
16

Raspberry Pi Foundation Research Seminars

Section 3:  
Computing topics

The role of block-based 
programming in computer science 
education 
David Weintrop (University of Maryland, USA) 

Weintrop, D.(2021). The role of block-based programming in computer 
science education. In Understanding computing education (Vol 1). 
Proceedings of the Raspberry Pi Foundation Research Seminar series. 

Available at: rpf.io/seminar-proceedings-2020

http://rpf.io/seminar-proceedings-2020


1

Raspberry Pi Foundation Research Seminars

Section 3: Computing topics

Abstract

Block-based programming environments are 
increasingly becoming the way that young 
learners are being introduced to the practice of 
programming and the field of computer science 
more broadly. Environments such as Scratch, 
MIT AppInventor, Code.org’s AppLab, and block-
based interfaces for physical devices provide 
inviting and accessible pathways into the world 
of programming. In this article, I share findings 
from a series of studies investigating the use of 
block-based programming in K-12 classrooms. 
In particular, this research compares block-
based programming to conventional text-based 
programming languages and explores the 
transition from introductory block-based tools 
to professional programming languages. The 
results of the study found that high school 
students score better on tests after learning 
to program in a block-based tool compared to 
peers who learned with a text-based language. 
The study also found that after transitioning to a 
professional text-based programming language 
(Java), there was no difference in programming 
performance in terms of scores on a content 
assessment or differences in programming 
practices employed. The implications of these 
findings suggest that block-based programming 
is an effective way to introduce learners to 
programming but open questions remain about 
how to best integrate it into formal classroom 
instruction.

Introduction

Led by the popularity of environments like 
Scratch, MIT AppInventor, and the growing 
ecosystem of programming environments 
built with the Blockly library, block-based 
programming is increasingly becoming the 
way that learners are being introduced to 
the practice of programming and the field of 
computer science more broadly (Bau et al., 2017; 
Resnick et al., 2009; Weintrop, 2019). Along with 
virtual programming environments, a growing 
number of physical devices support block-based 
programming, including Sphero, BBC micro:bit, 
Lego Mindstorms, and several block-based 
programming environments for the Raspberry 
Pi family of microprocessors. While not a recent 
innovation (block-based environment first 
emerged in the mid-1990s), the last decade has 
seen a blossoming of block-based programming 
environments and computing curricula that 
rely upon block-based tools. A recent review 
of the academic literature identified 99 unique 
block-based programming environments 
(Lin & Weintrop, 2021). This has, in turn, lead 
to a growing body of research seeking to 
understand the affordance of block-based tools 
and articulate their role in computer science 
education (Franklin et al., 2017; Grover & Basu, 
2017; Price & Barnes, 2015; Weintrop, Hansen, 
et al., 2018). As block-based tools become more 
widespread, it is important that we as educators 
understand the affordances and drawbacks 
of these environments so we are best able to 

The role of block-based 
programming in computer science 
education 
David Weintrop (University of Maryland, USA)



2

Raspberry Pi Foundation Research Seminars

support learners early in their computer science 
careers. 

The goal of this article is to present findings 
from a series of research studies seeking to 
understand the impact of using block-based 
programming environments in classrooms. 
In particular, we pursue questions seeking 
to understand how block-based instruction 
compares to text-based instruction and to 
understand if and how the experience of learning 
to program in a block-based environment 
better prepares learners for future text-based 
programming. In doing so, this work seeks 
to elucidate the potential role of block-based 
programming in formal education and equip 
educators to effectively use block-based 
programming as part of their instruction.

What is block-based programming?

