was exemplified by a teacher in the context of a point he was
making about the Run phase of PRIMM:

“So there’s definitely more student talk than teacher talk
at that point, and then I’ve become more of a facilitator,
and I’m just going round with different students and
just pointing bits out to them where they’ve got a bit
confused and misconceptions.” (Teacher N) (Theme 1
sub-theme b)

In talking about lessons, teachers described the protocols, patterns,
and atmosphere of talk and how they fostered this to promote talk :

“I’m asking the question to the whole room, and I’m
doing no hands up, and I’m doing cold call. I’m doing
more think-pair-share and partner talk.” (Teacher B)
(Theme 1 sub-theme b)

Teachers highlighted the importance of encouraging peer discus-
sions. Teachers talked about peer talk creating opportunities for
students to learn by talking to each other, to help each other solve

problems, and how talk revealed student’s understanding, making
it visible to teachers.

With all themes there are commonalities across the data set with
occasional ‘unique voices’ [25, p.51]. For example, a teacher also
mentioned his view that for some students talk was a distraction:

“Some children are much more verbal than others, and
so they think out loud whereas some children . . .would
just get distracted by that, and they just need to almost
tinker with the code, for want of a better word, to inves-
tigate it, but it needs to be guided.” (Teacher N) (Theme
1 sub-theme c)

Phenomenological research involves zooming in and out of the de-
tail [22] and although space does not permit an in-depth reporting
of our analysis for each teacher, we can present some extracts from
one teacher in particular across this theme, to examine how his
wider experience impacted on how he used language in his teach-
ing. To do this, we consider Teacher R, a highly experienced male
teacher. He trained as a science teacher, then also taught ICT (Infor-
mation and Communications Technology); he has learned to teach
computing since it was introduced into the school curriculum in
2014. Teacher R describes his emphasis on whole-class explanation:

“I need to explain everything about what’s going on.
So, yes, I would probably explain quite a lot. That’s my
teaching style. Coming from a science background, I
would explain things anyway.... The pupils would there-
fore talk less” (Teacher R) (Theme 1 sub-theme b)

There is some repetition of the word ‘explain’ in this extract: it is
mentioned three times. The teacher is keen to emphasise that doing
this is important to him and that it is his own style of teaching, and
he expects the pupils to talk less at this stage of the lesson. He leans
on his experience of science to justify his teacher-led approach, as
if this is not common in computing lessons (from the teachers we
interviewed it varies). However he reflects that he subsequently

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

moves on to programming activities where he expects students to
talk to each other, to help each other out, and talk about their work.
Here he lists a number of questions that may take place at this stage
in the lesson:

“Then when they’re going with their programming,
what they would do is they would probably talk to each
other more if they come across problems, or they’ll talk
to me, and I would be asking them questions like ‘Why
does it not work?’, ‘What can you spot?’, ‘How is this
different to the example that you’ve got?’ . . . ‘Why does
that example work and yours doesn’t?’ ” (Teacher R)
(Theme 1 sub-theme c)

The teacher is providing the opportunity for the students to talk
to each other about their code, and is available to have one-to-one
dialogues about the code. However the questioning seems to be
focused on syntax, with the notion of a ‘problem’ being solved when
a difference in syntax between a student’s code and an example is
identified. This teacher then asks students to write explanations of
what their code does in their exercise books. The teacher does use
talk in the lesson, but also values writing to consolidate knowledge.
Teacher R then reflects on listening to students’ talk at different
points in the lesson:

“. . . yes, you listen. So, ‘what isn’t working? What is
working?’ . . . if you’re talking through a specific problem
with a particular student, then obviously listening is
important, because otherwise you can’t pick up on what
they’re thinking.” (Teacher R) (Theme 1 sub-theme b)

Teacher R differs from several of the other teachers in his focus
on teacher-led explanations. Here he reflects on the fact that the
researcher has raised the topic of listening, which he says later is
‘making him think’, so the interaction between the researcher and
teacher has stimulated a line of thought that may not necessarily
have otherwise arisen in his account of his experience. Many of the
teachers mentioned through the interview that they were reflecting
on their practice during the interview.

5.3 Theme 2: How questions are used in the
classroom

Teachers mentioned questions as an essential aspect of talk in
their classrooms. Comments in this theme clustered into three sub-
themes:

• How questions related to the example program and activities
• Questions generated by the teacher
• Questions generated by students

Again, these three sub-themes often overlapped, for example, the
teacher asking pupils about the example program or the teacher
reflecting on the way students asked each other questions about
the activity at hand.

Teachers talked about the the shared example program that had
been created specifically to teach about the lesson topic and how
this framed and led questions, enabling them to ask whole-class,
small group and individual student questions on the same topic.
For example, Teacher B described how he asked the whole class
a question about the shared code, requiring students to talk to
their partner. He would then take responses from the whole class,

followed by probing questions for specific learners, such as asking
what a particular command would do in the example or asking
learners to identify an instance of a programming construct.

While some questions the teachers described were intended to
prompt technical vocabulary use or predictions of what example
code might do when run, others were used to prompt deeper think-
ing, asking why the program did something or asking students to
compare or evaluate code. Here a primary teacher uses the starter
code as a focus for questioning:

“. . . and then I’d say, well, why do you think that’s hap-
pening? Where in the code do you think that it’s do-
ing this? Then if they couldn’t see it, we’d maybe step
through it together. ” (Teacher L) (Theme 2 sub-theme
a)

One teacher explained that he sometimes started with a closed
question and moved to open questions that stretched learners:

“What line number do you first see a variable on? And
it’s the type of thing that anyone can just have a guess
at, even if they don’t know. And then we go to more
open-ended ones.” (Teacher P) (Theme 2 sub-theme b)

Other than talking about open and closed questions, teachers did
not categorise their questions. One very experienced teacher, M,
discussed the difficulty he had with asking good questions.

