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ABSTRACT
Motivation. In education, classroom talk is a vital aspect of a les-
son, and programming education is no exception. While the role of
language and dialogue has been researched in depth in other school
subjects, there has been less research in the programming context.
Sociocultural theory highlights the importance of language as a
mediator for learning, alongside other tools.
Objectives. Drawing on sociocultural theory and models of dia-
logic education, the purpose of the study was to investigate the
ways in which programming teachers use classroom talk to support
learning, and to propose a model to frame our understanding of
this element of programming lessons.
Method. The qualitative study used phenomenological method-
ology to investigate and interpret teachers’ ‘lived experiences’ of
classroom talk. Interviews were conducted with 20 primary and
secondary computing teachers about the content and effect of class-
room talk in programming lessons. The context of the study was
PRIMM, a lesson structure which highlights the importance of talk
around a shared programming artefact.
Results. Analysis of data revealed four main themes: how talk oc-
curs in the classroom setting, how questioning is used to facilitate
talk, how students are encouraged to explain, and why teachers
feel it is important for students to use correct vocabulary.
Discussion. Building on research into models of dialogue in ed-
ucation and our findings we suggest a model to frame talk in the
programming classroom. We discuss the contribution of PRIMM to
our understanding of talk in programming lessons. More research
is needed to validate the proposed model and to investigate the
impact of classroom talk on learning outcomes in programming.
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1 INTRODUCTION
Many countries are moving to a curriculum that includes more
emphasis on algorithms and programming [24, 26, 30, 74], and this is
reflected in an increase in programming education for K-12 research.
Research falls broadly into several camps, for example, tools and
environments to support programming, instructional approaches,
resource development, diversity, assessment and teacher education.
There is little research, however, on specific aspects of programming
lessons such as classroom talk, and how they can impact learning
[74]. This contrasts with other disciplines, where classroom talk
has been studied in more depth (see for example, [17, 43, 53, 54, 62]).
In programming lessons, classroom talk will include: the dialogue
that students have with each other and their teacher about their
programs, the use of technical language, the types of questions
teachers and students ask, and how concepts are explained and
exemplified. In so much as these impact on students’ progress in
their acquisition of knowledge and skills, it is important that we
understand the relative role of these elements of a lesson.

We owe much to sociocultural theory in enabling us to under-
stand how language can support learning. Through the theoretical
lens of the soviet psychologist Vygotsky, language can be seen as a
central form of mediation that enables thinking and internalisation
of concepts to take place [76]. As Jerome Bruner says of Vygotsky:

“His basic view was that conceptual learning was a
collaborative enterprise involving an adult who enters
into dialogue with the child in a fashion that provides
the child with hints and props that allow him to bring
a new climb, guiding the child in next steps even before
the child is capable of recognising their significance.”
[12, p.852]

There have been calls to take a more sociocultural approach within
computer science education and programming [48, 72] and particu-
larly regarding the role of language in teaching computer science
[18], but otherwise this is a largely unexplored area of research. Just
as in science teaching, where different ways of talking in class about
concepts lead to internalisation of the necessary concepts [41], in
computer science education we need to use talk to help students to
internalise the difficult concepts they face in programming.

This paper describes an exploratory research study looking at
classroom talk in the context of programming education, from teach-
ers’ perspectives. The study is situated in the context of PRIMM,
a structure for programming lessons [66]. PRIMM particularly fo-
cuses on classroom discussion, specific questioning about code,
and asking students to talk to each other about code, based around
a sample program that has been carefully constructed to prompt
discussion and learning [67].

https://orcid.org/0000-0002-0259-7408
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2 THEORETICAL FRAMEWORK
In this section we set out our theoretical perspective, in terms of
sociocultural theory, its influence on dialogic models and how it
relates to programming education.

2.1 Sociocultural theory
Social constructivism, in particular the work of the Soviet psycholo-
gist Vygotsky, can frame our understanding of novice programmers
and their learning. Vygotsky proposed that higher mental processes
were functions of mediated activity and that there were three major
classes of mediators: material tools, psychological tools (sometimes
called signs and symbols), and other human beings [37]. Media-
tion is a key focus of Vygotsky’s work [82], and includes both the
nature of the tools adopted and valued by society as well as the
appropriation of tools and how they are integrated into cognitive
activity during the processes of an individual’s development [68].
By understanding mediation and the process of appropriation better
in computing education, we may be more able to support novice
learners better, particularly with respect to programming.

There are a group of theories under the banner of sociocultural
theory [49] but here we focus on Vygotsky’s sociocultural theory
(SCT). In the context of school learning, Vygotsky states that a
child’s development within their Zone of Proximal Development
(ZPD) involves social interaction, dialogue, and mediated activity
between learners and with their teachers [77]. The term proximal
(nearby) indicates that the assistance provided goes slightly beyond
the learner’s current competence, complementing and building on
their existing abilities. This means identifying what students can
and cannot do, through tasks, then facilitating learning through
tasks carefully situated within the ZPD which enable the student
to carry out more complex cognitive tasks than they would be able
to do on their own, with the support of a ‘more knowledgeable
other’ (MKO). Students finally move to a stage where the student
can work independently and reach their own learning goals [77].

One of the psychological tools described by Vygotsky is language,
a central form ofmediation that enables thinking and internalisation
of concepts to take place [78]. As a communicative tool, language
facilitates individuals’ social interaction; as a psychological tool,
language enables individuals to internalize the knowledge and skills
in social interaction [16]. Language provides themeans for scientific
ideas to be talked through between people on the social plane,
before internalisation [41].

2.2 Computing education through a
sociocultural lens

There have been calls to take a more sociocultural approach within
computer science education and programming [48, 72], and so-
ciocultural approaches have strongly influenced a range of recent
computer science education work [6, 13, 63]. Other recent research
has specifically referenced or used Vygotsky’s ZPD [5, 35, 36], indi-
cating that the influence of sociocultural theory (SCT) is increasing
its prominence in computer science education.

Sentance et al. [67] highlight three key educational principles
from SCT that can guide the teaching of programming, and which
are embedded in the PRIMM framework:

(1) The role of the ’more knowledgeable other’ (MKO) in
ZPD. Students need teachers, asMKOs, to show them (model)
how to solve a problem. Students working together can be
paired so that one peer is the MKO. Resources, materials
and lesson structure are all mediating activity in Vygotsky’s
terms, but should be designed to be within the learners’ ZPD.
This requires a detailed understanding of progression and
which concepts are easier or harder for students [83].

(2) Learning moves from the social plane to the psycho-
logical plane. According to Vygotsky, the process of mas-
tering a semiotic tool typically begins on the ’social plane’,
which means the first stages of acquaintance typically in-
volve social interaction and negotiation between experts and
novices or among novices [81]. By participating in this social
interaction interpretations are first proposed and worked out
and, therefore, become available cognitively to individuals,
into what Vygotsky calls the ‘psychological plane’ [79]. Us-
ing starter or example programs and teaching strategies to
support the reading of code involves program code existing
on the social plane initially, before being understood inter-
nally by the student. Programming tasks should be carefully
chosen so they are within the ZPD of the student. Gradually
more complex programming tasks involving independent
problem solving and creativity will be possible by students
as understanding becomes internalised.

