
18

Raspberry Pi Foundation Research Seminars

Section 3:
Computing topics

Teaching programming with
PRIMM: the importance of
classroom talk

Sue Sentance (Raspberry Pi Foundation, UK)

Sentance, S. (2021). Teaching programming with PRIMM:
the importance of classroom talk. In Understanding computing
education (Vol 1). Proceedings of the Raspberry Pi Foundation
Research Seminar series.

Available at: rpf.io/seminar-proceedings-2020

http://rpf.io/seminar-proceedings-2020

1

Raspberry Pi Foundation Research Seminars

Section 3: Computing topics

Abstract

PRIMM is an approach to structuring
programming lessons with a focus on working
with extracts of code in depth to understand
both structure and function and doing so in
collaboration with peers, through dialogue.
Previous research has shown that teaching
using a PRIMM approach can improve learner
outcomes. In this paper I introduce the PRIMM
approach to structuring lessons and how it
can impact on productive classroom talk.
A qualitative study was conducted with 20
programming teachers in primary and secondary
schools. Early findings indicated that in PRIMM
lessons teachers’ talk differs in quality and
content at different stages of the lesson, and
highlights the importance of students’ use of
programming vocabulary. A focus on language
and talk could be a productive area of research
in our quest to improve our understanding of
effective teaching strategies for young novice
programmers.

Introduction

PRIMM is an approach to teaching programming
that came about because teachers who
were new to teaching, or new to teaching
programming, were expressing frustration
that they could not effectively support young
students who had difficulty with programming.
Computing teachers benefit from access to
proven teaching strategies and pedagogies
relating to programming. Much research has

been carried out in programming education,
and only recently in schools, and this has not
been widely translated into usable structures
for teachers. Consequently, computing teachers
are being called to deliver a challenging subject
with insufficient knowledge of effective teaching
strategies and on how to develop and enhance
vital competencies to accomplish this task. To
address these issues, I and my colleagues have
developed and are evaluating a new pedagogical
model for teaching and learning programming
(PRIMM) (Sentance & Waite, 2017, Sentance,
Waite and Kallia, 2019).

PRIMM stands for Predict, Run, Investigate,
Modify, and Make. Using PRIMM, classroom
activities can be designed that involve predicting
the output of code, code comprehension, and
gradually making new programs. It is a method of
teaching programming that counters the known
problem of novices trying to write programs
before they are able to read them (Lister et al.,
2004). It provides a staged and gradual approach
to building an understanding of programming
concepts alongside the development
of confidence, with a focus on program
comprehension over completed artefacts. It is an
appropriate approach for young students where
we need to minimise excessive cognitive load
and helps teachers to engage each student when
teaching large mixed-ability classes.

This paper focuses on one aspect that is a
key feature of every PRIMM lesson: productive
classroom talk. Despite a surge of interest in
programming education in school in recent

Teaching programming with PRIMM:
the importance of classroom talk
Sue Sentance (Raspberry Pi Foundation, UK)

2

Raspberry Pi Foundation Research Seminars

years, the use of talk and language has not
been a particular focus, with little literature in
computing education on this topic. Research
in mathematics and science education around
dialogue has increased our understanding of
both the nature of productive classroom talk, and
how teachers can encourage this in their classes.
What is of interest here is how this work relates
to the programming classroom, and whether
talking together about programs can really
support learning. In this paper I outline what
PRIMM is, why language and talk is important to
the learning of programming, and report on some
of the findings from a recent study.