Block-based programming is a graphical 
approach to programming that uses a 

programming-command-as-puzzle-piece 
metaphor to visually convey information about 
the programming commands available to the 
user and how they can be used (Figure 1). 
Through the inclusion of visual, organisational, 
and audio cues, block-based programming 
environments can help novices write functioning 
programs from the start. The defining feature of 
block-based programming environments, and 
the source of their name, is that programming 
commands are presented as blocks where the 
shape of the block defines how and where it can 
be used (Maloney et al., 2010). To assemble a 
program, the user drags blocks onto the canvas 
(the area where the program is written) and 
snaps the blocks together, often accompanied 
by an audible click. Only valid combinations of 
blocks can be snapped together, in this way, 
block-based programming environments can 
prevent syntax errors by not allowing for invalid 
programs to be written. 

Along with the visual layout of the blocks, there 

Figure 1. The Scratch programming environment (left) and a block-based program written in Scratch (right)



3

Raspberry Pi Foundation Research Seminars

are a number of other features that make block-
based programming easy for novices with little 
prior programming experience. For example, 
as part of a study of high school students 
learning to program, students talked about how 
the arrangement of available blocks (left side 
of Figure 1) made it easy to figure out what 
was possible in the programming language 
(Weintrop & Wilensky, 2015a). Students also 
talked about how the drag-and-drop approach 
to assembling programs was easier than typing 
in programming commands one character at a 
time. This is especially true considering many 
programming languages require the user to type 
in uncommon and often mysterious punctuation 
as part of writing a functioning program. Another 
feature of block-based language students 
cited as contributing to their ease-of-use is 
how the blocks themselves are easier to read 
when compared to a conventional text-based 
language. As one student said, “Java is not in 
English it’s in Java language, the blocks are in 
English, it’s easier to understand”. Collectively, 
these various affordances lead learners to 
perceive block-based programming to be easier 
for novices.

The case for block-based programming

A central and important question about the 
potential role of block-based programming 
environments in formal education is whether or 
not students learn computer science concepts 
when programming in block-based environments. 
A related question is how students learn 
with block-based environments compared to 
comparable text-based programming languages? 
In other words, do students learn more in blocks 
or text? To answer this question, I conducted 
a quasi-experimental study in two high-school 
computer science classrooms. Students in 
one classroom learned using a block-based 
programming environment (Figure 2) while 
students in the other classroom used a text-
based programming environment (Figure). 
Importantly, everything about the environments 
was identical aside from the way programs 
were presented and authored, including the 
programming language itself, which was the 
exact same character-by-character between the 
two environments. The study began on the first 
day of school and lasted for five weeks with both 
classes going through the same curriculum and 
being taught by the same teacher. As much as 

Figure 2. The block-based version of the Pencil.cc programming environment.



4

Raspberry Pi Foundation Research Seminars

possible, everything was kept constant between 
the two classrooms aside from the programming 
environment.

After learning to program in either the block-
based or text-based environments, students 
took a programming assessment where the 
questions were asked in both block-based 
and text-based forms (Weintrop & Wilensky, 
2015b). At the conclusion of the five-weeks of 
instruction, students who learned with the block-
based environment scored higher on the content 
assessment than their peers who learned 
with the text-based environment (Weintrop 
& Wilensky, 2017a). This finding is important 
evidence showing block-based programming 
to be an effective way to introduce novices to 
programming.

As part of this study, students also took an 
attitudinal survey to explore their interest in 
computer science, their confidence with the 
discipline, and get an overall sense of their 
feelings about computer science. After working 
in a block-based environment for five weeks, 
learners were significantly more confident in 
their computer science abilities and their interest 

in the field had grown (Weintrop & Wilensky, 
2017a).

This study was particularly focused on one 
block-based programming environment (Figures 
2 and 3), however, the finding that students 
perform better in block-based environments 
has been replicated in other work. For 
example, through a partnership with code.
org, I investigated how students performed on 
a computer science content assessment that 
asked questions using pseudocode presented in 
both block-based and text-based forms (Figure 
4). This pseudocode was developed for the 
Advanced Placement (AP) Computer Science 
Principles (CSP) exam that is administered to 
high school students across the United States. 
The challenge with this assessment is that the 
organisation that designs and administers the 
test does not know what programming language 
students have learned with or if they learned in 
a block-based or text-based environment. As 
such, the test must be appropriate for learners 
who learned to program with block-based 
environments and learners who learned with text-
based languages. The solution to this problem 
was for the AP CSP test to use a pseudocode 

Figure 3. The text-based version of the Pencil.cc programming environment.