(3) Mediation through language. When learning to under-
stand how programs work, students should be encouraged
to discuss with each other through a social construction of
knowledge. This can be through pair programming, or collab-
orative tasks such as talking about segments of program code
to identify their function. Teaching should facilitate focused
discussion around programming constructs and concepts
and their implementation as code.

PRIMMhas been designed as a structure for programming lessons
drawing on these principles. A PRIMM lesson has four components:
the shared artefact of the program; the structure defined by the
PRIMM acronym (predict, run, investigate, modify and make); the
lesson resources; and structured talk. All four are mediators in the
Vygotskian sense. In addition, the MKO, whether this be a teacher
or a more knowledgeable peer, has a role to play in supporting
these mediating activities, and the lesson resources and structured
classroom talk should be within the ZPD of the students [67]. These
elements provide the model underlying PRIMM, of which classroom
talk is one significant part. This paper sets out to expand on the
language/talk element of this model.

2.3 Dialogic models
Across a number of disciplines, including mathematics and science
education, the role of language has been explored through various
models of how dialogue works. We next introduce four influential
models.

Firstly, Mercer and colleagues, drawing on SCT, developed the
idea of exploratory talk [53], in which partners engage critically
but constructively with each other’s ideas. Exploratory talk is con-
trasted with disputational talk and cumulative talk [55]. Compared
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Figure 1: Framework for dialogue in education [16, p. 11]

with the other two types, exploratory talk involves knowledge be-
ing made more publicly accountable, with reasoning being more
visible in the talk.

Another approach is Nystrand et al.’s dialogically organised in-
struction [59] which sets out three teacher discourse moves fre-
quently used by dialogic teachers to organise instruction coherently:
uptake (incorporating student ideas into subsequent questions of
other students), authentic questioning (used to explore views not
test knowledge), and high-level evaluation (where the teacher in-
corporates the response into elaborative comments).

A third approach is dialogic teaching [1]. Dialogic teaching fo-
cuses on the use of discussion and dialogue in the classroom, influ-
enced by the work of Vygotsky and Bruner. Alexander proposes
that teachers should promote dialogue that is collective, reciprocal,
supportive, cumulative and purposeful [2], thus emphasizing both
the classroom as a dialogic environment and the teaching goal of
classroom talk.

Finally, a fourth approach to dialogue centres on accountability
[56], whereby students should engage in respectful and grounded
discussion, should listen to each other, and understand wait time
and turn-taking. Talk should be accountable to the community (re-
spectful), accountable to knowledge (domain-specific), and account-
able to accepted standards of reasoning (supporting explanation
and self-correction) [56].

Much empirical work has been conducted to validate these differ-
ent theoretical frameworks for dialogue in education (see Section
3). Recently, Cui and Teo compared the four models to consider
similarities and differences [16]. Accountability to the learning
community embraces ideas similar to the principles of collectiv-
ity and reciprocity in dialogic teaching, while accountability to
knowledge echoes the principles of cumulation and purposefulness.
Thus they assert that Accountable Talk [56] has much in common
with the five principles of dialogic teaching [1], and that Thinking
Together [31, 54] has much in common with dialogically organized
instruction [59] and dialogic teaching, because all emphasize the im-
portance of cultivating a dialogic classroom culture by highlighting
the role of ground rules.

Cui and Teo [16] developed a framework with which to consider
the field of dialogue in the classroom as a whole, as shown in Figure
1. We can interpret the proposed framework with reference to a
programming lesson. Teaching goals may be syntax, programming
vocabulary, concepts, constructs, etc. The dialogic environment is
the classroom context facilitated by the teacher from moment to
moment. Dialogue moves may be types of questions, explanations,
challenges, and corrections. In this paper we use the insights from

Cui and Teo’s analysis to develop our understanding of language
and talk in the programming classroom in particular. By doing this
we develop a new model for talk in the programming classroom by
focusing on language as one of the core ingredients of a program-
ming lesson situated in a sociocultural approach to learning.

3 RELATEDWORK
3.1 Dialogue and talk
3.1.1 Talk in computing education. In computing education, most
of the literature relating to language and communication as a vehi-
cle for learning centres on pair programming and peer instruction
[74], both privileging classroom talk and purposeful dialogue. Re-
search has shown that peer instruction positively impacts learning
outcomes [60, 87]. Pair programming has been shown to improve
program quality and confidence [7, 52], although in the school
context it may depend on the way that the collaborative work is
instantiated [45].

Tsan et al. [73] conducted a study of six pairs of fifth grade
students (ages 9–11) in the United States, on an elective program-
ming course. They examined students’ dialogue considering how
they balance dialogue, turn-taking and control when learning to
program. Their study revealed specific dialogue strategies used by
students such as ‘Let me help you’ or ‘Make Suggestion’ [73]. An-
other study which looked at interaction mechanisms in computing
students’ talk identified collaborative problem-solving, conversa-
tions expressing excitement, and more social conversations [33].

3.1.2 Dialogue in other discipline-based education research. Dia-
logic models were described as part of our theoretical framework.
Many empirical studies have been conducted to evaluate these, with
some examples given here.

To measure the impact of exploratory talk a series of research
projects were conducted under the banner of Thinking Together.
The research involved interventions that gave both teachers and
students new skills in using language for reasoning. In mathematics,
this was shown to enable them to use language more effectively as a
tool for working on maths problems together. One study involving
406 children and 14 teachers over a two-year period found that
improving the quality of children’s use of language for reasoning
together improved their learning and understanding of mathemat-
ics and that the teacher is an important model and guide for pupils’
use of language for reasoning [54]. Another study examined video
data from 72 demographically diverse classrooms, with pupils aged
10-11 studying mathematics, literacy and science. All classes in-
cluded productive teacher–student dialogue and this was measured
against outcomes including standardised UK student assessments
in literacy and mathematics. The study found that three aspects
of teacher-student dialogue strongly predicted pupil performance:
elaboration (building on contributions), querying (challenging a
contribution) and participation (where students engage with each
other’s ideas) [31]. In another recent large-scale randomised con-
trolled trial examining the impact of dialogue teaching [3], it was
found that focusing on meaningful dialogue had a positive impact
on primary school children’s attainment, engagement and over-
all learning. This study involved over 4000 9-10 year old pupils
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split between control and intervention groups in over 70 schools in
England.

In these studies a key element of the interventions was profes-
sional development for teachers in supporting quality dialogue in
the classroom, in order that children could develop the linguistic
tools needed to develop ’productive talk’ [17]. As Dawes outlines
in the context of science:

“The sort of language tools used in science, are, for ex-
ample, questioning, explaining, putting things clearly,
repeating or rephrasing, predicting, reasoning, evaluat-
ing, deciding. But the child’s linguistic toolkit may not
be so extensive or develop. In addition, children may be
completely unaware of the potential power of talk with
their peers.”[17, p. 684]

Children asked to work collaboratively or talk together with their
peers about a problem are often not sure what they are expected to
do [54] and are not able to bring to the task the necessary skills. In
the Thinking Together project studies described above, teachers in
the intervention groups were given training that helped them learn
strategies for facilitating productive talk. They were also provided
with lesson plans in the subject areas (mathematics or science) that
included the development of talk skills such as critical questioning,
sharing information and negotiating a decision [54].