Teaching programming

Novices can find programming difficult; research
abounds on this topic. For example, it has been
asserted that, beyond the syntax and semantics
of particular programming concepts, novices
may struggle to put these together to construct
a program (Robins, Rountree, & Rountree, 2003);
additionally, students have a surface knowledge
of programming which is context specific and,
thus, it is difficult to be applied in different
contexts (Lahtinen, Ala-Mutka, & Järvinen, 2005).
Actually writing code (as opposed to reading)
is particularly hard for novice programmers
(Denny et al., 2008; Qian & Lehman, 2017), and it
is commonly believed that code tracing is easier
than code writing (Denny et al., 2008). However,
many students find code tracing challenging
(Vainio & Sajaniemi, 2007) with particular
difficulties being around single value tracing,
confusion of function and structure, external
representations, and levels of abstraction.
The mental effort needed by learners as they
embark on this complex journey of learning to
program can also be viewed through cognitive
load theory (van Merriënboer & Sweller, 2005).
Cognitive load theory is a theory of instructional
design that suggests that some instructional
techniques assume a processing capacity
greater than our limits and so are likely to be

defective, and that students should instead
engage in activities that are directed at schema
acquisition and automation (Sweller, 1994).
Working independently on programming has
been suggested to have higher cognitive load
than working collaboratively through pair
programming (Tsai, Yang, & Chang, 2015).
However, we may inadvertently use teaching
methods which don’t help this situation at all. A
reliance on programming textbooks and “show
me” approaches to teaching coding means that
novices may end up being asked to copy in a
section of code that has no meaning to them
at all. Add this to the fact that younger learners
will be developing their literacy and keyboard
skills, the process of copying in can be incredibly
frustrating and dispiriting. Another practice might
be to model writing a program from the front
while learners watch, and then ask learners to go
ahead and write a similar program themselves:
this leaves a huge chasm for the novice
programmer to fill in themselves which many
simply cannot manage.

What is PRIMM?

PRIMM stands for, Predict, Run, Investigate,
Modify, and Make. It is based on the following
five principles;

Principle 1: Read code before you write code.
The excitement of writing a new program and
creating something that works can mean we
don’t spend enough time at the beginning
reading and learning from simple, well-written
programs. PRIMM draws on tracing and reading
code as an important principle for teaching
programming (Lister et al., 2009). The predict
phase of PRIMM encourages students to
practise reading code and working out what it
will do when executed.

Principle 2: Work collaboratively to talk about
programs. Dialogue and classroom talk are
an important aspect of teaching and learning.

3

Raspberry Pi Foundation Research Seminars

PRIMM particularly focuses on classroom
discussion, specific questioning about code, use
of vocabulary, and asking students to talk to each
other about code. PRIMM draws on sociocultural
theory which helps us to understand how
language can support learning. Language can be
seen as a central form of mediation that enables
thinking and internalisation of concepts to take
place (Vygotsky, 1962). In PRIMM lessons,
students are encouraged to discuss with each
other; a social construction of knowledge formed
through collaborative, program-focused tasks.

Principle 3: Focus on code comprehension.
Languages like Python (commonly used in
schools in England) are often celebrated because
you can write a program in a short number of
lines. However, that usually means there are
lots of concepts in one line. One way to unpack
what the code is doing is to align comprehension
exercises to the Block Model (Schulte et al.,
2010; Cruz et al., 2019). The Block Model
distinguishes between a novice programmer’s
understanding of the structural atomic detail of
a program, the code, the functional goals of the
program, and the problem (Schulte et al., 2010).
Unpacking and focusing on understanding the
code also reduces cognitive load on the learner
(Sweller, 1994).

Principle 4: Use existing starter programs. Again
drawing on sociocultural theory, learning can be
seen as a transition from the social plane to the
cognitive plane (Walqui, 2006; Sentance et al.,
2019), through the use of ‘starter’ programs that
students can work with before taking ownership
themselves. A PRIMM lesson starts with an
activity whereby learners examine some existing
code and predict what it might do.The learner
does not have responsibility for the code and
does not suffer emotionally if the code has errors
in. Learners can test their predictions by running
the code.

Principle 5: Gradually take ownership of
programs. Learners should move along a
continuum from where they first use programs
made by someone else to finally create their own
programs. In this way, PRIMM has partly built on
Use-Modify-Create (UMC) (Lee et al., 2011) to
gradually transfer ownership of the program to
the student. It supports the student’s confidence
as they are not burdened by the prospect of
failure until they understand how the program
works.

