Building New Clubhouses of Computing

Introductory equity-oriented computer science with electronic textiles for high school students

Yasmin Kafai, University of Pennsylvania
Elaine Griggs, Pembroke High School and CS4Youth.
OVERVIEW

1. Clubhouses of Computing
2. ECS Stitching the Loop
3. Classroom Results
4. Portfolio Assessments
5. BREAKOUT DISCUSSIONS
6. What’s Next?
PART 1
BUILDING CLUBHOUSES OF COMPUTING
Electronic Textiles
Arduino

LilyPad Arduino

ATTiny to Arduino
improved design
mass producable
improved programmer
Figure 4. LilyPad and Arduino projects by gender.

(Arduino N = 114, LilyPad N = 57)
Circuits
void loop() {
 /* The third section is for things that happen repeatedly in the program loop
 while the program is running. The code is executed in the order coded. */

 int switch1storage = digitalRead(switch1);
 int switch2storage = digitalRead(switch2);
 Serial.println(switch1storage, switch2storage);
 /* The three lines above make the computer 1) look at
 whether the switches are open (i.e., "read" them)
 and print 1 or 0 to the serial monitor so we can look at them. */

 delay (100); // delay for 1/10 of a second every time it reads
 if (switch1storage == HIGH && switch2storage == HIGH) {
 // if both
 blinkingPattern1();
 }
 else if (switch1storage == HIGH && switch2storage == LOW) {
 // if 1, 0
 blinkingPattern2();
 }
Crafts
We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard loom weaves flowers and leaves.

Augusta Ada King,
Countess of Lovelace
1843
PART 2
STITCHING THE LOOP
OVERVIEW
Putting Making into Classrooms

CONTENT: How do we create a scenario where all kids are learning rigorous concepts about CS? *In schools?*

PERSONAL & CULTURAL: How do we support *personal and cultural relevance* in such a space?

TEACHING SUPPORT: How do we do this with just *one instructor* in the room?

EQUITY: How do we make sure that we promote equity?
Design Principles of E-textiles Curriculum

- **Four Projects** *(building on experience, no single point of failure)*
- **Drawing on Diverse Expertise** *(everyone brings something, everyone must learn something)*
- **Foregrounding Aesthetics** *(personal ownership & perseverance)*
- **Valuing Mistakes** *(process is important, portfolios)*
diversify who is making and what they are making.
E-Textile Projects

| #1 Paper Circuit (~1-2 hrs) | Single circuit project design: Create a simple paper circuit greeting card that includes one LED. Introduce the concept of aesthetic design and personalization. | Simple circuit
- Polarity
- Materials: LEDs, copper tape (wire), paper |
|---|---|---|
| #2 Wristband (~5-6 hrs) | Simple wearable project: Create a wristband with three LEDs in parallel and a switch that turns on the project when the ends of the wristband are snapped together. | Parallel circuit, switch
- Reading circuit diagrams
- Three-dimensional project
- Deconstruction
- Materials: Conductive thread, LEDs, fabric |
| #3 Collaborative Mural Project (~10 hrs) | Collaborative project: As a class create a mural, with each panel made by two students. Each panel must have five independently programmable LEDs and two switches, allowing for four blinking light patterns. | Programming: Sequences, conditionals, embedded conditionals or Boolean statements
- Collaborative work & division of labor
- Materials: Conductive thread, LEDs, fabric |
| #4 Human Sensor Project (~10-14 hrs) | Capstone project: Create a project with two aluminum foil patches that act as a sensor when both are touched by a person. Program four+ lighting patterns based on different sensor readings. | Sensor design (handcrafted)
- Programming: operators, sensor range, Boolean statements
- Materials: Conductive aluminum foil, human body, LEDs, fabric |
PART 3
STITCHING THE LOOP
RESEARCH

STITCHING the Loop

1. PAPER CIRCUIT
 "The beginning when we did the... paper, that was preparing us for the big projects."
 Task: Design and create a paper greeting card with 1 LED, a coin cell battery, and a sensor circuit.