3.1.3 Questioning. There is a substantial and decades-long liter-
ature on the topic of questioning that is beyond the scope of this
paper including, amongst other topics, how teachers ask open and
closed questions [29], the value of wait time before answers [14],
and demographic differences relating to who teachers ask which
questions to [85]. One area of questioning that has led to some
debate is the use of Initiation-Response-Feedback (IRF) style of
questions [70] to elicit answers from students where the answers
to the questions are already known. These types of questions have
been criticised for inhibiting classroom talk and the development
of ideas [17, 84]. However, IRF questions have their place, although
in the framework of the dialogic models we introduced in Section
2, the focus is more likely to be on open, exploratory questions.

In the studies described above, a central part of the analysis was
the questions used by the teachers, in particular the degree to which
teachers used ’why’ questions.

3.2 Vocabulary
Another aspect of language is the use of technical discipline-specific
language that helps students understand their subject.

3.2.1 Computing vocabulary. Diethelm and Goschler highlight the
lack of attention to computing-specific vocabulary [18] and consider
that specific items of computing vocabulary may be ambiguous
or have different meanings in everyday life from their scientific
meaning. They suggest a need for ameta-discourse around language
such that pupils in school can learn to distinguish between everyday
and scientific meanings of terms, and that teachers should be more
deliberate about vocabulary [19]. There is clearly scope for more
detailed investigation into how young learners acquire and use the
technical vocabulary in programming.

3.2.2 Vocabulary in other disciplines. There has been a consider-
able focus on the language of school science, and how students can

acquire and use it in the classroom, highly influenced by a much-
cited text by Lemke [43]. Lemke purports that students do not just
talk about science, but that they do science through the medium of
language, and that the acquisition of vocabulary and semantics is
essential to understanding. The language of any subject is not just
its special vocabulary, but also the semantic relations constructed
between the words as we use them [43]; thus understanding of
science and language go hand in hand [17, 50].

Vocabulary is also important in mathematics education: teachers
need support in understanding where elements of vocabulary cause
difficulty for students [62]. Leung [44] suggests that in mathematics
education there are three related processes involved in vocabulary
learning: learning formal and semantic features of words in different
contexts, learning the concepts associated with the words, and
incremental meaning-making as understanding develops. We can
relate this to programming education: using the example of the
term ‘iteration’ the school student may at first be introduced to the
word, then the concept through many examples, and then develop
their own understanding incrementally as they use the construct
in practical programming examples.

3.3 PRIMM for programming lessons
PRIMM [66] is an approach to structuring programming lesson.
Lessons (or sequences of lessons) are structured using the following
activities:

• Predict what code will do
• Run the code to test predictions
• Investigate the structure of code
• Modify the code to add functionality
• Make a new program using the same/modified structures.

A central element of the approach is that a piece of code is in
the ‘social plane’ initially as a shared artefact for discussion and
comprehension. The PRIMM lesson involves discussion between
teacher-class, teacher-student and student-student about a piece
of code, while unpacking its structure and function. The ‘investi-
gate’ element of the PRIMM structure relates to the Block Model
framework and how it frames program comprehension [34, 64]. The
Block Model highlights aspects of the program such as function of
the whole, structure of a block, execution of an atomic item within
the code, etc. and a PRIMM lesson includes questions and activities
that are designed to engage students in discussion about all aspects
of how the code works and is structured. The Modify-Make stages
of PRIMM are also similar to the Use-Modify-Create model [42],
although the earlier stages are quite different. In addition, PRIMM
focuses on reading and understanding code. Code comprehension
is already readily accepted in programming education literature,
including the importance of reading code and being able to trace
what it does before writing new code[46, 47]. Research has demon-
strated that novices require a 50% tracing code accuracy before they
can independently write code with confidence [47, 75].

PRIMM has been used in primary and secondary school class-
rooms, particularly in England, since 2018. Several studies have
investigated its impact, including amixed-methods study conducted
in 2018 involving around 500 students aged 11 to 14 [67]. In this
study, a quasi-experimental design was used to investigate the
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impact of a series of PRIMM-structured lessons on learner out-
comes. Teachers delivered programming lessons using the PRIMM
approach for 8 to 12 weeks. Data was collected via a combination
of a baseline test, a post test to compare control and experimental
groups, and teacher interviews. The results showed a statistically
significant difference in the score between the control and experi-
mental groups for all students favouring the experimental group.
Qualitative results highlighted that teachers particularly value the
collaborative approach taken in PRIMM, and the structure given
to the lessons [66]. Another study involving PRIMM illustrated its
use for games programming in higher education [40].

3.4 Summary and research question
We have seen that research in mathematics and science education
seems to demonstrate that if teachers and students are provided
with guidance and training in effective dialogue in the classroom,
there will be improvement in learning outcomes. Research into
discourse in school computing lessons is an emerging field, includ-
ing exploring talk in pair programming and vocabulary use more
generally.

PRIMM, as an approach in which programming is taught through
an apparently discourse rich series of activities, draws on the idea
of language as a mediator for learning, central to SCT. To explore
classroom talk a context needs to be selected. Given that there is
much still we need to understand about the teaching and learning
of programming the focus of this study is to explore the role of
classroom talk in the PRIMM context. This leads us to the following
research question: In what ways do teachers develop classroom talk
to support the learning of programming?

4 THE STUDY
A study was conducted to investigate teachers’ use of classroom
talk in programming lessons. Drawing on the literature described
above, the purpose was to explore the nature of classroom talk
in the programming classroom and develop a model representing
teachers’ experiences of classroom talk and programming that could
be evaluated and potentially used in the classroom and for future
research.

4.1 Methodology
Qualitative research was chosen for this study to provide the rich-
ness and detail needed to answer the research question [38]. To
ensure an interpretive approach to data collection and analysis, we
adopted hermeneutic phenomenological methodology. Phenomeno-
logical research seeks to reveal and describe ‘lived experiences’
and to achieve a deeper understanding of the meaning of expe-
rience, generating an in-depth and comprehensive description of
the phenomenon [57], and can be descriptive or interpretive; a
hermeneutic (interpretive) phenomenological approach involves
interpreting and making meaning out of participants’ lived expe-
riences. Hermeneutic phenomenology emerged from the work of
hermeneutic philosophers, including Heidegger, Gadamer, and Ri-
coeur, who argue for our embeddedness in the world of language
and social relationships, and the inescapable historicity of all un-
derstanding [20].

When using hermeneutic (interpretive) phenomenology as a
methodology, it is not just the analysis and interpretation of data
that draws on the phenomenological principles. The recruitment
of participants, sampling, data collection and interview structure
should also reflect an interpretive approach [22]. In terms of the
data analysis, reflexivity can help interpret the meanings discovered
[71]. Reflexivity involves intensive scrutiny about how something
is known and/or understood [32] and involves researchers being
conscious of and reflective of how their questions, methods and
subject position might impact the data [71].

With the goal of a true examination of shared experience, qual-
itative data analysis remains as close to the data as possible and
focuses on what participants say and how they say it [61]. Themes
can be viewed as written interpretations of lived experience [71].
Identifying themes is an iterative and recursive process and starts
with the researcher’s engagement with the data during data collec-
tion and the early stages of reading and re-reading the data.

4.2 Participants
Hermeneutic phenomenological research necessitates a homoge-
nous group of individuals; participants should demonstrate expe-
rience of the same phenomenon [15] but be diverse enough to
enhance possibilities of “rich and unique stories” [39, p. 29]. For
this reason, purposeful sampling was employed, given our respon-
sibility to select participants who had an important and meaningful
experience of the phenomenon [86]. We focused our purposive
sampling on teachers who had used PRIMM. Participants were
recruited through email and social media.