PRIMM provides a structure for one of a series
of lessons, with the intention that teachers can
develop their own PRIMM-like materials at an
appropriate level for their students (Figure 1).

Figure 1. The five stages of PRIMM

4

Raspberry Pi Foundation Research Seminars

In terms of planning a PRIMM lesson, teachers
will consider not only the structure of the
lesson (as described in Figure 1), but also the
opportunity for language and talk, the content
and level of questioning, and the shared
artefacts that are used in the lesson. These
elements of planning are shown in Figure 2. This
paper focuses on the language and talk that
takes place in a PRIMM lesson.

PRIMM and learning outcomes

A number of studies have been employed to
investigate the impact of PRIMM (see Figure
3). To date the largest of these was a mixed
methods study conducted in 2018 involving
around 500 students aged 11 to 14.

In this study, a type of quasi-experimental design
known as the non-equivalent control group
post-test design (Campbell & Stanley, 1963) was

Figure 2. Planning a PRIMM lesson

Figure 3. Research on the effectiveness of PRIMM approach

5

Raspberry Pi Foundation Research Seminars

used to investigate the impact of a series of
PRIMM-structured lessons on learner outcomes.
Following this methodology, the treatment,
or experimental, group were classes being
taught using PRIMM materials provided by the
researchers, with the control group consisting of
students who were to take the same number of
programming lessons, covering the same topics,
but using the teaching method normally used in
the school. To ensure that students did not differ
significantly in their computer programming
attainment, both groups were baseline tested
before the start of the intervention.
Teachers were given full sets of materials,
including starter tasks, presentations,
worksheets, starter programs, and answers,
for ten lessons (including extension material)
covering the basic programming constructs of
sequence, selection, and iteration in Python.
Teachers then delivered programming lessons
using the PRIMM approach for 8 to 12 weeks.
Data was collected via a combination of a
baseline test, a post test to compare control and
experimental groups, and teacher interviews.

The post-test score of the experimental
group was compared with that of the control
group. Differences between the control and
experimental groups after the programming
lessons were examined to see if the PRIMM
lessons had had an impact on programming
attainment. The results showed a statistically
significant difference in the score between
the control and experimental groups for all
students in favour of the experimental group (see
Sentance et al. (2019) for further details).

The quantitative results were further supported
by the qualitative data. From interviews with
nine participating teachers the research found
that teachers particularly value the collaborative
approach taken in PRIMM, the structure given
to lessons, and the way that resources can be
differentiated. This led to the assertion that
PRIMM is an approach in school classrooms

to improve learner outcomes in programming
(Sentance et al., 2019).

PRIMM and classroom talk

In this paper I am focusing on a specific aspect
of PRIMM, the role of language. According to
Vygotsky, social interaction plays a critical role
in children’s learning (Vygotsky, 1978). Mediated
activity promotes higher mental processes in
three major forms of mediation: material tools,
psychological tools (including language), and
interaction with other human beings.

Classroom talk

Classrooms are full of talk — instructions,
questions, explanations, as well as student–
student and student–teacher dialogue. Teachers
have an impact on the quality of the dialogue in
their classroom and are an important model for
pupils’ use of language for reasoning (Mercer &
Sams, 2006).

A range of models have been proposed to
describe effective dialogue in the classroom.
Dialogically organised instruction (Nystrand et
al., 2003) sets out three ways the teacher can
promote effective dialogue: through uptake
(incorporating student ideas into subsequent
questions of other students), through authentic
questioning (used to explore views not test
knowledge), and through high-level evaluation
(where the teacher incorporates the response
into elaborative comments).

This demonstrates that questioning is a key part
of establishing effective dialogue, but teachers
may limit their questions to the Initiation-
Response-Feedback (IRF) style (Sinclair &
Coulthard, 1975) to elicit answers from students
where the answers to the questions are already
known. Although a valid component of some
lessons, these types of questions have been
criticised for inhibiting classroom talk and the

6

Raspberry Pi Foundation Research Seminars

development of ideas (Dawes, 2004; Wilkinson,
2013). A more dialogic approach focuses on
open, exploratory questions.