5

Raspberry Pi Foundation Research Seminars

with both a block-based form (Figure 4a) and a 
text-based form (Figure 4b).

An analysis of over 5,000 students from across 
the United States who took a 20-question 
content assessment comprised both block-
based and text-based questions using AP 
CSP’s pseudocode found that students scored 
significantly higher on questions asked in the 
block-based form than questions asked in the 
text-based form (Weintrop et al., 2019). Further, 
in breaking down results by race and gender, 
we found that women and students from racial 
backgrounds that have been historically excluded 
in computing saw greater benefits to questions 
asked in the block-based form (Weintrop & Killen 
et al., 2018). This finding provides additional 
evidence for the importance of including 
block-based programming in formal education, 
especially as it relates to goals of equity and 
broadening participation in the field.

Drawbacks and challenges

While the evidence presented above shows 

the value of block-based instruction in K-12 
classrooms, this work also identified some 
drawbacks and challenges related to the use 
of block-based environments in classrooms. 
In analysing student feedback to identify what 
students found to be useful about block-based 
programming, we also found that students 
identified a series of drawbacks (Weintrop & 
Wilensky, 2015a). For example, some students 
expressed concerns related to the authenticity 
of block-based programming, as one student 
put it, “if we actually want to program something, 
we wouldn’t have blocks.” Other drawbacks 
mentioned by students included concerns 
that block-based programming environments 
were inherently less powerful than text-based 
programming languages and that writing 
programs in block-based environments was 
slower than authoring programs in text-based 
languages. 

A second drawback, or at least an open question, 
related to block-based programming is if 
and how block-based programming prepares 
learners for future computer science instruction 

(a) (b)

Figure 4. The (a) block-based and (b) text-based pseudocode from the AP Computer Science Principles exam.



6

Raspberry Pi Foundation Research Seminars

using text-based programming languages. In 
a continuation of the study discussed above, 
after five weeks of learning in either a block-
based or text-based introductory programming 
environment, we followed students as they 
transitioned to instruction in Java. After ten 
weeks of learning Java, students in both 
conditions took another content assessment. 
The result of that assessment showed that 
there was no difference in performance on 
the assessment based on their introductory 
experiences (Weintrop & Wilensky, 2019). That 
is to say, students scored the same on the 
assessment after ten weeks of Java instruction 
regardless of which introductory environment 
they used, so the gains found after five weeks 
for students learning in the block-based 
environment were no longer present. We also 
found there to be no significant difference in 
terms of the programming practices employed 
while authoring programs and that students from 
both introductory experiences showed similar 
patterns in the types and frequency of syntax 
errors encountered (Weintrop & Wilensky, 2018). 
One important thing to note about this study was 
that the teacher who taught these classes did 
not employ any specific pedagogical strategies 
to help bridge the transition from block-based to 
text-based programming. In other studies where 
successful transfer has been documented, there 
are usually explicit bridging strategies employed 
by the instructor(s) to help learners make the 
transition (Dann et al., 2012). Questions related 
to pedagogy and how best to prepare instructors 
to teach computer science remains an active 
area of research (Franklin et al., 2020; Yadav & 
Berges, 2019).

Implications and recommendations

Implications

The primary implication of this research is 
that block-based programming has a home in 
computer science classrooms. However, there 

are still open questions that need to be answered 
in terms of how best to use block-based 
programming to help support learning, both in 
the classroom and beyond (Brown et al., 2016). 
While much work remains to be done to figure 
out exactly how best to utilise this programming 
approach, the findings cited above and reported 
elsewhere show block-based programming 
to be an effective way to introduce novices to 
the practice of programming and the field of 
computer science more broadly.
 