4.3 Data collection
An interview schedule was designed as shown in Table 2, which
focused on open questions around the teachers’ experiences of in-
teractions and talk in the programming classroom. Interviews were
held online and scheduled over two weeks in 2020; each interview
lasted 30-45 minutes. Interviews were audio-recorded before being
professionally transcribed. Participants were given the opportu-
nity to check their transcripts for accuracy and add any further
reflections, and the data was then carefully anonymised.

4.4 Data analysis
Reflexive thematic analysis is a theoretically-flexible data analysis
approach which involves searching across a data set to find re-
peated patterns of meaning [8], and is an appropriate guide for data
analysis for phenomenological researchers. It involves prolonged
engagement with the data, including reflexive journalling by the
researcher [58], using detailed notes and memos during the entire
process. Reflexive thematic analysis procedures centre on organic
and recursive coding processes, and the importance of deep reflec-
tion on and engagement with data [9]. The process we used for data
analysis is shown in Figure 2, primarily aligned to that described
in [58], and incorporating multiple stages of interpretation [39].

The qualitative data analysis (QDA) software NVivo was used
to work with the data, and both authors were involved in the anal-
ysis of the data. The first author conducted the interviews, wrote
detailed memos and carried out detailed coding of each interview,
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Table 1: Experience and characteristics of study participants

Phase
Teaching Experience 12 years or more 4 - 11 years Up to 3 years
PRIMM experience <= 1 year >1 year <= 1 year >1 year <= 1 year >1 year

Gender

Primary Male
Teacher L
Teacher N
Teacher Q

Female

Secondary
Male

Teacher B Teacher G Teacher D Teacher A Teacher I
Teacher E Teacher H Teacher K Teacher P Teacher O
Teacher M Teacher R Teacher T
Teacher S

Female Teacher C
Teacher J Teacher F

Interview questions

General background
Experience of teaching
Experience of teaching programming
Experience of teaching PRIMM

Talk-related questions

Types of talk that take place in programming lessons?
Prompt if needed: experience of any of the following
- Teacher talks to whole group (instructions, explanations)
- Teacher asks questions (individual, group)
- Students/pupils ask questions (of teacher, of each other)
- Students/pupils talk to each other
Talk differences in lessons structured/not structured with PRIMM
Difficulties students/pupils have in talking about programming
Role in fostering discussion amongst your students

Open comment Any other comments
Table 2: Themes of interview questions

Figure 2: The data analysis process

capturing and labelling the comments that represented lived ex-
periences [22] of the use of language and talk in the context of
programming lessons, and other opinions and reflections of the
teachers. The second author followed through these processes, be-
coming familiar with the data through reading and re-reading, and
carried out independent coding.

The thematic map [10] was developed by both authors as a
composite summary of all the interviews and was a precursor to
the development of specific themes that captured the contributions

being made through the interviews. Developing the thematic map
involved reviewing, combining and recombining descriptive codes,
and was discursive and iterative. Interpretation and discussion
is the key aspect of a phenomenological analysis: consensus and
agreement are not reported in this approach [51].

After summarising the interviews, the thematic map was cate-
gorised into domains of interest (general topics) and those domains
that were pertinent to the research question were identified as
primary themes for further synthesis. A theme is understood as
a set of experiences that many teachers referred to in the inter-
views, whereas a domain of interest refers to the general topic that
teachers talked to, guided in part by the interview structure. A
jointly-conducted iterative process continued to develop the sub-
themes to further guide the analysis and discussion. A sub-theme
enables the analysis to be more finely grained, but not all teachers
may refer to each sub-theme. The process used was to “move in
and out of the detail iteratively” [22, p.10] through re-reading and
discussion amongst the researchers.
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4.5 Validity and credibility
Interpretive research is not driven by an absolute definition of real-
ity in the way that more positivist and quantitative approaches to
qualitative research are [65]. The validity of interpretive research
can be seen as the extent to which the constructions of the re-
searcher are grounded in the constructions of those being studied
[21]. To address validity of the data analysis process we used Guba
and Lincoln’s notion of trustworthiness [28], as expanded on more
recently by Shenton [69]. Trustworthiness is now widely accepted
as a way of ensuring validity and reliability in qualitative data
analysis [61]. The four elements of trustworthiness are credibil-
ity, transferability, dependability and confirmability, which align
respectively to internal validity, external validity, reliability and
objectivity in quantitative research [27]. We attended to credibility
following Shenton’s criteria, by using established research methods,
by ensuring we were completely familiar with the context of the
participating teachers, developing a relationship with the partic-
ipants that would support integrity and honesty in their reports,
by focusing on their lived experiences rather than opinions, and
by using field notes memos within the QDA software as a reflec-
tive commentary [69]. Transferability is achieved in part by thick
descriptions, and contextual information about the participants.
Following Shenton [69], we have provided some information about
the participants in terms of their background and have detailed the
process of data collection. However, more detail of each particpant’s
context is prohibited due to the number of teachers involved in the
study. For dependability and confirmability, we have reported the
decisions made in our study in as much detail as space provides,
and used the iterative interpretive process to examine our own
biases and ensure the analysis reflects the lived experiences of each
participant.

4.6 Ethical considerations
Ethical procedures outlined in [11] were followed; participants
gave consent to the use of their data for specific purposes and full
information was given. After transcription, participants were able
to check their interview transcripts.

5 FINDINGS
The thematic mapwas developed as part of the data analysis process
(see Figure 2) and is shown in Figure 3. From this we can see that
teachers discussed a range of different aspects of interaction and
talk in their classrooms.

5.1 Identification of themes
After the conclusion of the process described in Section 4.4, nine
themes were identified across the data as a whole:

• Student difficulties and differences when learning to program
• Using writing and annotating to learn to program
• How programming talk occurs in the classroom
• How questions are used in the classroom
• Why students’ verbal explanations about the code are im-
portant and how they are encouraged

• Why students’ use of correct programming vocabulary mat-
ters and how it is encouraged

• How PRIMM effects talk or about PRIMM in general

Figure 3: Thematic Map

• How PRIMM had impacted teachers’ learning
• Emotional responses about talk and PRIMM in general

These themes were then categorised within three overarching do-
mains of interest: programming in general, PRIMM in general, and
classroom talk for programming. This categorisation is shown in
Figure 3 via the vertical parallel lines. As our domain of interest is
classroom talk for programming the four themes fully within this
scope were selected for analysis:

• Theme 1: How programming talk occurs in the classroom
• Theme 2: How questions are used in the classroom
• Theme 3: Why students’ verbal explanations about the code
are important and how they are encouraged

• Theme 4: Why students’ use of correct programming vocab-
ulary matters and how it is encouraged

From these themes we see that encouragement around language
was very pertinent to teachers’ experiences. Sub-themes were iden-
tified and are shown, along with relevant cases in Table 3. Each
theme will be discussed in turn, and for each sub-theme, we identify
common attributes and outliers where applicable.

5.2 Theme 1: How programming talk occurs in
the classroom

In describing how talk was encouraged in the classroom, three
sub-themes emerged:

• What the example program contributes
• What the teacher contributes
• What student-student interaction contributes

These sub-themes often overlapped, for example, when teachers
referenced their dialogue with students about the program. The sig-
nificance of the example or starter program (an aspect of a PRIMM
lesson) was vital for many teachers.