Mercer and colleagues developed the idea
of exploratory talk (Mercer, 1995), in which
partners engage critically but constructively with
each other’s ideas. To measure the impact of
exploratory talk, a series of research projects
were conducted under the banner of Thinking
Together. The research involved interventions
that gave both teachers and students new skills
in using language for reasoning. In the context
of mathematics, this was shown to enable them
to use language more effectively as a tool for
working on maths problems together.

A recent study found that improving the
quality of children’s use of language for
reasoning together improves their learning
and understanding of mathematics (Mercer &
Sams, 2006). Another study found that three
aspects of teacher–student dialogue strongly
predicted the performance of pupils aged 10 to
11 in standardised assessments: elaboration
(building on contributions), querying (challenging
a contribution) , and student participation (Howe
et al., 2019).

In computing education, most of the literature
relating to language and communication as a
vehicle for learning centres on pair programming
and peer instruction (Vahrenhold et al., 2019),
both privileging classroom talk and purposeful
dialogue. Research has shown that peer
instruction positively impacts learning outcomes
(Porter et al., 2011; Zingaro et al., 2014). Pair
programming has been shown to improve
program quality and confidence (Braught et
al., 2008; McDowell et al., 2006), but in the
school context it may depend on the way that
the collaborative work is instantiated (Lewis,
2011.) An in-depth study of six pairs of 5th grade
students in the context of pair programming
revealed specific dialogue strategies used by
students such as ‘Let me help you’ or ‘Make

suggestion’ (Tsan et al., 2018). Another study
which looked at interaction mechanisms in
computing students’ talk identified collaborative
problem solving, conversations expressing
excitement, and more social conversations
(Israel et al., 2017). I am not aware of studies
in programming education in school that
specifically focus on dialogue and programming
vocabulary.

Diethelm and Goschler (2015) highlight the lack
of attention to computing-specific vocabulary
and consider that specific items of computing
vocabulary may be ambiguous or have different
meanings in everyday life from their scientific
meaning. They suggest a need for a meta-
discourse around language such that pupils
in school can learn to distinguish between
everyday and scientific meanings of terms and
that teachers should be more deliberate about
vocabulary (Diethelm et al., 2018). There is
clearly scope for more detailed investigation
into how young learners acquire and use the
technical vocabulary in programming.

The current study

In a PRIMM lesson, the intention is that a
teacher facilitates productive classroom talk —
encouraging discussion, modelling vocabulary
use, asking in-depth questions. Having a
common language to talk about programming
constructs is important. Talking about a
program and how it works helps learners to find
the right vocabulary to use to articulate their
understanding. Actually verbalising out loud the
steps of a program that is difficult to understand
can help learners to focus on atomic or smaller
elements at a time. The analysis of data in the
2018 study inspired a new phase in research
around PRIMM specifically focusing on the
use of talk in the classroom and how it could
support a deep understanding of programming
constructs.

In the current study I am focusing specifically

7

Raspberry Pi Foundation Research Seminars

on classroom talk in programming lessons in
the context of PRIMM, seeking to investigate the
quantity, quality, and content of classroom talk in
programming lessons and teachers’ perceptions
of the impact of PRIMM on classroom talk. This
work is in progress.

In the first phase of the study, I conducted
interviews with 20 teachers who have been
using PRIMM for different amounts of time in
their classrooms. The findings are obviously
impacted by the fact that much of the teaching
in the last six months has been either remote or
under varying degrees of social distancing in the
classroom. Teachers were asked a number of
questions around the following topics:
• The types of talk that take place in

programming lessons
• The impact, if any, of PRIMM on the quantity

and quality of talk in programming lessons
• Teachers’ experience of students’ use of

programming terminology and vocabulary
• Approaches teachers use to foster

discussion amongst students

To ensure that the study aligned to ethical
guidelines (BERA, 2018) participants gave
consent to the use of their data for specific
purposes and full information was given. After
transcription, participants were able to check
their interview transcripts.