A secondary teacher was surprised to hear students re-using her
questions as they talked to each other:

“I could almost hear myself in their voices . . . I would
hear - But why does that work?Why is yours better than
mine? How can I make mine look yours and still make
it work? Yours looks more efficient, explain to me why
it’s more efficient.” (Teacher C) (Theme 2 sub-theme c)

Several teachers commented that students used ‘deeper’ questions
due to the example program. Several teachers described that the
PRIMM teaching approach elicited more advanced questioning
between teacher and pupil:

“. . . students ask questions, they are also asking at a
deeper level too. They seem to jump straight into a more
advanced topic right away. There are still a few people
who get confused by some of the syntax and some of
the basics, but there’s less of that. ”(Teacher O) (Theme
2 sub-theme c)

5.4 Theme 3: Why students’ verbal
explanations about the code are important
and how they are encouraged

Using explanations is not unexpected in terms of teachers’ descrip-
tion of talk in the programming classroom. The three sub-themes
identified within the area of explanations were:

• Explanations centred around the program code
• Teachers’ explanations
• Students’ explanations

There were overlaps between the three sub-themes, for example
where the code supported a student explanation. To exemplify this,
several teachers talked about students’ explanations about code
facilitating learning, generating a ‘ah ha moment’:

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

“ Most of the time they’re articulating what’s going on
or what they think is going on. Then they would go,
ah, I see, yes, right. And they would figure it out for
themselves.” (Teacher D) (Theme 3 sub-theme a)

Teachers reported that their experience of teaching programming
had led them to routinely encourage student explanations to fos-
ter understanding. Student explanations could be focused on the
example code or their own programs, for example:

“I start to approach them and suddenly they look at
their screen again as if they’re ready to explain it to
me and then they’re like, ah, I know what it is . . . It’s
getting that cognitive discourse going in your head. I
think that’s really important.” (Teacher E) (Theme 3
sub-theme a)

Some teachers reported that their explaining to the whole class was
central to their teaching style, as we saw in Theme 1. This contrasts
with other teachers who reported that PRIMM activities around
sample code meant that their need to explain to the whole class
was much less. One of the primary teachers found this to be quite
a stark change in his behaviour:

“I very much find that I’m talking for the first five
minutes, maybe ten, and then it’s very much over to
the pupils working individually. So most of the rest of
the lesson would be them talking unless we come across
something that we’d need to talk about together. So I
go around the room at that point. I’m asking questions.”
(Teacher L) (Theme 3 sub-theme b)

As well as whole class explanations, teachers mentioned asking
specific students to explain their programs. Sometimes these ex-
planations required students to say what each line of the program
would do, dry-running the code. Several teachers mentioned that
students, even their older, more experienced students, found walk-
ing through and explaining their programs hard. However, they
found that students explaining to each other what they did under-
stand was important:

“ So they can code it, but they’re not particularly good at
explaining and that challenges them a bit. It’s quite nice
to see them talking at the middle layer of students, as it
were, talking to those, going, we haven’t written much
there, and I thought about this.” (Teacher I) (Theme 3
sub-theme c)

Teachers also mentioned students found summarising the algorithm
or flow of control of a program challenging. One teacher recounted
how he gave students a small whiteboard and he asked them to
draw their explanation:

“I say, just doodle what’s in your head. Just dump it
down there. Do arrows like a mind map or mind bubble,
whatever you want to call them, and then just draw the
links between them.” (Teacher A) (Theme 3 sub-theme
c)

Teachers highlighted that not all students had the confidence or
inclination to explain their understanding. Teacher P reflected that
he had not yet built up confidence in his class to an extent where
they would explain their programs to each other independently in
pairs, but it was happening in the whole class. Another teacher’s

experience was that once his students have their code working, he
noticed a tendency for students to explain less verbally, instead
switching to writing explanations.

5.5 Theme 4: Why students’ use of correct
programming vocabulary matters and how
it is encouraged

The final theme relates to the technical vocabulary that is asso-
ciated with programming. This might be conceptual terms such
as assignment, iteration, or selection, or words relating to syntax,
such as if, for, or the names of blocks in a block-based language.
Throughout our discussion with teachers on classroom talk, they
mentioned using the ‘correct’ or ‘right’ programming vocabulary
and terms. These comments were grouped into the following five
sub-themes:

• Vocabulary to pass examinations
• Vocabulary to support accurate mental model
• Vocabulary-specific activities
• Teachers modelling vocabulary use
• Students using programming vocabulary

The ‘correct’ vocabulary for teaching programming to students at
different stages of learning to program is not the focus of this study
and requires further investigation. However, teachers believe in the
existence of ‘correct’ vocabulary and that it should be known and
used by students.

Some teachers stated that students needed to know the ‘correct’
vocabulary to pass exams. Teachers also mentioned that students
needed to know and use the ‘right’ terms. Teachers mentioned the
need for a common language for learning and sharing understand-
ing:

“. . . that’s about getting them to understand that these
technical terms are important because obviously it helps
them understand, and it helps them explain themselves
to other people.” (Teacher S) (Theme 4 sub-theme a)

Building a mental model of concepts was mentioned by teachers:
“ . . .Which is why we try and give them a language
because the language helps them to express themselves
better when they’re talking about it. And also it helps
them I think to have a mental model of what that is, if
you give it a name. ” (Teacher J) (Theme 4 sub-theme
b)

Here the teacher explicitly highlights that the terminology en-
ables the learners to express themselves more clearly. This does
contrast with some other teachers who were focused on correctness
as a learning goal, or for examinations. To help learners acquire
an understanding of the ‘right’ terms, teachers talked about using
vocabulary specific tasks, or ‘keyword activities’, for example:

“‘I liked what Dylan was saying in his answer and the
way he used keywords. Alisa, can you tell me which
keywords you think I really liked?”’ (Teacher B) (Theme
4 sub-theme c)