Teachers repeatedly mentioned students referring to the shared
example program when they were talking in computing classes.
They commented on how having tasks around a program, rather
than starting with a blank screen, resulted in greater focus and
high-quality talk. One teacher experienced that this would keep
students ‘on task’:

“ [the talk] is more focused because they’re already into
the task and it avoids that situation of the student going,
I just can’t do this, I’m going to talk to my mate about



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICER 2021, August 16–19, 2021, Virtual Event, USA Sue Sentance and Jane Waite

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Themes, sub-themes, and occurrences

Theme Sub-theme Teachers

Theme 1: How programming a) What the example program contributes All except H
talk occurs in the b) What the teacher contributes B-E, G-T
classroom setting c) What student-student interaction contributes B-G,I,J,L,N-P,R-T
Theme 2: How a) How questions relate to the example program B,C,F,L,N,P-S
questions are used and activities
in the classroom b) Questions generated by the teachers M,O,P,R,S,T

c) Questions generated by students C,F,G,I,M-O,R
Theme 3:Why students’ a) Explanations centred around program code A-J,Q,S,T
verbal explanations about the b) Teachers’ explanations A,B,F,I,L,R,T
program code are important c) Students’ explanations A-G,I,J,P,Q,R,T
and how encouraged
Theme 4:Why students’ a) Vocabulary to pass examinations C,E-H,P,R,S,T
use of correct b) Vocabulary to support accurate mental model G-J,L,N,O,P,S,T
programming vocabulary c) Vocabulary-specific activities B,J,L,O,P,S,T
matters and how encouraged d) Teacher modelling vocabulary use A,E,F,H-N,Q-T

e) Students using programming vocabulary A-G,I,K,L,M,N,Q-T

the footy and stuff because there’s no point.” (Teacher
M) (Theme 1 sub-theme a)

Another teacher, fairly new to teaching, talked about how having
example code led to discussion that had more depth:

“... the level of discussion I’m having is much deeper.
Where kids don’t seem to be as concerned with. . . there
might still be some syntactical errors, which is fine, that
they’re dealing with, but it’s not just about how to get
something basic running; it is a little bit that. They’re
going a lot deeper.” (Teacher O) (Theme 1 sub-theme
a)

Teachers often mentioned their role in classroom talk, including
leading whole class discussions, instigating one to one or small
group discussions and responding to pupils’ requests to talk about
the code or an activity. A change in the type of talk was highlighted,
such as becoming more of a facilitator by using structured activities.
This was exemplified by a teacher in the context of a point he was
making about the Run phase of PRIMM:

“So there’s definitely more student talk than teacher talk
at that point, and then I’ve become more of a facilitator,
and I’m just going round with different students and
just pointing bits out to them where they’ve got a bit
confused and misconceptions.” (Teacher N) (Theme 1
sub-theme b)

In talking about lessons, teachers described the protocols, patterns,
and atmosphere of talk and how they fostered this to promote talk :

“I’m asking the question to the whole room, and I’m
doing no hands up, and I’m doing cold call. I’m doing
more think-pair-share and partner talk.” (Teacher B)
(Theme 1 sub-theme b)

Teachers highlighted the importance of encouraging peer discus-
sions. Teachers talked about peer talk creating opportunities for
students to learn by talking to each other, to help each other solve

problems, and how talk revealed student’s understanding, making
it visible to teachers.

With all themes there are commonalities across the data set with
occasional ‘unique voices’ [25, p.51]. For example, a teacher also
mentioned his view that for some students talk was a distraction:

“Some children are much more verbal than others, and
so they think out loud whereas some children . . .would
just get distracted by that, and they just need to almost
tinker with the code, for want of a better word, to inves-
tigate it, but it needs to be guided.” (Teacher N) (Theme
1 sub-theme c)

Phenomenological research involves zooming in and out of the de-
tail [22] and although space does not permit an in-depth reporting
of our analysis for each teacher, we can present some extracts from
one teacher in particular across this theme, to examine how his
wider experience impacted on how he used language in his teach-
ing. To do this, we consider Teacher R, a highly experienced male
teacher. He trained as a science teacher, then also taught ICT (Infor-
mation and Communications Technology); he has learned to teach
computing since it was introduced into the school curriculum in
2014. Teacher R describes his emphasis on whole-class explanation:

“I need to explain everything about what’s going on.
So, yes, I would probably explain quite a lot. That’s my
teaching style. Coming from a science background, I
would explain things anyway.... The pupils would there-
fore talk less” (Teacher R) (Theme 1 sub-theme b)

There is some repetition of the word ‘explain’ in this extract: it is
mentioned three times. The teacher is keen to emphasise that doing
this is important to him and that it is his own style of teaching, and
he expects the pupils to talk less at this stage of the lesson. He leans
on his experience of science to justify his teacher-led approach, as
if this is not common in computing lessons (from the teachers we
interviewed it varies). However he reflects that he subsequently
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moves on to programming activities where he expects students to
talk to each other, to help each other out, and talk about their work.
Here he lists a number of questions that may take place at this stage
in the lesson:

“Then when they’re going with their programming,
what they would do is they would probably talk to each
other more if they come across problems, or they’ll talk
to me, and I would be asking them questions like ‘Why
does it not work?’, ‘What can you spot?’, ‘How is this
different to the example that you’ve got?’ . . . ‘Why does
that example work and yours doesn’t?’ ” (Teacher R)
(Theme 1 sub-theme c)

The teacher is providing the opportunity for the students to talk
to each other about their code, and is available to have one-to-one
dialogues about the code. However the questioning seems to be
focused on syntax, with the notion of a ‘problem’ being solved when
a difference in syntax between a student’s code and an example is
identified. This teacher then asks students to write explanations of
what their code does in their exercise books. The teacher does use
talk in the lesson, but also values writing to consolidate knowledge.
Teacher R then reflects on listening to students’ talk at different
points in the lesson:

“. . . yes, you listen. So, ‘what isn’t working? What is
working?’ . . . if you’re talking through a specific problem
with a particular student, then obviously listening is
important, because otherwise you can’t pick up on what
they’re thinking.” (Teacher R) (Theme 1 sub-theme b)

Teacher R differs from several of the other teachers in his focus
on teacher-led explanations. Here he reflects on the fact that the
researcher has raised the topic of listening, which he says later is
‘making him think’, so the interaction between the researcher and
teacher has stimulated a line of thought that may not necessarily
have otherwise arisen in his account of his experience. Many of the
teachers mentioned through the interview that they were reflecting
on their practice during the interview.

5.3 Theme 2: How questions are used in the
classroom

Teachers mentioned questions as an essential aspect of talk in
their classrooms. Comments in this theme clustered into three sub-
themes:

• How questions related to the example program and activities
• Questions generated by the teacher
• Questions generated by students

Again, these three sub-themes often overlapped, for example, the
teacher asking pupils about the example program or the teacher
reflecting on the way students asked each other questions about
the activity at hand.

Teachers talked about the the shared example program that had
been created specifically to teach about the lesson topic and how
this framed and led questions, enabling them to ask whole-class,
small group and individual student questions on the same topic.
For example, Teacher B described how he asked the whole class
a question about the shared code, requiring students to talk to
their partner. He would then take responses from the whole class,

followed by probing questions for specific learners, such as asking
what a particular command would do in the example or asking
learners to identify an instance of a programming construct.