Early findings

The data was transcribed and analysed using
thematic analysis (Braun & Clarke, 2006). The
interviews were coded through an iterative
and inductive process of coding, merging, and
refining codes and re-coding (Nowell et al., 2016;
Braun & Clarke, 2006).

There were some initial findings relating to the
impact of PRIMM on classroom talk. Many
teachers referred to the difference between
‘pre-PRIMM’ teaching and using the PRIMM
approach. They commented that in PRIMM

lessons there was less whole-class talk by the
teacher, enhanced student-student dialogue,
and that there was an increased focus on
programming vocabulary.

Less talk by the teacher

One teacher, Teacher O¹³, had found that when
he initially taught programming he found that the
approaches he was using were ineffective for
his lower secondary school students, who were
struggling. Since using PRIMM, he talks less now
from the front of the class at the beginning of the
lesson and gives students tasks to do that focus
on the content of the code:

“In non-PRIMM lessons, I’m more talking about
fundamentals and just talking through some real
basics, like how to use a particular statement,
and I’m talking to a whole group and then I find
myself repeating myself going around the whole
group. With PRIMM lessons, I’m getting kids to
get onto the work and then I’m able to talk at a
much higher level about what’s going on in those
particular programs.” (Teacher O, secondary)

Both secondary and primary teachers noted the
difference in the amount and nature of the whole-
class talk:

“So I guess it lessens the me standing and talking
at the front of the classroom because traditionally
before this approach I probably would have put
the code up on the board and then talked through
it block by block and said, this is going to do this
and this is going to do that, and so on and so
forth, whereas it throws it out [and] it gets them
in the driving seat straightaway…” (Teacher N,
primary)

Student-student dialogue

Other teachers could specifically see the impact
of the PRIMM approach in facilitating a more

¹³ The 20 teachers in the study are referred to as Teacher A through to Teacher T.

8

Raspberry Pi Foundation Research Seminars

questioning approach amongst students:

“And they’ll go and say, but how did that work, why
does that work, why is mine not doing that? And I
think that PRIMM scaffolds that and allows them
to have those discussions. Whereas, before, even
with differentiation, they just could either do it or
they couldn’t do it.” (Teacher C, secondary)

Several teachers highlighted the impact of
verbalising on pupils’ understanding. This aligns
with research indicating that peer interaction
improves learning:

“They are more engaged in the code itself and
talking more about the code itself and what it
does and that use of language definitely does aid
their understanding.” (Teacher L, primary)

Students’ use of programming vocabulary

In the way that teachers discussed the use
of programming-specific terms there was an
indication that the use of PRIMM facilitated a
more confident use of programming vocabulary:

“But what I have found is moving to PRIMM is the
language the students are using is more improved
because they know… Well, what’s the variable?
There’s the variable… That is embedded over a
period of time as well. “ (Teacher G, secondary)

Other teachers were able to articulate why they
thought it was important to use talk to verbalise
how a program works, in that it gives learners
a language with which they can express their
understanding and supports the creation of a
mental model. Finally, a teacher reflects on the
fact that the focus on function and structure of
code was enabling them to ask more advanced
questions of the class or of individuals:
“I’m talking at a more advanced level to the
whole group, but for less time. When I’m asking
questions, they’re usually much more useful and
probing questions… “ (Teacher O, secondary)

This study is in its early stages and I plan to
report on it more in full in future publications.
There are also plans to corroborate indicative
findings with more research into actual
classroom dialogue. However at this stage
it appears that teachers believe that the
use of PRIMM to structure lessons, with the
collaborative, investigative exercises, gives
an opportunity for more, and potentially more
productive, dialogue. Teachers across the data
set reflected that they have found this way of
working enhances vocabulary use and a higher
level of conceptual understanding.