Another teacher, P, had created a whole bank of keyword games
including identifying keywords and writing programs that use spe-
cific keywords. Other teachers mentioned using classroom displays
to support students learning vocabulary.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Several teachers said they modelled programming terminology
to reinforce what the terms meant and to encourage students to use
it in class. Several teachers described banning words such as thing
and it. One teacher described his perspective using a classroom
example:

“I’m quite a stickler for the correct terminology . . . because
when I hear something like, ‘oh, yes, and then something
happens’ . . . I will frequently make that into a plenary
activity. I’m like, right, so [Student Name] has said this
word. What did she mean? Oh, she meant iteration.
Great. So, I’m not going to stop them in their tracks
to go, you need to speak like this, but I will positively
reinforce using the technical terminology in that lesson.”
(Teacher K) (Theme 4 sub-theme d)

The same teacher, representative of others, reflected that his experi-
ence is that students need time to gradually learn to use the terms
correctly:

“It is just slow and gentle encouragement because they
are learning a new language. They are learning a whole
group of new syntax. It is gentle encouragement that’s
needed, but I do feel they do need to use the correct ter-
minology eventually . . .And when it comes to the exams,
we need them to be as clear as possible in the larger
writing questions, and that clarity is gained through
having a larger vocabulary.” (Teacher K) (Theme 4
sub-theme a)

As well as using the ‘correct’ vocabulary in examinations and with
their teachers to develop and explain their understanding, teachers
described the terminology that students used to talk to each other:

“ . . . at the very start you wouldn’t hear any of that
correct vocabulary . It’s like a foreign language, really,
for them. Because they’ve never really come across it
before, and it’s not necessarily how you talk either.”
(Teacher D) (Theme 4 sub-theme e)

Not all teachers said that they always required the right vocabulary,
with one teacher describing his reaction to students using non-
standard vocabulary:

“Even though I will overhear them [using incorrect vo-
cabulary], I wouldn’t stop them. I’d rather they just
explain it in their own words rather than get too forced
into the right terminology.” (Teacher I) (Theme 4 sub-
theme e)

5.6 Summary of findings
The themes identified and illustrated above reveal insights into
how computing teachers talk about talk. The first theme, around
the tools that teachers use to encourage talk in the classroom high-
lighted shared program code as a contributor. The second theme
highlighted types of questions and the way they were used to en-
courage not only dialogue and discussion, but at a deeper or more
advanced level. The third theme we found highlighted the explana-
tions that students use, and the fourth theme focused on technical
vocabulary, whether precision of terminology was important to
teachers, and why.

For each of the first three themes, the three sub-themes relate to
the language focus, the teacher’s experience and the student’s ex-
perience. At the point of analysis we could have developed themes
along these lines, but our decision to highlight themes on the basis
of types of language: talk in general, questions, explanations and
vocabulary/terminology made it easier to reflect the different expe-
riences teachers reported. The fourth theme on vocabulary actually
links all the themes, as teachers were very keen to express how
important ‘correct’ programming terminology was, although they
had different reasons for doing so, as indicated by the sub-themes.

6 DISCUSSION
The interviews provide a rich story of teachers’ experience in the
programming classroom with pupils of various ages. In this section
we review and interpret the findings with relation to the research
question ‘In what ways do teachers develop classroom talk to sup-
port the learning of programming?’ through the development of a
model to represent the themes we have identified in the data. We
then abstract some of the generic elements of this data-generated
model to produce a potentially useful framework to view the role
of classroom talk in programming lessons.

6.1 Developing a model

Figure 4: Talk in the programming classroom - data driven
model

Figure 4 shows a model which incorporates Cui and Teo’s di-
alogic education framework as shown in Figure 1 [16]’, and its
relationship to the themes we have been exploring. Cui and Teo
identified dialogic environment, dialogic moves and teaching goals
as inputs to classroom talk. Given that the current study explored
language and talk in the context of PRIMM lessons, we have also
represented elements of PRIMM as a context in the model. We use
this model to further interpret the themes highlighted in Section 5.

6.2 Instantiating the model
In Theme 1, How programming talk occurs in the classroom
setting, teachers painted a picture of the roles and norms set up
by teachers to facilitate talk. We mapped this theme to the dia-
logic environment. The environment, or atmosphere of a setting,
are those established expectations, relationships and behaviour
patterns that encourage and support talk helping it flourish [16].
Teachers also highlight the time and effort needed to create rou-
tines which establish patterns of talk, in order to create a dialogic
environment.

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

The effort needed to develop a dialogic classroom culture is a
known issue with time and processes needed to establish or change
routines and expectations and the underpinning teacher-student,
student-student relationships [1, 16].

PRIMM afforded teachers and students a predictable activity
structure that directed talk about the example code during the Pre-
dict, Run, Investigate and Modify phases. The activity and example
code acted as a mediator for learning [81]. To represent the role
of these mediating tools in the dialogic classroom, we have added
PRIMM as a context and the activity structure and example code to
our emerging data-driven model as shown Figure 4.

We have mapped Themes 2 and 3 to dialogic moves in the pro-
posed model. For Cui and Teo, dialogic moves represent the con-
vergence of the discourse models they synthesised with respect to
“classroom talk strategies” [16, p.12] including:

• eliciting a contribution such as through authentic question-
ing

• extending dialogue by asking learners to explain through
elaboration or substantiation

• connecting links between participants and their contribu-
tions

• challenging participants to clarify and deepen thinking
• critiquing through critical evaluation of each others’ contri-
butions

In Theme 2,Howquestions are used in the programming class-
room, teachers reflect on how they use questions to elicit dia-
logue. In Theme 3, Why students’ verbal explanations about
the code are important and how they are encouraged, teach-
ers describe other moves that they make to encourage students to
articulate their understanding of a program by explaining how it
works. Our study clearly shows that the teachers reporting their
classroom experiences are using talk strategies to support students’
learning of programming concepts, constructs, syntactic elements
and problem solving skills. We saw some evidence of elaboration,
where teachers or peers invite or provide elaboration on a previous
contribution. Elaboration is one of the aspects of teacher-student
dialogue found to strongly predict performance in assessments [31],
as was querying, which we saw in our data, where teachers reported
that their students were asking increasingly in-depth questions of
each other about their code.