A second implication from this work stems from 
the finding that students who learned using 
a block-based programming environment did 
not see any significant advantage from that 
experience compared to their text-based peers 
after transitioning to a text-based language. 
The important takeaway from this finding is 
the idea that transfer does not come for free. 
That is to say, while there are clear conceptual 
links between programming in a block-based 
environment and programming in a text-based 
language, learners do not necessarily see 
those links and make the connections on their 
own. This is a place where pedagogy and the 
teacher play an essential role. Providing explicit 
instruction to help learners make the connection 
between blocks and specific programming 
keywords can help scaffold that transition 
and help learners build upon conceptual gains 
made in block-based tools. While there is some 
work showing this to be effective (Dann et al., 
2012), more work needs to be done to more 
fully understand how best to support learners in 
making this transition.

Recommendations

So, at the end of the day, where does that 
leave us in terms of what is the best way 
to teach students to program? When I am 
asked by teachers if they should use a block-
based environment or start with a text-based 
programming language, my response is: why not 



7

Raspberry Pi Foundation Research Seminars

both? Up to this point, block-based environments 
and text-based languages have been presented 
as mutually exclusive options. However, this 
need not be the case. There are a growing 
number of programming environments that 
blend block-based and text-based features like 
BlueJ’s Frame-based editor (Kölling et al., 2015) 
and others that support both block-based and 
text-based programming like Pencil code (Bau 
et al., 2015). I am increasingly excited about 
programming environments that support both 
block-based and text-based programming, 
where the learners can decide which interface 
they want to see and can move back and forth 
between the two forms. I call these dual-modality 
environments (Weintrop & Wilensky, 2017b) and 
a growing body of research is showing them to 
be an effective approach to support novices early 
in their learning while also providing scaffolds for 
them to transition from block-based composition 
to more conventional text-based programming 
(Blanchard et al., 2020; Matsuzawa et al., 2015; 
Weintrop & Holbert, 2017).
 
A second important question to ask when 
thinking about the role of block-based 
programming in computer science education, 
especially as it relates to the transition to 
text-based instruction, is whether or not that 
transition is even necessary. Do all students need 
to learn to program in professional text-based 
languages? If the goal is to prepare students for 
a career in computer science, then the answer 
is probably yes, students would need to learn to 
program with professional text-based languages. 
However, it is worth re-examining whether the 
goal of computer science instruction should 
be to prepare learners for careers in the field. 
While that certainly is one desirable endpoint of 
computer science instruction, it is important to 
consider alternative endpoints, such as preparing 
learners for careers outside of computer 
science, equipping students to be informed 
technologically-savvy citizens, and empowering 
learners to pursue their own goals and interests 

through computing (Tissenbaum et al., In Press). 
The idea that block-based programming may 
be a sufficient endpoint for computer science 
instruction is also bolstered by the growing 
number of block-based environments designed 
for real-world applications such as data sciences 
(Bart et al., 2017) and industrial robotics 
programming (Weintrop, Afzal, et al., 2018).

Conclusion

The goal of this article was to share findings 
from research investigating the role of block-
based programming in computer science 
education. While block-based environments 
such as Scratch have had a significant impact 
on youth learning to program in informal 
environments, the role of block-based 
programming in formal classroom contexts 
was less clear. In this article, I presented results 
that show block-based programming to be an 
effective way to welcome learners to the field of 
computer science. At the same time, there are 
still open questions related to how best to utilize 
block-based environments as part of formal 
computer science instruction. In particular, 
how to address student concerns around 
questions of authenticity and how to effectively 
scaffold learners in the transition to text-based 
languages. In discussing these challenges, I put 
forward the idea of dual-modality programming 
environments that support both block-based and 
text-based forms of authorship as one potential 
way to address this concern. The work reviewed 
here, along with the growing body of research 
around the design of introductory programming 
environments, curricula, and pedagogy, 
collectively are poised to lay the groundwork for 
the infrastructure needed to prepare all learners 
to succeed in an increasingly computational 
world.