Conclusion

Ad hoc reports indicate that the use of PRIMM
to structure programming lessons has been
widely adopted across schools in England,
and also further afield in Australia, USA, and
Malaysia. Teachers are able to create their own
PRIMM materials by reworking their existing
programming lessons around the PRIMM
structure, or they can use or adapt resources
that are being developed and shared by resource
creators, including through the free, government-
funded Teach Computing Curriculum¹4 in
England, which uses PRIMM in many of the
programming units of work.

PRIMM is certainly a popular approach but
further research is needed to examine what
specific elements of it make a difference to
learner outcomes. Variations of PRIMM are
emerging which adapt the structure in different
ways, some with more emphasis on keywords
at the beginning (KPRIDE¹5), and others with a
stage for evaluation at the end (TIME¹6).

What PRIMM has achieved for many teachers
is an opportunity to reflect on, and examine, the
value of the different activities that they use in
the programming classroom. As all teachers
know, it is being a reflective practitioner, and
trying out different strategies, that improves
teaching over time. To this extent it doesn’t

¹4 http://teachcomputing.org/curriculum

¹5 https://blog.withcode.uk/2019/06/k-pride-tips-for-teaching-programming-so-everyone-can-make-progress/

¹6 https://craigndave.org/programming-with-time/

9

Raspberry Pi Foundation Research Seminars

really matter if every programming teacher
uses a different acronym or variation on the
theme, if they are able to reflect on the process
of teaching and the impact on the individual
students with whom they are working. Where
PRIMM really comes into its own is to support
new computing teachers, either new to teaching
or new to computing, who are struggling with a
class of young novice programmers, with varying
levels of interest and engagement, where there
is the potential for all the children to be “stuck”
at exactly the same time and all be in need of
teacher attention. The staged, gradual approach
of PRIMM builds confidence and ownership
of code one step at a time and focuses on
understanding not completed artefacts.

In this paper, the particular focus has been on
language due to the way that PRIMM promotes
the practice, both by teachers and students, of
talking out loud about what a program might do
(function) and how it might do it (structure). The
social and psychological functions of language
are both drawn on to promote confidence as well
as understanding, through talk and dialogue.
An initial study into this aspect of PRIMM has
shown some particular aspects of classroom
talk that are facilitated by the PRIMM structure:

• Specific questioning about code leads to
productive dialogue between students about
programming code

• Teachers use whole class teaching differently
at different stages of the PRIMM cycle

• Learning to use vocabulary to explain how a
program works is challenging for students

• Teachers using PRIMM see part of their
role as facilitating and focusing productive
classroom talk

More research is needed on the way that
classroom talk can support young novices
learning programming, and beyond the context
of PRIMM. It would be interesting to investigate
whether an intervention based on exploratory talk
(Mercer, 1995) would improve learning outcomes

in computing as it has done in other subjects.

10

Raspberry Pi Foundation Research Seminars

References
British Educational Research Association (BERA)
(2018) Ethical guidelines for educational research.
4th edn. Available at: https://www.bera.ac.uk/
researchers-resources/publications/ethical-
guidelines-for-educational-research-2018
(Accessed: 20 December 2020).

Braught, G. Ebay, L. M. and Wahls, T. (2008).
The effects of pair programming on individual
programming skill. ACM SIGCSE Bulletin 40, 1(2008),
200–204.

Braun, V. and Clarke,V. (2006). Using thematic
analysis in psychology. Qualitative research in
psychology 3, 2 (2006), 77–101.

Campbell, D. T., and Stanley, J.C, Experimental
and Quasi-Experimental Designs for Research on
Teaching. In N. L. Gage (ed.), Handbook of Research
on Teaching. Chicago: Rand McNally, 1963.

Dawes, L. (2004). Talk and Learning in classroom
science. International Journal of Science Education
26, 6 (2004), 677–695.