However, some teachers are more restricted to question types
which have been criticised as closing down talk, such as Initiation-
Response-Feedback (IRF) style of questions [17, 84], where the
teacher already knows the answer, for example, asking where a
variable is in the code.

Compared to the dialogue-trained teachers participating in the
Thinking Together research and other studies in mathematics and
science education focusing on classroom dialogue [31, 54], the
teachers in this study do not seem consciously familiar with the
breadth of dialogic techniques that they could use. This aligns to
previous work in mathematics:

“There are good reasons to expect that children studying
maths would benefit from teacher guidance in two main
ways. First and most obviously, they need to be helped
to gain relevant knowledge of mathematical operations,

procedures, terms and concepts. Teachers commonly ex-
pect to provide this kind of guidance. Secondly, they
need to be helped to learn how to use language to work
effectively together: to jointly enquire, reason, and con-
sider information, to share and negotiate their ideas,
and to make joint decisions. This kind of guidance is
not usually offered.” [54, p. 410]

Some teachers in our study clearly have not reflected on classroom
talk before, although they comment on how the conversation with
the researcher is causing them to reflect on language more.

There is evidence (for example, [3, 54]) that when teachers are
able to model and guide students in dialogic strategies that chil-
dren use dialogue more effectively, reason better, and have better
learning outcomes. Despite the teachers’ lack of experience in dia-
logic techniques, we do see that the teachers see themselves as a
model and a guide [54]. Several teachers talked about themselves
as ‘facilitators’.

Studies as part of the dialogic education research described in
Section 3 included training teachers and students to use different
ways of deepening a dialogue to enable more reasoning. This would
be a useful next step for programming education, as using dialogue
to reason about a program could be a transformational tool for the
classroom.

We mapped Theme 4 to Teaching Goals where the goals are
used during lesson planning and as the lesson unfolds to drive
the dialogue to be purposeful for a particular subject, according to
the learners needs and interests [16]. In Theme 4, Why it is im-
portant for students to use correct programming vocabulary
and how this is encouraged, it was clear that teachers were in-
sistent on ‘correct’ vocabulary use as a teaching goal. This included
both explicitly teaching terms through to modelling them.

What we do not know from the teachers’ reflections is what
those terms mean to the students. Other research has discussed
the difference between everyday meanings of words and technical
terms [17, 19] and that this can cause confusion. Some teachers
referenced literacy difficulties that their students had and how the
acquisition of programming terminology could help that. Beyond
the programming aspect of computing, it seems clear that children’s
development of conceptual language in computing is an important
area that could unlock some useful insights into our understanding
of the learning process, as researched in other subjects [50].

6.3 The shared artefact as a mediator
Across all four themes emerging from the interviews was the contri-
bution of the shared programs. PRIMM promotes the use of starter
code as a focus for a series of activities, such as predicting what
code will do and a range of other code comprehension exercises.
Students are encouraged to develop understanding of how a piece
of code works before starting to modify it and eventually build their
own. The teaching goals for the lesson are focused around a pro-
gram that exemplifies the underpinning concepts being introduced,
and a discussion that includes explaining out loud how programs
might work and supporting students to develop a ‘language’ to
do this. There is already evidence that teachers find this approach
useful [66].

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

PRIMM provides a particular context where the lesson follows a
structure with a range of activities and exercises around example
and student’s own code, and Figure 4 shows how the PRIMMcontext
encourages classroom talk around a shared artefact. Emerging from
theme 1 was the idea that the shared program code gave a context
for discussion that enhanced both the quantity of articulation and
the depth or quality of the discussion about the code. This was
also apparent in the second theme, where the shared example code
from the Predict and Investigate stages of PRIMM was described
by teachers as the source of many different types of questions and
explanations.

We have seen that sociocultural theory emphasises the impor-
tance of tools. Language is one tool, as is the teacher (MKO), but
also resources and examples provide a mediator for learning [81].
Furthermore the shared example code is not owned by the student,
but in the ‘social plane’ [80], so there it can be a conduit for talk
without being personalised. Therefore, in the context of a program-
ming classroom, the shared activity and shared code are social tools
which are mediating the learning and the discourse.

6.4 Generalising and evaluating the model
We have noted that teachers report that students do not find it easy
to explain how a program works, or to use a range of linguistic
tools to verbalise their reasoning. Programming teachers are not
generally trained to facilitate productive dialogue in our experi-
ence. Furthermore many teachers in our study reported delivering
whole-class explanations rather than focusing on the ways in which
learners could improve their own explanations, despite the fact that
student-student dialogue is a focus of PRIMM, in which context
this study was set. In any programming lesson, not just those using
the PRIMM structure, the research on dialogue in mathematics
and science suggests that it would be useful to focus professional
development on dialogue moves around the explanations of pro-
grams and how teachers can facilitate their students developing
their linguistic skills in this area.

All subjects have a degree of ‘disciplinary literacy’ in that there
are technical terms that enable students to create a shared under-
standing when discussing the subject with each other; being able
to effectively use these can support the development of a mental
model of particular concepts. Again, this is a language focus that
is not specific to a PRIMM-style lesson but there is much for us to
understand around the introduction of technical vocabulary and
the associated learning goals. Several teachers in our study were
focused primarily on the fact that some terminology was ‘correct’
and for that reason it should be encouraged, rather than associating
the use of programming terminology with a growing understanding
of programming itself.

Having developed a model which represents the interpreted
data aligned to the theoretical framework and context in which the
study is situated, we are thus proposing a generic model for broader
contexts, as presented in Figure 5. The generic model highlights
two areas where we feel more research is needed, which relate to
our understanding of the dialogic environment and appropriate
dialogic moves for programming lessons. The PRIMM context is
now removed, as any programming lesson with a dialogic focus
could draw on this model.