2. CARD WITH A SENSOR
 "I was able to make something that I wanted. Anything... It was fun!"
 Task: Design and sew a computational circuit with 3-4 independently controlled LEDs and preprogrammed.

Year 2016: 2 classroom = 60 students
Year 2017: 4 classrooms = 98 students
Year 2018: 16 classrooms = 561 students

3. WRISTBAND
 "I would like some or found new ways to cross the stitching, especially with the bracelet, I found a way to cross it in a specific way."
 Task: Design and sew a 3D parallel circuit with a watch and 3 LEDs on fabric.

4. LILYTINY PROJECT
 CURRICULUM VALUES
 - Forefront aesthetics and design
 - Sequential clauses
 Task: Design and saw a computational circuit with 3-4 independently controlled LEDs and preprogrammed.

5. CAPSTONE PROJECT
 "It's different from the others... We're dealing with the sensors... I can call my own."
 Task: Design and create a project controlled by 2 touch sensors, Arduino microcontroller, & 4 independent LEDs.
Iterations of Curriculum Design

Year 1 (2015-16): Two teachers + 65 students
• Revisions: Consolidated projects, added portfolios
• Focus: Teaching practice

Year 2 (2016-17): Three teachers + 102 students
• Revisions: Further improved computing lessons
• Focus: “Average” student development (case studies)
• Focus: Portfolios as assessment and mode of student voice

Year 3 (2017-18): Fifteen teachers + 456 students
• Final touches: Better commented code

Quant research on the curriculum
School Demographics

- LARGE URBAN PUBLIC SCHOOL DISTRICT
 > 500,000+ students in K-12

- HIGH PERCENTAGE OF MINORITIES (72-99%)
 Predominantly African-American and Latino high school students

- HIGH PERCENTAGE OF REDUCED LUNCH
 Low SES

Research on the curriculum
Survey Instrument (Validated!)

Confidence/Competency in STEM: Sample questions
- I think I am very good at: Figuring out how to fix things that don't work.
- I think I am very good at: Explaining my solutions to technical problems.

Fascination with STEM: Sample questions
- I love designing things!
- I want to learn as much as possible about computer science

Expression: Computer Science & Creativity/Personal Expression
- I can be creative in computer science.
- I can express myself in computer science

Value of CS
- Knowing computer science is important for contributing to my community.
- Knowing computer science is important for me in the future
FINDING 1: CS Perceptions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-Survey Mean (SD)</th>
<th>Post-Survey Mean (SD)</th>
<th>Demographic Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence</td>
<td>15.04 (2.2)</td>
<td>15.54 (2.397)*</td>
<td>None</td>
</tr>
<tr>
<td>Fascination</td>
<td>12.58 (2.334)</td>
<td>12.89 (2.307)*</td>
<td>None</td>
</tr>
<tr>
<td>Expression</td>
<td>9.6 (2.00)</td>
<td>10.03 (1.808)*</td>
<td>None</td>
</tr>
<tr>
<td>Value</td>
<td>6.33 (1.314)</td>
<td>6.27 (1.364)</td>
<td>Gender**</td>
</tr>
</tbody>
</table>

Note *p<0.05, **p<0.001
FINDING 1: CS Perceptions

No differences with regard to gender, ethnicity, home language, or family education

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pre-Survey Mean (SD)</th>
<th>Post-Survey Mean (SD)</th>
<th>Demographic Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence</td>
<td>15.04 (2.2)</td>
<td>15.54 (2.397)*</td>
<td>None</td>
</tr>
<tr>
<td>Fascination</td>
<td>12.58 (2.334)</td>
<td>12.89 (2.307)*</td>
<td>None</td>
</tr>
<tr>
<td>Expression</td>
<td>9.6 (2.00)</td>
<td>10.03 (1.808)*</td>
<td>None</td>
</tr>
<tr>
<td>Value</td>
<td>6.33 (1.314)</td>
<td>6.27 (1.364)</td>
<td>Gender**</td>
</tr>
</tbody>
</table>

Note *p<0.05, **p<0.001*
Rubric for Human Sensor Project

• Coding (30 points)
 - for having the general structure of code including variable declaration, input/output setup and the appropriate conditionals (15 points),
 - four complete lighting pattern functions (5 points),
 - appropriately commented code (5 points)
 - functional sensors (5 points).

