

Young children's ScratchJr project scores and processes across a 12-week coding curriculum

Apittha Aim Unahalekhaka July 18, 2023

- Study 1: Development of ScratchJr Project Rubric
- Study 2: Young Children's Processes in Creating Coding Projects
- Breakout Rooms

The CAL Project

- Coding as Another Language K-2 Curricula: 24 ScratchJr lessons (45 min.)
- K-2 from multiple states in the US (MN, RK, RI and MA)

"Teaching programming as a literacy of the 21st century"

Home Curricula - Research - TeachCAL DevTech Research Group

Coding as Another Language - ScratchJr Cu^rriculum

https://sites.bc.edu/codingasanotherlanguage/

The CAL Project

View Download Visual Overview

Powerful Ideas of Computer Science Representation

Children will be able to:

- Understand languages as means of communication
- Recognize that we use programming languages
 to communicate with computers
- Recognize that there are many different
 programming languages

Necessary Materials: Hello Around the World

- ► Warm Up
- ► Opening Tech Circle
- ScratchJr Time
- ► Word Time

Powerful Ideas of Literacy Tools of Communication and Language

Vocabulary covered:

- Programming languages
- Code
- Communication
- Human languages
- ScratchJr

Research Instruments

Validated Research Instruments

Over the years, The DevTech Research Group directed by Prof. Marina Bers, has developed and validated research instruments that are developmentally appropriate for young children. These instruments can help researchers and educators evaluate skills related to Computer Science such as coding, robotics and computational thinking.

To gain access to these instruments, please fill out the Request an Instrument form. The DevTech team will review your request and, if approved, will give you free access to the requested instrument's Training and Certification. Once you have successfully completed the training and certification process, you will be emailed a password to the to access the requested instrument's Downloads.

Please click the icons below to learn more about each available instrument.

https://sites.bc.edu/devtech/research/validated-research-instruments/

Search

Study 1: ScratchJr Project Rubric

(Unahalekhaka & Bers, 2022)

Growth in Early CS Education

- Computational skills for the 21st century
- One effective learning pedagogy is to create open-ended coding projects
- Millions of ScratchJr projects have been created

28 ScratchJr Blocks

ScratchJr Block Complexity Levels

Beginner

Green start, motion blocks, single character, say block, looks blocks (grow, shrink, hide, show), pop sound, record sound, end block

Start on tap, control speed, wait time,

Intermediate

Start on tap, control speed, wait time, return to start, go to page, repeat forever

Advanced

Start on bump, start on messages, send message, repeat, stop block

ScratchJr Project Rubric

DEV TECH RESEARCH GROUP

Coding Concepts	Examples of Score = 4 (Highest)
Sequencing	7 or more blocks excluding end etc.
Repeats	Nested Loops
Events	Multiple Colors Messages
Parallelism	2 or more sequences within 1 character
Coordination	Using these blocks across multiple characters
Number Parameter	Using positive/negative/zero number parameter that's not default

Kindergarten	Grade 1	Grade 2
Lesson 8: Program Head, Shoulders, Knees, and Toes	Lesson 6: Re-code the Hokey- Pokey	Lesson 6: Tell a Story (Grace Hopper)
Lesson 13: Expand Your Storytelling Toolbox (Katherine)	Lesson 10: Expand Your Storytelling Toolbox (Ada Lovelace Story)	Lesson 11: Our Classroom Story
Lesson 23: Final Project III (Knuffle Bunny)	Lesson 23: Final Project III (Where the Wild Things Are)	Lesson 23: Final Project III (Stellaluna)

Total Project Scores over time by Grade

Minnesota

	Grade 1	Grade 2	Total
Time 1	47	26	73
Time 2	44	35	79
Time 3	45	31	76
Total	136	92	228

(Unahalekhaka & Bers, 2022)

% project that have this sub-category

Most common and highest mean scores:

- Sequencing
- Number parameter

Least common and lowest mean scores:

- Coordination
- Repeat
- Parallelism

Mean score

Most common and highest mean scores:

- Number of characters ٠
- Number of settings ٠

Least common:

- Speech bubble ٠
- Sound •
- Look blocks .

Study 2: Young Children's Processes in Creating Coding Projects across CAL Curriculum

How did children create these projects?

- Process is how a task is completed
- Learning is a process, rather than just the end outcome
- Understanding process can support children's needs and motivation

TECH RESEARCH

DE'

Problem

• Limited understanding of:

Young *children's processes* when creating coding projects

Better instructional and curriculum design for early CS learning experience

Objectives

• How did young children create ScratchJr projects?