Denny, P., Luxton-Reilly, A., & Simon, B. (2008).
Evaluating a new exam question: Parsons problems.
In Proceedings of the fourth International Workshop
on Computing Education Research, 113-124.Diethelm,
I., & Goschler, J. (2015). Questions on Spoken
Language and Terminology for Teaching Computer
Science. Proceedings of the 2015 ACM Conference
on Innovation and Technology in Computer Science
Education, 21–26.

Diethelm, I., Goschler, J., & Lampe, T. (2018).
Language and Computing (In Sentance, S.,
Barendsen, E. and Schulte, C. Computer Science
Education. Perspectives on Teaching and Learning
in School. Bloomsbury Academic.. p. Chapter 15,
207-219).

Howe, C., Hennessy, S., Mercer, N., Vrikki, M., &
Wheatley, L. (2019). Teacher–Student Dialogue
During Classroom Teaching: Does It Really Impact on
Student Outcomes? Journal of the Learning Sciences,
28(4–5), 462–512.

Israel, M., Wherfel, Q.M., Shehab, S., Melvin, O. &
Lash, T. (2017). Describing Elementary Students’
Interactions in K-5 Puzzle-based Computer Science
Environments using the Collaborative Computing
Observation Instrument (C-COI). In Proceedings of
the 2017 ACM Conference on International Computing
Education Research (ICER ’17). Association for
Computing Machinery, New York, NY, USA, 110–117.

Izu, C., Schulte, C., Aggarwal, A., Cutts, Q., Duran, R.,
Gutica, M., ... & Weeda, R. (2019). Fostering program
comprehension in novice programmers-learning
activities and learning trajectories. In Proceedings
of the Working Group Reports on Innovation and
Technology in Computer Science Education (pp.
27-52).

Lahtinen, E., Ala-Mutka, K., J, H.-M., & rvinen. (2005).
A study of the difficulties of novice programmers.
Caparica, Portugal.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W.,

Erickson, J., Malyn-Smith, J., & Werner, L. (2011).
Computational thinking for youth in practice. ACM
Inroads, 2(1), 32-37.

Lewis, C. M. (2011). Is pair programming more
effective than other forms of collaboration for young
students?. Computer Science Education, 21(2), 105-
134.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Mostr, J. E., Sanders,
K., Sepp, O., l, Simon, B., & Thomas, L. (2004). A multi-
national study of reading and tracing skills in novice
programmers. Leeds, United Kingdom, 119–150.

Lister, R., Fidge, C. & Teague, D. (2009). Further
Evidence of a Relationship Between Explaining,
Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual
ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE
’09). ACM, New York, NY, USA, 161–165.

Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008).
Relationships Between Reading, Tracing and Writing
Skills in Introductory Programming. 101–112.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J.
(2006). Pair programming improves student retention,
confidence, and program quality. Communications of
the ACM, 49(8), 90-95.

Mercer, N. (1995). The guided construction of
knowledge: Talk amongst teachers and learners.
Multilingual matters.

Mercer, N., & Sams, C. (2006). Teaching Children How
to Use Language to Solve Maths Problems. Language
and Education, 20(6), 507–528.

Nowell, L. S., Norris, J. M., White, D. E., & Moules,
N. J. (2017). Thematic analysis: Striving to meet
the trustworthiness criteria. International journal of
qualitative methods, 16(1), 1609406917733847.

Nystrand, M., Wu, L. L., Gamoran, A., Zeiser, S., &
Long, D. A. (2003). Questions in Time: Investigating
the Structure and Dynamics of Unfolding Classroom
Discourse. Discourse Processes, 35(2), 135–198.

Qian, Y., & Lehman, J. (2017). Students’
misconceptions and other difficulties in introductory
programming: A literature review. ACM Transactions
on Computing Education (TOCE), 18(1), 1-24.

Porter, L., Bailey Lee, C., Simon, B., & Zingaro, D.
(2011, August). Peer instruction: Do students
really learn from peer discussion in computing?. In
Proceedings of the seventh international workshop on
Computing education research (pp. 45-52).