• Circuity (20 points)
 - for the completion and clarity of the circuit design (15 points),
 - functionality of the LED circuits themselves (5 points).

• Design & Craft (50 points)
 - for fulfilling the basic requirements of having four independently controllable lights and two sensor patches (10 points),
 - aesthetics and finishing (15 points),
 - sewing (15 points),
 - design notebook completion (10 points).

Quant research on the curriculum
Rubric for Human Sensor Project

<table>
<thead>
<tr>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Complete Lighting Patterns</td>
</tr>
<tr>
<td>5 pts</td>
</tr>
<tr>
<td>- There are four functional lighting patterns (i.e., would work if circuits were perfect). Each is different in some way.</td>
</tr>
<tr>
<td>15 pts</td>
</tr>
<tr>
<td>- The code is great! Each input and output has been declared in the Naming Section and set to output/input as needed in the Setup Section. Needed variables are entered correctly and used consistently. Conditionals are programmed.</td>
</tr>
</tbody>
</table>
FINDING 2: CS Competencies

Design & Craft
- 102.0%
- 92.0%
- 87.7%
- 82.0%
- 58.0%

Circuitry
- 100.0%
- 86.8%
- 75.0%
- 66.7%
- 33.3%

Coding
- 100.0%
- 86.7%
- 75.0%
- 60.0%
- 33.3%

All Categories
- 93.0%
- 83.0%
- 79.5%
- 70.0%
- 44.0%

Teacher Evaluation of Coding and Circuitry (Human Sensor Project) (Percentage Score)
For students who finished the final, human sensor project:
- Overall **good performance on the final project** was significantly correlated with increases in:
 - Fascination in CS
 - Expression with CS
 - Confidence in problem solving
 - Confidence in coding
- **Performing well in coding** (on final project) was significantly correlated with:
 - All of the above
 - + Valuing CS
- **Prior teacher experience with e-textiles unit**
 - Positive correlation with final project performance & portfolio performance

Quant research on the curriculum
<table>
<thead>
<tr>
<th>Self as a Computer Science (CS) Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Skills: Students explicitly linked growth as a computer scientist with specific skills they learned, such as sewing, coding, or making circuits.</td>
</tr>
<tr>
<td>Problem-Solving: Students called themselves problem-solvers and related this to doing computer science or being a type of computer scientist.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self and CS as Personal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioemotional: Students described how doing the project or the project itself demonstrated personal characteristics they held, such as dedication, perseverance, patience, getting out of one’s comfort zone, making mistakes, or collaborating with others.</td>
</tr>
<tr>
<td>Relational: Students expressed a relationship with a friend, family member, or teacher that either provided feedback on the e-textile project, involved collaboration, or made a project intended for someone else.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self and the CS Field at Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Intentions: Students discussed themselves in a future tense in relation to computer science in the context of applications outside the classroom such as future jobs or in other projects.</td>
</tr>
<tr>
<td>New Realizations: Students describe new realizations of what computer science is or what it can include.</td>
</tr>
</tbody>
</table>
TAKE-HOME POINTS

• E-textiles unit helped to broadening CS Perceptions
 — No gender differences, even male students benefited from e-textiles.
 — Similar for ethnicity, student home background.
• Validated survey that looks at Creativity/Expression within CS
• A Series of projects is important.
 — Performance was stronger where they encountered a concept a second time.
PART 4
ETEXTILE PORTFOLIO ASSESSMENTS
Process of making your project

One main challenge that I faced while making this project was setting up my circuit diagram. I had trouble setting up where all of my lights were gonna be placed at, and I had trouble color coding where the negatives and positives would be at. I sketched about 6 different papers and the 6th page was the one that came out fine because all of the other ones had negative and positives crossing which was not gonna help the program work, so I was finally able to get my diagram correct.
Analyzing Student Process-based Portfolios

- What do you see in the student’s portfolio on the next several slides?