While some questions the teachers described were intended to
prompt technical vocabulary use or predictions of what example
code might do when run, others were used to prompt deeper think-
ing, asking why the program did something or asking students to
compare or evaluate code. Here a primary teacher uses the starter
code as a focus for questioning:

“. . . and then I’d say, well, why do you think that’s hap-
pening? Where in the code do you think that it’s do-
ing this? Then if they couldn’t see it, we’d maybe step
through it together. ” (Teacher L) (Theme 2 sub-theme
a)

One teacher explained that he sometimes started with a closed
question and moved to open questions that stretched learners:

“What line number do you first see a variable on? And
it’s the type of thing that anyone can just have a guess
at, even if they don’t know. And then we go to more
open-ended ones.” (Teacher P) (Theme 2 sub-theme b)

Other than talking about open and closed questions, teachers did
not categorise their questions. One very experienced teacher, M,
discussed the difficulty he had with asking good questions.

A secondary teacher was surprised to hear students re-using her
questions as they talked to each other:

“I could almost hear myself in their voices . . . I would
hear - But why does that work?Why is yours better than
mine? How can I make mine look yours and still make
it work? Yours looks more efficient, explain to me why
it’s more efficient.” (Teacher C) (Theme 2 sub-theme c)

Several teachers commented that students used ‘deeper’ questions
due to the example program. Several teachers described that the
PRIMM teaching approach elicited more advanced questioning
between teacher and pupil:

“. . . students ask questions, they are also asking at a
deeper level too. They seem to jump straight into a more
advanced topic right away. There are still a few people
who get confused by some of the syntax and some of
the basics, but there’s less of that. ”(Teacher O) (Theme
2 sub-theme c)

5.4 Theme 3: Why students’ verbal
explanations about the code are important
and how they are encouraged

Using explanations is not unexpected in terms of teachers’ descrip-
tion of talk in the programming classroom. The three sub-themes
identified within the area of explanations were:

• Explanations centred around the program code
• Teachers’ explanations
• Students’ explanations

There were overlaps between the three sub-themes, for example
where the code supported a student explanation. To exemplify this,
several teachers talked about students’ explanations about code
facilitating learning, generating a ‘ah ha moment’:
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“ Most of the time they’re articulating what’s going on
or what they think is going on. Then they would go,
ah, I see, yes, right. And they would figure it out for
themselves.” (Teacher D) (Theme 3 sub-theme a)

Teachers reported that their experience of teaching programming
had led them to routinely encourage student explanations to fos-
ter understanding. Student explanations could be focused on the
example code or their own programs, for example:

“I start to approach them and suddenly they look at
their screen again as if they’re ready to explain it to
me and then they’re like, ah, I know what it is . . . It’s
getting that cognitive discourse going in your head. I
think that’s really important.” (Teacher E) (Theme 3
sub-theme a)

Some teachers reported that their explaining to the whole class was
central to their teaching style, as we saw in Theme 1. This contrasts
with other teachers who reported that PRIMM activities around
sample code meant that their need to explain to the whole class
was much less. One of the primary teachers found this to be quite
a stark change in his behaviour:

“I very much find that I’m talking for the first five
minutes, maybe ten, and then it’s very much over to
the pupils working individually. So most of the rest of
the lesson would be them talking unless we come across
something that we’d need to talk about together. So I
go around the room at that point. I’m asking questions.”
(Teacher L) (Theme 3 sub-theme b)

As well as whole class explanations, teachers mentioned asking
specific students to explain their programs. Sometimes these ex-
planations required students to say what each line of the program
would do, dry-running the code. Several teachers mentioned that
students, even their older, more experienced students, found walk-
ing through and explaining their programs hard. However, they
found that students explaining to each other what they did under-
stand was important:

“ So they can code it, but they’re not particularly good at
explaining and that challenges them a bit. It’s quite nice
to see them talking at the middle layer of students, as it
were, talking to those, going, we haven’t written much
there, and I thought about this.” (Teacher I) (Theme 3
sub-theme c)

Teachers also mentioned students found summarising the algorithm
or flow of control of a program challenging. One teacher recounted
how he gave students a small whiteboard and he asked them to
draw their explanation:

“I say, just doodle what’s in your head. Just dump it
down there. Do arrows like a mind map or mind bubble,
whatever you want to call them, and then just draw the
links between them.” (Teacher A) (Theme 3 sub-theme
c)

Teachers highlighted that not all students had the confidence or
inclination to explain their understanding. Teacher P reflected that
he had not yet built up confidence in his class to an extent where
they would explain their programs to each other independently in
pairs, but it was happening in the whole class. Another teacher’s

experience was that once his students have their code working, he
noticed a tendency for students to explain less verbally, instead
switching to writing explanations.

5.5 Theme 4: Why students’ use of correct
programming vocabulary matters and how
it is encouraged

The final theme relates to the technical vocabulary that is asso-
ciated with programming. This might be conceptual terms such
as assignment, iteration, or selection, or words relating to syntax,
such as if, for, or the names of blocks in a block-based language.
Throughout our discussion with teachers on classroom talk, they
mentioned using the ‘correct’ or ‘right’ programming vocabulary
and terms. These comments were grouped into the following five
sub-themes:

• Vocabulary to pass examinations
• Vocabulary to support accurate mental model
• Vocabulary-specific activities
• Teachers modelling vocabulary use
• Students using programming vocabulary

The ‘correct’ vocabulary for teaching programming to students at
different stages of learning to program is not the focus of this study
and requires further investigation. However, teachers believe in the
existence of ‘correct’ vocabulary and that it should be known and
used by students.

Some teachers stated that students needed to know the ‘correct’
vocabulary to pass exams. Teachers also mentioned that students
needed to know and use the ‘right’ terms. Teachers mentioned the
need for a common language for learning and sharing understand-
ing:

“. . . that’s about getting them to understand that these
technical terms are important because obviously it helps
them understand, and it helps them explain themselves
to other people.” (Teacher S) (Theme 4 sub-theme a)

Building a mental model of concepts was mentioned by teachers:
“ . . .Which is why we try and give them a language
because the language helps them to express themselves
better when they’re talking about it. And also it helps
them I think to have a mental model of what that is, if
you give it a name. ” (Teacher J) (Theme 4 sub-theme
b)

Here the teacher explicitly highlights that the terminology en-
ables the learners to express themselves more clearly. This does
contrast with some other teachers who were focused on correctness
as a learning goal, or for examinations. To help learners acquire
an understanding of the ‘right’ terms, teachers talked about using
vocabulary specific tasks, or ‘keyword activities’, for example:

“‘I liked what Dylan was saying in his answer and the
way he used keywords. Alisa, can you tell me which
keywords you think I really liked?”’ (Teacher B) (Theme
4 sub-theme c)

Another teacher, P, had created a whole bank of keyword games
including identifying keywords and writing programs that use spe-
cific keywords. Other teachers mentioned using classroom displays
to support students learning vocabulary.
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Several teachers said they modelled programming terminology
to reinforce what the terms meant and to encourage students to use
it in class. Several teachers described banning words such as thing
and it. One teacher described his perspective using a classroom
example:

“I’m quite a stickler for the correct terminology . . . because
when I hear something like, ‘oh, yes, and then something
happens’ . . . I will frequently make that into a plenary
activity. I’m like, right, so [Student Name] has said this
word. What did she mean? Oh, she meant iteration.
Great. So, I’m not going to stop them in their tracks
to go, you need to speak like this, but I will positively
reinforce using the technical terminology in that lesson.”
(Teacher K) (Theme 4 sub-theme d)

The same teacher, representative of others, reflected that his experi-
ence is that students need time to gradually learn to use the terms
correctly:

“It is just slow and gentle encouragement because they
are learning a new language. They are learning a whole
group of new syntax. It is gentle encouragement that’s
needed, but I do feel they do need to use the correct ter-
minology eventually . . .And when it comes to the exams,
we need them to be as clear as possible in the larger
writing questions, and that clarity is gained through
having a larger vocabulary.” (Teacher K) (Theme 4
sub-theme a)

As well as using the ‘correct’ vocabulary in examinations and with
their teachers to develop and explain their understanding, teachers
described the terminology that students used to talk to each other:

“ . . . at the very start you wouldn’t hear any of that
correct vocabulary . It’s like a foreign language, really,
for them. Because they’ve never really come across it
before, and it’s not necessarily how you talk either.”
(Teacher D) (Theme 4 sub-theme e)

Not all teachers said that they always required the right vocabulary,
with one teacher describing his reaction to students using non-
standard vocabulary:

“Even though I will overhear them [using incorrect vo-
cabulary], I wouldn’t stop them. I’d rather they just
explain it in their own words rather than get too forced
into the right terminology.” (Teacher I) (Theme 4 sub-
theme e)

5.6 Summary of findings
The themes identified and illustrated above reveal insights into
how computing teachers talk about talk. The first theme, around
the tools that teachers use to encourage talk in the classroom high-
lighted shared program code as a contributor. The second theme
highlighted types of questions and the way they were used to en-
courage not only dialogue and discussion, but at a deeper or more
advanced level. The third theme we found highlighted the explana-
tions that students use, and the fourth theme focused on technical
vocabulary, whether precision of terminology was important to
teachers, and why.

For each of the first three themes, the three sub-themes relate to
the language focus, the teacher’s experience and the student’s ex-
perience. At the point of analysis we could have developed themes
along these lines, but our decision to highlight themes on the basis
of types of language: talk in general, questions, explanations and
vocabulary/terminology made it easier to reflect the different expe-
riences teachers reported. The fourth theme on vocabulary actually
links all the themes, as teachers were very keen to express how
important ‘correct’ programming terminology was, although they
had different reasons for doing so, as indicated by the sub-themes.

6 DISCUSSION
The interviews provide a rich story of teachers’ experience in the
programming classroom with pupils of various ages. In this section
we review and interpret the findings with relation to the research
question ‘In what ways do teachers develop classroom talk to sup-
port the learning of programming?’ through the development of a
model to represent the themes we have identified in the data. We
then abstract some of the generic elements of this data-generated
model to produce a potentially useful framework to view the role
of classroom talk in programming lessons.

6.1 Developing a model

Figure 4: Talk in the programming classroom - data driven
model

Figure 4 shows a model which incorporates Cui and Teo’s di-
alogic education framework as shown in Figure 1 [16]’, and its
relationship to the themes we have been exploring. Cui and Teo
identified dialogic environment, dialogic moves and teaching goals
as inputs to classroom talk. Given that the current study explored
language and talk in the context of PRIMM lessons, we have also
represented elements of PRIMM as a context in the model. We use
this model to further interpret the themes highlighted in Section 5.

6.2 Instantiating the model
In Theme 1, How programming talk occurs in the classroom
setting, teachers painted a picture of the roles and norms set up
by teachers to facilitate talk. We mapped this theme to the dia-
logic environment. The environment, or atmosphere of a setting,
are those established expectations, relationships and behaviour
patterns that encourage and support talk helping it flourish [16].
Teachers also highlight the time and effort needed to create rou-
tines which establish patterns of talk, in order to create a dialogic
environment.
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The effort needed to develop a dialogic classroom culture is a
known issue with time and processes needed to establish or change
routines and expectations and the underpinning teacher-student,
student-student relationships [1, 16].

PRIMM afforded teachers and students a predictable activity
structure that directed talk about the example code during the Pre-
dict, Run, Investigate and Modify phases. The activity and example
code acted as a mediator for learning [81]. To represent the role
of these mediating tools in the dialogic classroom, we have added
PRIMM as a context and the activity structure and example code to
our emerging data-driven model as shown Figure 4.

We have mapped Themes 2 and 3 to dialogic moves in the pro-
posed model. For Cui and Teo, dialogic moves represent the con-
vergence of the discourse models they synthesised with respect to
“classroom talk strategies” [16, p.12] including:

• eliciting a contribution such as through authentic question-
ing

• extending dialogue by asking learners to explain through
elaboration or substantiation

• connecting links between participants and their contribu-
tions

• challenging participants to clarify and deepen thinking
• critiquing through critical evaluation of each others’ contri-
butions

In Theme 2,Howquestions are used in the programming class-
room, teachers reflect on how they use questions to elicit dia-
logue. In Theme 3, Why students’ verbal explanations about
the code are important and how they are encouraged, teach-
ers describe other moves that they make to encourage students to
articulate their understanding of a program by explaining how it
works. Our study clearly shows that the teachers reporting their
classroom experiences are using talk strategies to support students’
learning of programming concepts, constructs, syntactic elements
and problem solving skills. We saw some evidence of elaboration,
where teachers or peers invite or provide elaboration on a previous
contribution. Elaboration is one of the aspects of teacher-student
dialogue found to strongly predict performance in assessments [31],
as was querying, which we saw in our data, where teachers reported
that their students were asking increasingly in-depth questions of
each other about their code.

However, some teachers are more restricted to question types
which have been criticised as closing down talk, such as Initiation-
Response-Feedback (IRF) style of questions [17, 84], where the
teacher already knows the answer, for example, asking where a
variable is in the code.

Compared to the dialogue-trained teachers participating in the
Thinking Together research and other studies in mathematics and
science education focusing on classroom dialogue [31, 54], the
teachers in this study do not seem consciously familiar with the
breadth of dialogic techniques that they could use. This aligns to
previous work in mathematics:

“There are good reasons to expect that children studying
maths would benefit from teacher guidance in two main
ways. First and most obviously, they need to be helped
to gain relevant knowledge of mathematical operations,

procedures, terms and concepts. Teachers commonly ex-
pect to provide this kind of guidance. Secondly, they
need to be helped to learn how to use language to work
effectively together: to jointly enquire, reason, and con-
sider information, to share and negotiate their ideas,
and to make joint decisions. This kind of guidance is
not usually offered.” [54, p. 410]

Some teachers in our study clearly have not reflected on classroom
talk before, although they comment on how the conversation with
the researcher is causing them to reflect on language more.

There is evidence (for example, [3, 54]) that when teachers are
able to model and guide students in dialogic strategies that chil-
dren use dialogue more effectively, reason better, and have better
learning outcomes. Despite the teachers’ lack of experience in dia-
logic techniques, we do see that the teachers see themselves as a
model and a guide [54]. Several teachers talked about themselves
as ‘facilitators’.

Studies as part of the dialogic education research described in
Section 3 included training teachers and students to use different
ways of deepening a dialogue to enable more reasoning. This would
be a useful next step for programming education, as using dialogue
to reason about a program could be a transformational tool for the
classroom.