8

Raspberry Pi Foundation Research Seminars

References
Bart, A. C., Tibau, J., Kafura, D., Shaffer, C. A., & 
Tilevich, E. (2017). Design and Evaluation of a Block-
based Environment with a Data Science Context. 
IEEE Transactions on Emerging Topics in Computing, 
PP(99), 1–1. 

Bau, D, Bau, D. A., Dawson, M., & Pickens, C. S. (2015). 
Pencil Code: Block Code for a Text World. Proc. of 
the 14th Int. Conference on Interaction Design and 
Children, 445–448. 

Bau, David, Gray, J., Kelleher, C., Sheldon, J., & Turbak, 
F. (2017). Learnable programming: Blocks and 
beyond. Communications of the ACM, 60(6), 72–80. 

Blanchard, J., Gardner-McCune, C., & Anthony, L. 
(2020). Dual-Modality Instruction and Learning: A 
Case Study in CS1. Proc. of the 51st ACM Technical 
Symposium on Computer Science Education, 
818–824.

Brown, N. C. C., Mönig, J., Bau, A., & Weintrop, 
D. (2016). Future Directions of Block-based 
Programming. Proc. of the 47th ACM Technical 
Symposium on Computing Science Education, 
315–316. Dann, W., Cosgrove, D., Slater, D., Culyba, 
D., & Cooper, S. (2012). Mediated transfer: Alice 3 to 
Java. Proc. of the 43rd ACM Technical Symposium on 
Computer Science Education, 141–146.

Franklin, D, Skifstad, G., Rolock, R., Mehrotra, I., Ding, 
V., Hansen, A., Weintrop, D., & Harlow, D. (2017). 
Using Upper-Elementary Student Performance to 
Understand Conceptual Sequencing in a Blocks-
based Curriculum. Proc. of the 2017 ACM SIGCSE 
Technical Symposium on Computer Science 
Education, 231–236. 

Franklin, D, Coenraad, M., Palmer, J., Eatinger, D., 
Zipp, A., Anaya, M., White, M., Pham, H., Gökdemir, 
O., & Weintrop, D. (2020). An Analysis of Use-Modify-
Create Pedagogical Approach’s Success in Balancing 
Structure and Student Agency. Proc. of the 2020 ACM 
Conference on International Computing Education 
Research, 14–24.

Grover, S., & Basu, S. (2017). Measuring Student 
Learning in Introductory Block-Based Programming: 
Examining Misconceptions of Loops, Variables, and 
Boolean Logic. Proc. of the 2017 ACM Technical 
Symposium on Computer Science Education, 
267–272. 

Kölling, M., Brown, N. C. C., & Altadmri, A. (2015). 
Frame-Based Editing: Easing the Transition from 
Blocks to Text-Based Programming. Proc. of the 
Workshop in Primary and Secondary Computing 
Education, 29–38. 

Lin, Y., & Weintrop, D. (2021). The Current Landscape 
of Block-based Programming Environments. Paper 
Presented at the Annual Meeting of the American 
Educational Research Association (2021.

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & 
Rusk, N. (2008). Programming by choice: Urban youth 
learning programming with Scratch. ACM SIGCSE 
Bulletin, 40(1), 367–371.

Maloney, J. H, Resnick, M., Rusk, N., Silverman, B., 
& Eastmond, E. (2010). The Scratch programming 
language and environment. ACM Trans. on Computing 
Education, 10(4), 16.

Matsuzawa, Y., Ohata, T., Sugiura, M., & Sakai, S. 
(2015). Language Migration in non-CS Introductory 
Programming through Mutual Language Translation 
Environment. Proc. of the 46th ACM Technical 
Symposium on Computer Science Education, 
185–190. 

Price, T. W., & Barnes, T. (2015). Comparing Textual 
and Block Interfaces in a Novice Programming 
Environment. 91–99. 