QUAL - ground-up research on portfolios
Analyzing Student Process-based Portfolios

- What do you see in the student’s portfolio on the next several slides?

If it were you, what would you be interested in analyzing?
Analyzing Student Process-based Portfolios

- What do you see in the student’s portfolio on the next several slides?

Things to consider:

QUAL - ground-up research on portfolios
Analyzing Student Process-based Portfolios

- What do you see in the student’s portfolio on the next several slides?

Things to consider:
- Problem solving/debugging/troubleshooting
- Identity & personal relevance
- Content learned
- Communication through text, images, and annotation

QUAL - ground-up research on portfolios
Part 1

- For my project I created a lightsaber from star wars
- I put the foil on the gray part/handle which connected to my lights and circuit playground/blue part.
- They are 4 lighting patterns and you squeeze the foil at different strengths to get the different patterns.
- Pattern 1 is for them all to turn on at the same time and then turn off at the same time
- Pattern 2 is for one to turn on the n the 2nd light and lastly the third light Then the 1st lights turns of then the second light and lastly the 3rd light to turn off.
- Pattern 3 is the first one turns on then it turn off. Then the second light comes on then off. Lastly the third lights turns on then of.
- Pattern 4 is they flash like pattern1 but at a much faster pace.
Student Portfolio
Coding Challenge

Wrong Version

```java
if(sensorValue>=1000){pattern1();
if(sensorvalue>=900 &&
sensorValue<1000){pattern2();
if(sensorvalue>=800 && sensorValue<900){pattern3();
if(sensorValue<800){pattern4();
```

This is the wrong code. The problem I had was that I was putting the semicolon outside of the bracket. But the revision I needed was putting the semicolon inside of the bracket. That problem was a hard one to see because it is a very minor problem and most people wouldn’t have caught it.

Right Version

```java
if(sensorValue>=1000){
    pattern1();
}
if(sensorValue>=900 && sensorValue<1000)
    {pattern2();}
if(sensorValue>=800 && sensorValue<900){pattern3();}
if(sensorValue<800){pattern4();}
```
Sewing Challenge

The challenge I had sewing was trying to connect the handle to saber part, or the gray to the blue part. Once I sewed that I had to figure out how to connect the foil which was on the gray part to the circuit playground on the blue part. Another sewing challenge is that there was a tear in the blue strip so I had to sew the blue strip together.
Reflection

During the e-textiles unit the major thing that I have improved on was my sewing. Before this unit I didn’t know how to sew. I first thought you need a sewing machine to sew but now I realize that that isn’t true. You can just use your arms, needle and thread with no machine. Learning how to sew is amazing. This skill will be helpful because I no longer need to ask my mom to sew something if I get a small tear in my clothes. So this new skill I learned will be able to help me once I get to college and I will not have to pay cleaners to fix my clothes, but instead I will be able to fix them.
Student Portfolio
Here’s some of what we saw…

- Thoughtful Practices Expressed in Portfolios:
 - Observing a problem
 - Isolating a problem/root cause
 - Testing and/or refining something iteratively
 - Describing a solution
 - Planning to avoid a problem preemptively
 - Changing a project to make it more usable to a wider audience

QUAL - ground-up research on portfolios
Coding Challenge

Wrong Version

```java
if(sensorValue>=1000){pattern1();
if(sensorvalue>=900 &&
sensorValue<1000){pattern2();
if(sensorvalue>=800 && sensorValue<900){pattern3();
if(sensorValue<800){pattern4();
```

This is the wrong code. The problem I had was that I was putting the semicolon outside of the bracket. But the revision I needed was putting the semicolon inside of the bracket. That problem was a hard one to see because it is a very minor problem and most people wouldn't have caught it.