Figure 5: Talk in the programming classroom - generic
model

This generic model includes different elements of a programming
lesson and the ways in which dialogue can enhance classroom talk.
Further studies would clearly be needed to validate the proposed
model. One approach would be to replicate or adapt some of the
studies conducted in other disciplines around dialogic teaching and
education. Another angle to the research could be to focus on how
the use of programming terminology links to more productive talk
and evidence of learning.

6.5 Reflections and limitations
As researchers utilising a hermeneutic phenomenological method-
ology within this exploratory study, which requires a considerable
amount of reflexivity and self-reflection, it is valuable to reflect
on our own experience and learning. In contrast to approaches to
qualitative research that require a degree of quantitative analysis
around coding, we were careful to pay most attention to teacher
reflections that really reflected their lived experience, rather than
opinions and views. We were conscious of our own experience and
what we brought to the interpretation whilst conducting a level of
‘bracketing’ [39] to ensure that it did not interfere with the analysis.

The limitations of this approach in this study was that the num-
ber of participants (20) was quite high for an interpretive phe-
nomenological study, generating a lot of data which we could have
explored in much depth. For example, we did not draw on some of
the teaching history and personal experiences of the teachers that
we recorded in analysing the extracts as much as we could have. In
presenting the themes, we sacrificed some depth to demonstrate the
commonality of the themes across the data, because as researchers
who also share classroom experience, we felt these elements of the
teachers’ experiences were important to draw out.

Hermeneutic phenomenological methodology is not common in
computing education research (although it is in other fields such
as general education and nursing research [4, 23]), and it would be
interesting to see other studies in computing education discuss this
trade-off while utilising this methodology.

7 CONCLUSION AND FURTHERWORK
In this paper we have described a qualitative exploratory study into
teachers’ perspectives around the language and talk they use in the
programming classroom. We used hermeneutic phenomenology as
the methodology and drew on sociocultural theory and dialogic
models to support our interpretation of teachers’ reported lived

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

experiences. 20 teachers who teach programming in primary or
secondary schools using the PRIMM approach were interviewed
for the study.

The findings in this paper suggest that teachers are very aware
of the need for key programming terminology to give pupils a
language to talk about their programs. Teachers describe the impor-
tance of the starter or example code (as used in PRIMM lessons) in
providing a focus for dialogue, questions and explanations. Teach-
ers describe different ways in which they encourage talk in their
classroom, and see themselves as a guide and a model [54]. Student-
student interaction is seen as important to learning but some teach-
ers reflect that they do not encourage this as much as they think
they should or could.

Through synthesis of our interpretation of teacher experiences
of discourse in their programming lessons with dialogic theoreti-
cal frameworks we have developed a generic model to frame the
way context specific shared artefacts such as starter/ example code,
students’ own code and activity structure can provide a focus for
different types of classroom talk. We suggest two specific areas of
further work. Firstly, to evaluate the proposed generic model by de-
veloping and evaluating a dialogic techniques for the programming
classroom intervention. Such an intervention should build upon dia-
logic research in other subjects, such as in mathematics and science
education. Secondly, to explore what the ‘correct’ vocabulary is for
the learning of programming, how it might be effectively taught
and what the impact is of the learning of programming ‘vocabulary’
on the development of conceptual understanding.

REFERENCES
[1] Robin Alexander. 2006. Towards dialogic teaching: Rethinking classroom talk.

Dialogos, Cambridge.
[2] Robin Alexander. 2013. Essays on pedagogy. Routledge.
[3] Robin Alexander. 2018. Developing dialogic teaching: Genesis, process, trial.

Research Papers in Education 33, 5 (2018), 561–598.
[4] Fidaa S Abu Ali, Lubna Abushaikha, et al. 2019. Hermeneutics in nursing studies:

an integrative review. Open Journal of Nursing 9, 02 (2019), 137.
[5] Ashok R Basawapatna, Alexander Repenning, Kyu Han Koh, and Hilarie Nick-

erson. 2013. The zones of proximal flow: guiding students through a space of
computational thinking skills and challenges. In Proceedings of the ninth annual
international ACM conference on International computing education research. ACM,
67–74.

[6] Jens Bennedsen and Ole Eriksen. 2006. Categorizing pedagogical patterns by
teaching activities and pedagogical values. Computer Science Education 16, 2
(2006), 157–172.

[7] Grant Braught, L Martin Eby, and Tim Wahls. 2008. The effects of pair-
programming on individual programming skill. ACM SIGCSE Bulletin 40, 1
(2008), 200–204.

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[9] Virginia Braun andVictoria Clarke. 2019. Reflecting on reflexive thematic analysis.
Qualitative Research in Sport, Exercise and Health 11, 4 (2019), 589–597.

[10] Virginia Braun and Victoria Clarke. 2020. One size fits all? What counts as quality
practice in (reflexive) thematic analysis? Qualitative research in psychology (2020),
1–25.

[11] British Educational Research Association (BERA). 2018. Ethical Guidelines for
Educational Research, Fourth Edition. https://www.bera.ac.uk/researchers-
resources/publications/ethical-guidelines-for-educational-research-2018

[12] Jerome Bruner. 1982. The language of education. Social Research 49, 4 (1982),
835–853.

[13] Åsa Cajander, Mats Daniels, and Roger McDermott. 2012. On valuing peers:
theories of learning and intercultural competence. Computer Science Education
22, 4 (2012), 319–342.

[14] Kathleen Cotton. 1988. Classroom questioning. School improvement research
series 5 (1988), 1–22.

[15] John W Creswell. 2007. Qualitative inquiry and research design: Choosing among
five approaches. SAGE Publications, Inc; Second Edition.

[16] Ruiguo Cui and Peter Teo. 2020. Dialogic education for classroom teaching: a
critical review. Language and Education 0, 0 (Oct. 2020), 1–17. https://doi.org/10.