Resnick, M., Silverman, B., Kafai, Y., Maloney, 
J., Monroy-Hernández, A., Rusk, N., Eastmond, 
E., Brennan, K., Millner, A., Rosenbaum, E., & 
Silver, J. (2009). Scratch: Programming for all. 
Communications of the ACM, 52(11), 60.

Tissenbaum, M., Weintrop, D., Holbert, N., & Clegg, 
T. (In Press). The Case for Alternative Endpoints in 
Computing Education. British Journal of Educational 
Technology.

Weintrop, D. (2019). Block-based Programming in 
Computer Science Education. Commun. ACM, 62(8), 
22–25. 

Weintrop, D, Afzal, A., Salac, J., Francis, P., Li, B., 
Shepherd, D. C., & Franklin, D. (2018). Evaluating 
CoBlox: A Comparative Study of Robotics 
Programming Environments for Adult Novices. Proc. 
of the 2018 CHI Conference on Human Factors in 
Computing Systems, 366:1-12. 

Weintrop, D, Hansen, A. K., Harlow, D. B., & Franklin, 
D. (2018). Starting from Scratch: Outcomes of 
Early Computer Science Learning Experiences and 
Implications for What Comes Next. Proc. of the 
2018 ACM Conference on International Computing 
Education Research, 142–150. 

Weintrop, D, & Holbert, N. (2017). From Blocks to Text 
and Back: Programming Patterns in a Dual-Modality 
Environment. Proc. of the 2017 ACM Technical 
Symposium on Computer Science Education, 

633–638. 

Weintrop, D, Killen, H., & Franke, B. (2018). Blocks 
or Text? How programming language modality 
makes a difference in assessing underrepresented 
populations. Proc. of the International Conference on 
the Learning Sciences 2018, 328–335.

Weintrop, D, Killen, H., Munzar, T., & Franke, B. 
(2019). Block-based Comprehension: Exploring and 
Explaining Student Outcomes from a Read-only 
Block-based Exam. Proc. of the 50th ACM Technical 
Symposium on Computer Science Education, 
1218–1224. 

Weintrop, D, & Wilensky, U. (2017a). Comparing 
Block-Based and Text-Based Programming in High 
School Computer Science Classrooms. ACM Trans. 
on Computing Education, 18(1), 3.

Weintrop, D, & Wilensky, U. (2018). How block-based, 
text-based, and hybrid block/text modalities shape 
novice programming practices. International Journal 
of Child-Computer Interaction, 17, 83–92. 

Weintrop, D, & Wilensky, U. (2019). Transitioning 
from introductory block-based and text-based 
environments to professional programming 
languages in high school computer science 
classrooms. Computers & Education, 142, 103646. 

Weintrop, D, & Wilensky, U. (2017b). Between a Block 
and a Typeface: Designing and Evaluating Hybrid 
Programming Environments. Proc. of the 2017 
Conference on Interaction Design and Children, 
183–192. 

Weintrop, D, & Wilensky, U. (2015a). To Block or Not 
to Block, That is the Question: Students’ Perceptions 
of Blocks-based Programming. Proc. of the 14th 
International Conference on Interaction Design and 
Children, 199–208. 

Weintrop, D, & Wilensky, U. (2015b). Using 
Commutative Assessments to Compare Conceptual 
Understanding in Blocks-based and Text-based 
Programs. Proc. of the 11th Annual International 
Computing Education Research Conference, 
101–110. 

Yadav, A., & Berges, M. (2019). Computer Science 
Pedagogical Content Knowledge: Characterizing 
Teacher Performance. ACM Trans. on Computing 
Education, 19(3), 1–24.





98

Raspberry Pi Foundation Research Seminars

www.raspberrypi.org @Raspberry_Pi@raspberrypi @raspberrypi raspberrypi

https://www.youtube.com/c/raspberrypi/featured
https://twitter.com/raspberry_pi
https://www.instagram.com/raspberrypi/?hl=en
https://www.facebook.com/raspberrypi/
https://www.raspberrypi.org/