Robins, A., Rountree, J., & Rountree, N. (2003).
Learning and Teaching Programming: A Review and
Discussion. Computer Science Education, 13(2),
137–172.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., &
Paterson, J. H. (2010). An introduction to program
comprehension for computer science educators. In
Proceedings of the 2010 ITiCSE working group reports
(pp. 65-86).

Sentance, S. and Waite, J. (2017). PRIMM: Exploring
pedagogical approaches for teaching text-based
programming in school. In Proceedings of the 12th
Workshop in Primary and Secondary Computing
Education. ACM.
https://dl.acm.org/doi/10.1145/3137065.3137084

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching
computer programming with PRIMM: a sociocultural
perspective. Computer Science Education, 29(2–3),
136–176.

Sinclair, J.M. & Coulthard, M. (1975). Towards an
analysis of discourse: The English used by teachers
and pupils. Oxford Univ Press.

Sweller, J. (1994). Cognitive load theory, learning
difficulty, and instructional design. Learning and
instruction, 4(4), 295-312.

Tsai, C.-Y., Yang, Y.-F., & Chang, C.-K. (2015). Cognitive
Load Comparison of Traditional and Distributed Pair
Programming on Visual Programming Language.
Educational Innovation through Technology (EITT),
2015 International Conference Of, 143–146.Tsan, J.,
Lynch, C. F., & Boyer, K. E. (2018). “Alright, what do
we need?”: A study of young coders’ collaborative
dialogue. International Journal of Child-Computer
Interaction, 17, 61–71

Vahrenhold, J., Cutts, Q. & Falkner, K. (2019). Schools
(K–12). In The Cambridge Handbook of Computing
Education Research, Fincher, S.A & Robins, A.V.
(Eds.). Cambridge University Press, 547–583

Vainio, V., & Sajaniemi, J. (2007). Factors in Novice
Programmers’ Poor Tracing Skills. Proceedings of the
12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, 236–240.

van Merriënboer, J. J. G., & Sweller, J. (2005).
Cognitive Load Theory and Complex Learning: Recent
Developments and Future Directions. Educational
Psychology Review, 17(2), 147–177.
https://doi.org/10.1007/s10648-005-3951-0

Vygotsky, L.S. (1962). Thought and word. In
Studies in communication. Thought and Language,
Vygotsky,L.S., Hanfmann, £. & Vakar, G. (Eds.). MIT
Press, 119–153.

Vygotsky, L. S. (1978). Mind in society: The
development of higher psychological processes
Cambridge, Mass.: Harvard University Press.

Walqui, A. (2006). Scaffolding Instruction for English
Language Learners: A Conceptual Framework.
International Journal of Bilingual Education and
Bilingualism, 9(2), 159–180.
https://doi.org/10.1080/13670050608668639

Wilkinson, I. & Nelson, K. (2019). Role of Discussion
in Reading Comprehension. In Hattie, J., Anderman,
E.M. Visible Learning Guide to Student Achievement:
Schools Edition. Routledge

Zingaro, D. (2014, March). Peer instruction
contributes to self-efficacy in CS1. In Proceedings
of the 45th ACM technical symposium on Computer
Science Education (pp. 373-378).

https://www.bera.ac.uk/publication/ethical-guidelines-for-educational-research-2018
https://dl.acm.org/doi/10.1145/3137065.3137084
https://link.springer.com/article/10.1007%2Fs10648-005-3951-0
https://www.tandfonline.com/doi/abs/10.1080/13670050608668639

98

Raspberry Pi Foundation Research Seminars

www.raspberrypi.org @Raspberry_Pi@raspberrypi @raspberrypi raspberrypi

https://www.youtube.com/c/raspberrypi/featured
https://twitter.com/raspberry_pi
https://www.instagram.com/raspberrypi/?hl=en
https://www.facebook.com/raspberrypi/
https://www.raspberrypi.org/