1080/09500782.2020.1837859
[17] Lyn Dawes. 2004. Talk and learning in classroom science. International journal

of science education 26, 6 (2004), 677–695.
[18] Ira Diethelm and Juliana Goschler. 2015. Questions on spoken language and

terminology for teaching computer science. In Proceedings of the 2015 ACM
conference on innovation and technology in computer science education, ITICSE ’15.
ACM, 21–26.

[19] Ira Diethelm, Juliana Goschler, and Timo Lampe. 2018. Language and Computing.
In Computer Science Education: Perspectives on Teaching and Learning in School,
Sue Sentance, Erik Barendsen, and Carsten Schulte (Eds.). 207–219.

[20] Linda Finlay. 2012. Debating phenomenological methods. In Hermeneutic phe-
nomenology in education. Brill Sense, 15–37.

[21] Uwe Flick. 1998. An introduction to qualitative research. Sage Publications Limited.
[22] Julie Frechette, Vasiliki Bitzas, Monique Aubry, Kelley Kilpatrick, and Mélanie

Lavoie-Tremblay. 2020. Capturing lived experience: Methodological consid-
erations for interpretive phenomenological inquiry. International Journal of
Qualitative Methods 19 (2020), 1609406920907254.

[23] Norm Friesen, Carina Henriksson, and Tone Saevi. 2012. Hermeneutic phenomenol-
ogy in education: Method and practice. Vol. 4. Springer Science & Business Media.

[24] Alexandra Funke, Katharina Geldreich, and Peter Hubwieser. 2017. Analysis
of scratch projects of an introductory programming course for primary school
students. In 2017 IEEE global engineering education conference (EDUCON). IEEE,
1229–1236.

[25] Thomas Groenewald. 2004. A phenomenological research design illustrated.
International journal of qualitative methods 3, 1 (2004), 42–55.

[26] Shuchi Grover, Nicholas Jackiw, and Patrik Lundh. 2019. Concepts before coding:
non-programming interactives to advance learning of introductory programming
concepts in middle school. Computer Science Education 29, 2-3 (2019), 106–135.

[27] Egon G Guba. 1981. Criteria for assessing the trustworthiness of naturalistic
inquiries. Ectj 29, 2 (1981), 75–91.

[28] Egon G Guba and Yvonna S Lincoln. 1982. Epistemological and methodological
bases of naturalistic inquiry. ECTJ 30, 4 (1982), 233–252.

[29] C Lynn Hancock. 1995. Implementing the assessment standards for school
mathematics: Enhancing mathematics learning with open-ended questions. The
Mathematics Teacher 88, 6 (1995), 496–499.

[30] Fredrik Heintz, Linda Mannila, Lars-Åke Nordén, Peter Parnes, and Björn Regnell.
2017. Introducing programming and digital competence in Swedish K-9 education.
In International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives. Springer, 117–128.

[31] Christine Howe, Sara Hennessy, Neil Mercer, Maria Vrikki, and Lisa Wheatley.
2019. Teacher–Student Dialogue During Classroom Teaching: Does It Really
Impact on Student Outcomes? Journal of the Learning Sciences 28, 4-5 (Oct. 2019),
462–512. https://doi.org/10.1080/10508406.2019.1573730

[32] Kerry E Howell. 2012. An introduction to the philosophy of methodology. Sage.
[33] Maya Israel, Quentin M. Wherfel, Saadeddine Shehab, Oliver Melvin, and Todd

Lash. 2017. Describing Elementary Students’ Interactions in K-5 Puzzle-based
Computer Science Environments using the Collaborative Computing Observation
Instrument (C-COI). In Proceedings of the 2017 ACM Conference on International
Computing Education Research (ICER ’17). Association for Computing Machinery,
New York, NY, USA, 110–117. https://doi.org/10.1145/3105726.3106167 00014.

[34] Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran,
Mirela Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo,
et al. 2019. Fostering program comprehension in novice programmers-learning
activities and learning trajectories. In Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education. 27–52.

[35] Nadia Kasto. 2016. Learning to Program: The development of knowledge in Novice
Programmers. Ph.D. Dissertation. Auckland University of Technology.

[36] Donna Kotsopoulos, Lisa Floyd, Steven Khan, Immaculate Kizito Namukasa,
Sowmya Somanath, Jessica Weber, and Chris Yiu. 2017. A pedagogical framework
for computational thinking. Digital Experiences in Mathematics Education 3, 2
(2017), 154–171.

[37] Alex Kozulin and Barbara Z Presseisen. 1995. Mediated learning experience
and psychological tools: Vygotsky’s and Feuerstein’s perspectives in a study of
student learning. Educational psychologist 30, 2 (1995), 67–75.

[38] Udo Kuckartz. 2014. Qualitative text analysis: A guide to methods, practice and
using software. Sage.

[39] Susann M Laverty. 2003. Hermeneutic phenomenology and phenomenology:
A comparison of historical and methodological considerations. International
journal of qualitative methods 2, 3 (2003), 21–35.

[40] Robert Law. 2020. A Pedagogical Approach to Teaching Game Programming:
Using the PRIMM Approach. In European Conference on Games Based Learning.
Academic Conferences International Limited, 816–XVI.

[41] John Leach and Phil Scott. 2003. Individual and sociocultural views of learning
in science education. Science & Education 12, 1 (2003), 91–113.

[42] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce
Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. ACM Inroads 2, 1 (2011), 32.

https://www.bera.ac.uk/researchers-resources/publications/ethical-guidelines-for-educational-research-2018
https://www.bera.ac.uk/researchers-resources/publications/ethical-guidelines-for-educational-research-2018
https://doi.org/10.1080/09500782.2020.1837859
https://doi.org/10.1080/09500782.2020.1837859
https://doi.org/10.1080/10508406.2019.1573730
https://doi.org/10.1145/3105726.3106167

Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Teachers’ Perspectives on Talk in the Programming Classroom : Language as a Mediator (Authors’ pre-print version) ICER 2021, August 16–19, 2021, Virtual Event, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

[43] Jay L Lemke. 1990. Talking science: Language, Learning, and Values. Ablex
Publishing, Norwood, NJ.