Right Version

```java
if(sensorValue>=1000){
    pattern1();
}
if(sensorValue>=900 && sensorValue<1000)
    {pattern2();}
if(sensorValue>=800 && sensorValue<900){pattern3();}
if(sensorValue<800){pattern4();}
```
Sewing Challenge

The challenge I had sewing was trying to connect the handle to saber part, or the gray to the blue part. Once I sewed that I had to figure out how to connect the foil which was on the gray part to the circuit playground on the blue part. Another sewing challenge is that there was a tear in the blue strip so I had to sew the blue strip together.
Challenge #2 Programming

Challenge #2 was programing. During this project since it was all on our own, it was really hard for me to program because I had trouble starting it. I didn’t know exactly where things needed to be, or needed to go. When I input my code into code bender the results came back with many errors but with the help of Selegna and Hector I was able to know what to do. Even though all of my lights were lighting up, I still needed to add some patterns into my program in order for it to work completely and in order for me to get full points. Here are some images of my program on the right.
Students Creating Identities through Portfolios

- Thoughtful Identities & CS Descriptions Expressed in Portfolios:
 - CS is personal & social (collaborative)
 - Students could see themselves in the CS community
 - Students identified as different types of computer scientists
 - Functional skills
 - Problem solvers

QUAL - ground-up research on portfolios
PART 5
BREAKOUT DISCUSSIONS

1 Can you think of other examples for new clubhouses of computing?

2 Bringing e-textiles into your classrooms: What do you see as challenges? What as opportunities?

3 What will you take from e-textiles back to your classroom/research?
PART 6
What’s NEXT?
Timeline of our research

2010-2012
Pilot e-textiles workshops
2 years
Museum Elective workshop

2012-2014
Pilot e-textiles university class
(semester long)
Two years

2015-2019
Exploring Computer Science Curriculum development
Year 1: 2 teachers Teacher-focus
Year 2: 4 teachers Student-focus
Year 3: 16 teachers Quant-focus

2018-2021
Debugging by Design Unit Development
Year 1: Student case studies
Year 2: Test unit
Year 3: Quasi experimental study: 4 teachers, 11 classes

2021+
ECS Online PD +
E-textiles implementation
Year 1: 8 teachers
Year 2: 13 + 8 teachers
QUAL & QUANT - research on e-textiles curriculum in schools

Teacher Learning & Equitable Practices
- Experienced teachers’ learning & development
- PD design: building community

Student Learning & Identification
- Student identity & claiming CS in portfolios
- Emerging adaptations

Student debugging strategies:
- Non-linear & fluid
- Designing bugs
- Growth mindset practices

Process-based portfolios for CT, problem solving
- Student interest & learning (quant)
- Student growth mindset, emotion, interest (quasi experimental study)

Emergent adaptations
- Artistic & personal dimensions of computational projects

Growth mindset practices
- Student debugging strategies: non-linear & fluid

Student interest & learning
- Student growth mindset, emotion, interest (quasi experimental study)
- Debugging by Design
 - Validated instrument on student self-beliefs
 - Quasi experimental study: did DbD make a difference versus the normal e-textile unit?
 - Pre/post clinical interviews about debugging

- Online Teacher PD
 - Online professional development + implementation of e-textiles curriculum
 - Experienced CS teachers, over 1-year, 2-years

- Critical Computing (Mia Shaw)
 - Recoding CS Identities
 - E-textile Mural Project for Collaborative Inquiry into What and Who Computing is for

- Debugging Wearable AI (Luis Morales-Navarro)
 - Making Wearables Work
 - What do students know about AI?
 - Science Center workshops