We mapped Theme 4 to Teaching Goals where the goals are
used during lesson planning and as the lesson unfolds to drive
the dialogue to be purposeful for a particular subject, according to
the learners needs and interests [16]. In Theme 4, Why it is im-
portant for students to use correct programming vocabulary
and how this is encouraged, it was clear that teachers were in-
sistent on ‘correct’ vocabulary use as a teaching goal. This included
both explicitly teaching terms through to modelling them.

What we do not know from the teachers’ reflections is what
those terms mean to the students. Other research has discussed
the difference between everyday meanings of words and technical
terms [17, 19] and that this can cause confusion. Some teachers
referenced literacy difficulties that their students had and how the
acquisition of programming terminology could help that. Beyond
the programming aspect of computing, it seems clear that children’s
development of conceptual language in computing is an important
area that could unlock some useful insights into our understanding
of the learning process, as researched in other subjects [50].

6.3 The shared artefact as a mediator
Across all four themes emerging from the interviews was the contri-
bution of the shared programs. PRIMM promotes the use of starter
code as a focus for a series of activities, such as predicting what
code will do and a range of other code comprehension exercises.
Students are encouraged to develop understanding of how a piece
of code works before starting to modify it and eventually build their
own. The teaching goals for the lesson are focused around a pro-
gram that exemplifies the underpinning concepts being introduced,
and a discussion that includes explaining out loud how programs
might work and supporting students to develop a ‘language’ to
do this. There is already evidence that teachers find this approach
useful [66].
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PRIMM provides a particular context where the lesson follows a
structure with a range of activities and exercises around example
and student’s own code, and Figure 4 shows how the PRIMMcontext
encourages classroom talk around a shared artefact. Emerging from
theme 1 was the idea that the shared program code gave a context
for discussion that enhanced both the quantity of articulation and
the depth or quality of the discussion about the code. This was
also apparent in the second theme, where the shared example code
from the Predict and Investigate stages of PRIMM was described
by teachers as the source of many different types of questions and
explanations.

We have seen that sociocultural theory emphasises the impor-
tance of tools. Language is one tool, as is the teacher (MKO), but
also resources and examples provide a mediator for learning [81].
Furthermore the shared example code is not owned by the student,
but in the ‘social plane’ [80], so there it can be a conduit for talk
without being personalised. Therefore, in the context of a program-
ming classroom, the shared activity and shared code are social tools
which are mediating the learning and the discourse.

6.4 Generalising and evaluating the model
We have noted that teachers report that students do not find it easy
to explain how a program works, or to use a range of linguistic
tools to verbalise their reasoning. Programming teachers are not
generally trained to facilitate productive dialogue in our experi-
ence. Furthermore many teachers in our study reported delivering
whole-class explanations rather than focusing on the ways in which
learners could improve their own explanations, despite the fact that
student-student dialogue is a focus of PRIMM, in which context
this study was set. In any programming lesson, not just those using
the PRIMM structure, the research on dialogue in mathematics
and science suggests that it would be useful to focus professional
development on dialogue moves around the explanations of pro-
grams and how teachers can facilitate their students developing
their linguistic skills in this area.

All subjects have a degree of ‘disciplinary literacy’ in that there
are technical terms that enable students to create a shared under-
standing when discussing the subject with each other; being able
to effectively use these can support the development of a mental
model of particular concepts. Again, this is a language focus that
is not specific to a PRIMM-style lesson but there is much for us to
understand around the introduction of technical vocabulary and
the associated learning goals. Several teachers in our study were
focused primarily on the fact that some terminology was ‘correct’
and for that reason it should be encouraged, rather than associating
the use of programming terminology with a growing understanding
of programming itself.

Having developed a model which represents the interpreted
data aligned to the theoretical framework and context in which the
study is situated, we are thus proposing a generic model for broader
contexts, as presented in Figure 5. The generic model highlights
two areas where we feel more research is needed, which relate to
our understanding of the dialogic environment and appropriate
dialogic moves for programming lessons. The PRIMM context is
now removed, as any programming lesson with a dialogic focus
could draw on this model.

Figure 5: Talk in the programming classroom - generic
model

This generic model includes different elements of a programming
lesson and the ways in which dialogue can enhance classroom talk.
Further studies would clearly be needed to validate the proposed
model. One approach would be to replicate or adapt some of the
studies conducted in other disciplines around dialogic teaching and
education. Another angle to the research could be to focus on how
the use of programming terminology links to more productive talk
and evidence of learning.

6.5 Reflections and limitations
As researchers utilising a hermeneutic phenomenological method-
ology within this exploratory study, which requires a considerable
amount of reflexivity and self-reflection, it is valuable to reflect
on our own experience and learning. In contrast to approaches to
qualitative research that require a degree of quantitative analysis
around coding, we were careful to pay most attention to teacher
reflections that really reflected their lived experience, rather than
opinions and views. We were conscious of our own experience and
what we brought to the interpretation whilst conducting a level of
‘bracketing’ [39] to ensure that it did not interfere with the analysis.

The limitations of this approach in this study was that the num-
ber of participants (20) was quite high for an interpretive phe-
nomenological study, generating a lot of data which we could have
explored in much depth. For example, we did not draw on some of
the teaching history and personal experiences of the teachers that
we recorded in analysing the extracts as much as we could have. In
presenting the themes, we sacrificed some depth to demonstrate the
commonality of the themes across the data, because as researchers
who also share classroom experience, we felt these elements of the
teachers’ experiences were important to draw out.

Hermeneutic phenomenological methodology is not common in
computing education research (although it is in other fields such
as general education and nursing research [4, 23]), and it would be
interesting to see other studies in computing education discuss this
trade-off while utilising this methodology.

7 CONCLUSION AND FURTHERWORK
In this paper we have described a qualitative exploratory study into
teachers’ perspectives around the language and talk they use in the
programming classroom. We used hermeneutic phenomenology as
the methodology and drew on sociocultural theory and dialogic
models to support our interpretation of teachers’ reported lived
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experiences. 20 teachers who teach programming in primary or
secondary schools using the PRIMM approach were interviewed
for the study.

The findings in this paper suggest that teachers are very aware
of the need for key programming terminology to give pupils a
language to talk about their programs. Teachers describe the impor-
tance of the starter or example code (as used in PRIMM lessons) in
providing a focus for dialogue, questions and explanations. Teach-
ers describe different ways in which they encourage talk in their
classroom, and see themselves as a guide and a model [54]. Student-
student interaction is seen as important to learning but some teach-
ers reflect that they do not encourage this as much as they think
they should or could.

Through synthesis of our interpretation of teacher experiences
of discourse in their programming lessons with dialogic theoreti-
cal frameworks we have developed a generic model to frame the
way context specific shared artefacts such as starter/ example code,
students’ own code and activity structure can provide a focus for
different types of classroom talk. We suggest two specific areas of
further work. Firstly, to evaluate the proposed generic model by de-
veloping and evaluating a dialogic techniques for the programming
classroom intervention. Such an intervention should build upon dia-
logic research in other subjects, such as in mathematics and science
education. Secondly, to explore what the ‘correct’ vocabulary is for
the learning of programming, how it might be effectively taught
and what the impact is of the learning of programming ‘vocabulary’
on the development of conceptual understanding.
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