[44] Constant Leung. 2005. Mathematical vocabulary: Fixers of knowledge or points
of exploration? Language and Education 19, 2 (2005), 126–134.

[45] Colleen M. Lewis. 2011. Is pair programming more effective than other forms of
collaboration for young students? Computer Science Education 21, 2 (June 2011),
105–134. https://doi.org/10.1080/08993408.2011.579805

[46] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, Vol. 36. ACM, 119–150.

[47] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (Paris, France) (ITiCSE
’09). ACM, New York, NY, USA, 161–165.

[48] Philip Machanick. 2007. A social construction approach to computer science
education. Computer Science Education 17, 1 (March 2007), 1–20. https://doi.org/
10.1080/08993400600971067

[49] Lauren Margulieux, Brian Dorn, and Kristin Searle. 2019. Learning sciences
for computing education. In The Cambridge Handbook of Computing Education
Research, Sally Fincher and Anthony V. Robins (Eds.). Cambridge University
Press, 208–230.

[50] Karl Maton and Yaegan Doran. 2021. Constellating science: How relations among
ideas help build knowledge. Routledge (in press).

[51] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
inter-rater reliability in qualitative research: Norms and guidelines for CSCW
and HCI practice. Proceedings of the ACM on Human-Computer Interaction 3,
CSCW (2019), 1–23.

[52] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2006.
Pair programming improves student retention, confidence, and program quality.
Commun. ACM 49, 8 (2006), 90–95. https://doi.org/10.1145/1145287.1145293

[53] Neil Mercer. 1995. The Guided Construction of Knowledge: Talk amongst teachers
and learners. Multilingual matters.

[54] Neil Mercer and Claire Sams. 2006. Teaching Children How to Use Lan-
guage to Solve Maths Problems. Language and Education 20, 6 (Nov. 2006),
507–528. https://doi.org/10.2167/le678.0 00416 Publisher: Routledge _eprint:
https://doi.org/10.2167/le678.0.

[55] Neil Mercer and Rupert Wegerif. 1999. Is ‘exploratory talk’productive talk.
Learning with computers: Analyzing productive interaction (1999), 79–101.

[56] Sarah Michaels, Catherine O’Connor, and Lauren B Resnick. 2008. Deliberative
discourse idealized and realized: Accountable talk in the classroom and in civic
life. Studies in philosophy and education 27, 4 (2008), 283–297.

[57] Clark Moustakas. 1994. Phenomenological research methods. Sage publications.
[58] Lorelli S. Nowell, Jill M. Norris, Deborah E. White, and Nancy J. Moules. 2017.

Thematic Analysis: Striving to Meet the Trustworthiness Criteria. International
Journal of Qualitative Methods 16, 1 (Dec. 2017), 1609406917733847. https://doi.
org/10.1177/1609406917733847 02780 Publisher: SAGE Publications Inc.

[59] Martin Nystrand, Lawrence L. Wu, Adam Gamoran, Susie Zeiser, and Daniel A.
Long. 2003. Questions in Time: Investigating the Structure and Dynamics of
Unfolding Classroom Discourse. Discourse Processes 35, 2 (2003), 135–198. https:
//doi.org/10.1207/S15326950DP3502_3

[60] Leo Porter, Cynthia Bailey Lee, Beth Simon, and Daniel Zingaro. 2011. Peer
instruction: do students really learn from peer discussion in computing?. In
Proceedings of the seventh international workshop on Computing education research.
ACM, 45–52. http://dl.acm.org/citation.cfm?id=2016923

[61] Sharon M Ravitch and Nicole Mittenfelner Carl. 2019. Qualitative research:
Bridging the conceptual, theoretical, and methodological. SAGE Publications,
Incorporated.

[62] Paul J Riccomini, Gregory W Smith, Elizabeth M Hughes, and Karen M Fries.
2015. The language of mathematics: The importance of teaching and learning
mathematical vocabulary. Reading & Writing Quarterly 31, 3 (2015), 235–252.

[63] Jean Jinsun Ryoo. 2013. Pedagogy Matters: Engaging Diverse Students as Com-
munity Researchers in Three Computer Science Classrooms. Ph.D. Dissertation.
UCLA.

[64] Carsten Schulte. 2008. Block Model: An Educational Model of Program Com-
prehension As a Tool for a Scholarly Approach to Teaching. In Proceedings of
the Fourth International Workshop on Computing Education Research (Sydney,

Australia) (ICER ’08). ACM, New York, NY, USA, 149–160.
[65] Thomas A Schwandt et al. 1994. Constructivist, interpretivist approaches to

human inquiry. Handbook of qualitative research 1 (1994), 118–137.
[66] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ Experiences of

using PRIMM to Teach Programming in School. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. 476–482.

[67] Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teaching computer program-
ming with PRIMM: a sociocultural perspective. Computer Science Education 29,
2-3 (2019), 136–176.

[68] Karim Shabani. 2016. Applications of Vygotsky’s sociocultural approach for
teachers’ professional development. Cogent Education 3, 1 (Nov. 2016). https:
//doi.org/10.1080/2331186X.2016.1252177

[69] Andrew Shenton. 2004. Strategies for Ensuring Trustworthiness in Qualitative
Research Projects. Education for Information 22 (2004), 63–75. https://doi.org/10.
3233/EFI-2004-22201

[70] John McHardy Sinclair and Malcolm Coulthard. 1975. Towards an analysis of
discourse: The English used by teachers and pupils. Oxford Univ Pr.