PILOT STUDY

Alignment of Exploratory Sequential Design Process (Creswell et al., 2018, p. 135) and the current study design

Exploratory Sequential Design Phases	Aligned Study Phases	Aligned Research questions	Method
Qualitative	Pilot	RQ1	Task-analysis and deductive coding approach
Bridging Qual-Quant	Main	RQ2	Rule-based identification
Quantitative	Main	RQ3 & RQ4 RQ5	Multilevel Regression T-test and Linear Regression

Project Creation Actions Coding Scheme

Categories	Actions	Definition
Coding	Create New	Start a new code from blank
	Revise	Rework on the same code after playing program
	Explore	Try out intermediate or advanced blocks repeatedly
Project Design	Customize	Decorate project or add character/background

Process 1: Project Iteration

Create New

New

DEV TECH RESEARCH GROUP

Process 2: Long Customization

Customizing longer than 10% of the session duration

Background The Study Pilot Phase Main Phase Discussion Conclusion

Process 3: Coding Exploration

MAIN STUDY

Mixed-method: Exploratory Sequential Design Process

Alignment of Exploratory Sequential Design Process (Creswell et al., 2018, p. 135) and the current study design

Exploratory Sequential Design Phases	Aligned Study Phases	Aligned Research questions	Method
Qualitative	Pilot	RQ1	Task-analysis and deductive coding approach
Bridging Qual-Quant	Main	RQ2	Rule-based identification
Quantitative	Main	RQ3 & RQ4 RQ5	Multilevel Regression T-test and Linear Regression

Identifying Processes

user_pseu	School	GradeLevel	ClassLevel	Time_EST	event_name
190d3a09	24	Kindergarte	Star2.svg	14:45:39	new_block_onflag
190d3a09	24	Kindergarte	Star2.svg	14:45:42	new_block_forward
190d3a09	24	Kindergarte	Star2.svg	14:45:45	new_block_endstack
190d3a09	24	Kindergarte	Star2.svg	14:46:20	new_block_right
190d3a09	24	Kindergarte	Star2.svg	14:46:26	new_block_endstack
190d3a09	24	Kindergarte	Star2.svg	14:49:55	new_character
190d3a09	24	Kindergarte	Star2.svg	14:50:37	choose_background
190d3a09	24	Kindergarte	Star2.svg	14:51:02	new_block_onflag
190d3a09	24	Kindergarte	Star2.svg	14:51:06	new_block_forward
190d3a09	24	Kindergarte	Star2.svg	14:51:09	new_block_up
190d3a09	24	Kindergarte	Star2.svg	14:51:12	new_block_forward
190d3a09	24	Kindergarte	Star2.svg	14:51:14	new block up

Quantitative

Alignment of Exploratory Sequential Design Process (Creswell et al., 2018, p. 135) and the current study design

Exploratory Sequential Design Phases	Aligned Study Phases	Aligned Research questions	Method
Qualitative	Pilot	RQ1	Task-analysis and deductive coding approach
Bridging Qual-Quant	Main	RQ2	Rule-based identification
Quantitative	Main	RQ3 & RQ4 RQ5	Multilevel Regression T-test and Linear Regression

Measures: What are the outcomes?

Variety

ScratchJr Block Complexity Levels

Beginner	Intermediate	Advanced
Green start, motion blocks, single character, say block, looks blocks (grow, shrink, hide, show), pop sound, record sound, end block	Start on tap, control speed, wait time, return to start, go to page, repeat forever	Start on bump, start on messages, send message, repeat, stop block
	1111111111111	

RESULTS & DISCUSSION

1. Exploration Promotes Coding Block Variety

Project with 8 Block Types

1. Exploration Promotes Coding Block Variety

- Encourage children to explore complex or unfamiliar blocks
- Future research should also examine block category variety

2. Combination of Guidance and Self-Discovery

- Guided exploration on the complex blocks may lead to more complex block usage in their final projects
- There was more exploration after children learned block functions

Early

 Free play to selfdiscovered different functions, especially basic blocks

Mid

Set plans on how long they will need for customizing vs. coding
More guidance on the advanced blocks then let them explore

End

TECH RESEARCH

Provide multiple sessions to work
Promote iteration by encouraging children to keep improving codes and adding details

Conclusion

- Mixture of free exploration and direct guidance
- Important to show young children on what is available before they fully explore
- At least some guidance is needed in early childhood
 - CS concepts require multiple consequential steps
 - Working on their reading skills

DEV TECH RESEARCH GROUP

Dissertation Committee:

Marina Bers, Boston College Sara Johnson, Tufts University Remco Chung, Tufts University Karen Brennan, Harvard University

This research was funded by the U.S. Department of Education Grant # U411C190006

1. Use a rubric to evaluate their ScratchJr projects (or provided ScratchJr project) and discuss the key areas that can be enhanced.

2. Brainstorm the teaching strategies that can support different creation processes children may use to create coding projects.

Bers, M. U., Blake-West , J., Kapoor, M. G., Levinson, T., Relkin, E., Unahalekhaka, A., & Yang, Z. (2023). <u>Coding as another language: Research-based curriculum for early childhood computer science</u>. *Early Childhood Research Quarterly, 64*, 394–404. https://doi.org/https://doi.org/10.1016/j.ecresq.2023.05.002

Unahalekhaka, A. (2023) <u>Young Children's Processes in Creating Coding Projects across Coding as Another</u> <u>Language Curriculum</u>. (Doctoral dissertation)

Unahalekhaka, A., Bers, M.U. (2022). <u>Evaluating young children's creative coding: rubric development and</u> <u>testing for ScratchJr projects</u>. *Educ Inf Technol*. <u>https://doi.org/10.1007/s10639-021-10873-w</u>