[71] Art Sloan and Brian Bowe. 2014. Phenomenology and hermeneutic phenomenol-
ogy: The philosophy, the methodologies, and using hermeneutic phenomenology
to investigate lecturers’ experiences of curriculum design. Quality & Quantity
48, 3 (2014), 1291–1303.

[72] Josh Tenenberg and Maria Knobelsdorf. 2014. Out of our minds: a review of
sociocultural cognition theory. Computer Science Education 24, 1 (Jan. 2014), 1–24.
https://doi.org/10.1080/08993408.2013.869396

[73] Jennifer Tsan, Collin F. Lynch, and Kristy Elizabeth Boyer. 2018. “Alright, what
do we need?”: A study of young coders’ collaborative dialogue. International
Journal of Child-Computer Interaction 17 (Sept. 2018), 61–71. https://doi.org/10.
1016/j.ijcci.2018.03.001 00019.

[74] Jan Vahrenhold, Quintin Cutts, and Katrina Falkner. 2019. Schools (K–12). In
The Cambridge Handbook of Computing Education Research, Sally A. Fincher and
Anthony V.Editors Robins (Eds.). Cambridge University Press, 547–583. https:
//doi.org/10.1017/9781108654555.019

[75] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings
of the Fifth International Workshop on Computing Education Research Workshop
(Berkeley, CA, USA) (ICER ’09). ACM, New York, NY, USA, 117–128.

[76] Lev S Vygotsky. 1962. Thought and word. In Studies in communication. Thought
and Language, Lev S Vygotsky, E. Hanfmann, and G. Vakar (Eds.). MIT Press,
119–153.

[77] Lev S Vygotsky. 1978. Mind in society. Cambridge, MA: Harvard University
Press.

[78] Lee S. Vygotsky. 1981. The Instrumental Method in Psychology. In The concept
of activity in Soviet psychology, J. V Wertsch (Ed.). Armonk, NY, Sharpe.

[79] Lev S Vygotsky. 1991. Genesis of the higher mental functions. Learning to think
(1991), 32–41.

[80] Aida Walqui. 2006. Scaffolding instruction for English language learners: A con-
ceptual framework. International Journal of Bilingual Education and Bilingualism
9, 2 (2006), 159–180.

[81] James V Wertsch. 1996. Mediation. In Introduction to Vygotsky, Harry Daniels
(Ed.). Routledge, 1–34.

[82] James V Wertsch and Peeter Tulviste. 1992. LS Vygotsky and contemporary
developmental psychology. Developmental psychology 28, 4 (1992), 548. 00552.

[83] R Paul Wiegand, Anthony Bucci, Amruth N Kumar, Jennifer L Albert, and Alessio
Gaspar. 2016. A data-driven analysis of informatively hard concepts in intro-
ductory programming. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, 370–375.

[84] Ian Wilkinson and Kathryn Nelson. 2019. Role of Discussion in Reading Com-
prehension. In Visible Learning Guide to Student Achievement: Schools Edition,
John Hattie and Eric M Anderman (Eds.). Routledge, 231–237.

[85] Jeffrey W Wimer, Carolyn S Ridenour, Kelli Thomas, and A William Place. 2001.
Higher order teacher questioning of boys and girls in elementary mathematics
classrooms. The Journal of Educational Research 95, 2 (2001), 84–92.

[86] Pelin Yüksel and Soner Yıldırım. 2015. Theoretical frameworks, methods, and
procedures for conducting phenomenological studies in educational settings.
Turkish online journal of qualitative inquiry 6, 1 (2015), 1–20.

[87] Daniel Zingaro. 2014. Peer Instruction Contributes to Self-efficacy in CS1. In
Proceedings of the 45th ACM Technical Symposium on Computer Science Educa-
tion (SIGCSE ’14). ACM, New York, NY, USA, 373–378. https://doi.org/10.1145/
2538862.2538878

https://doi.org/10.1080/08993408.2011.579805
https://doi.org/10.1080/08993400600971067
https://doi.org/10.1080/08993400600971067
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.2167/le678.0
https://doi.org/10.1177/1609406917733847
https://doi.org/10.1177/1609406917733847
https://doi.org/10.1207/S15326950DP3502_3
https://doi.org/10.1207/S15326950DP3502_3
http://dl.acm.org/citation.cfm?id=2016923
https://doi.org/10.1080/2331186X.2016.1252177
https://doi.org/10.1080/2331186X.2016.1252177
https://doi.org/10.3233/EFI-2004-22201
https://doi.org/10.3233/EFI-2004-22201
https://doi.org/10.1080/08993408.2013.869396
https://doi.org/10.1016/j.ijcci.2018.03.001
https://doi.org/10.1016/j.ijcci.2018.03.001
https://doi.org/10.1017/9781108654555.019
https://doi.org/10.1017/9781108654555.019
https://doi.org/10.1145/2538862.2538878
https://doi.org/10.1145/2538862.2538878

	Abstract
	1 Introduction
	2 Theoretical framework
	2.1 Sociocultural theory
	2.2 Computing education through a sociocultural lens
	2.3 Dialogic models

	3 Related Work
	3.1 Dialogue and talk
	3.2 Vocabulary
	3.3 PRIMM for programming lessons
	3.4 Summary and research question

	4 The study
	4.1 Methodology
	4.2 Participants
	4.3 Data collection
	4.4 Data analysis
	4.5 Validity and credibility
	4.6 Ethical considerations

	5 Findings
	5.1 Identification of themes
	5.2 Theme 1: How programming talk occurs in the classroom
	5.3 Theme 2: How questions are used in the classroom
	5.4 Theme 3: Why students' verbal explanations about the code are important and how they are encouraged
	5.5 Theme 4: Why students' use of correct programming vocabulary matters and how it is encouraged
	5.6 Summary of findings

	6 Discussion
	6.1 Developing a model
	6.2 Instantiating the model
	6.3 The shared artefact as a mediator
	6.4 Generalising and evaluating the model
	6.5 Reflections and limitations

	7 Conclusion and Further Work
	References

