UTER SCIENCE & ENGINEERING UNIVERSITY OF MICHIGAN

Mark Guzdial

THE TWO CUITURES AND THE scientific revolution

1959

2

Today's Story

- Computing was created to be taught to everyone.
- Are we reaching everyone now? (Hint: "No.")
- - For History: DV4L
 - For Mathematics/Engineering: Pixel Equations
 - For Mathematics/Combinatorics: Counting Sheet
- Big question: What are students learning?

Teaspoon languages as a way to change computing to reach everyone.

and the world of the future MARTIN GREENBERGER

amuses more harmlessly than computation, and nothing is oftener applicable to real business or speculative inquiries. A thousand stories which the gnorant tell, and believe, die away at once when the computist takes them in his grip.

SAMUEL JOHNSON

Carlos	
Speaker	SIR CHAR Author London, I
Discussants	ELTING E Professor Massachu Norbert Institute I Massachu
Moderator	Howard Dean and Massachus

RLES PERCY SNOW

England

. MORISON of Industrial History setts Institute of Technology WIENER Professor, Emeritus setts Institute of Technology

W. JOHNSON Professor of Industrial Management setts Institute of Technology

"A handful of people, having no relation to the will of society, having no communication with the rest of society, will be taking decisions in secret which are going to affect our lives in the deepest sense."

⁹⁸⁹ H	2 - A			4
				Charles Martin
and	tho u	unrid n	t tha t	uturo
allu		vullu u	Ι ΠΙΟ Ι	ului G
			EDITED BY MARTI	N GREENBERGER

Nothing amus	ses more	harmlessly	than t	computati	on, and nothing	is oftener
applicable to	real busine	ess or specul	lative i	inquiries. /	A thousand storie	es which the
ignorant tell,	and belie	ve, die awa	y at o	once when	the computist	takes them
in his grip.					1 plan	

- SAMUEL JOHNSON

152.45

Speaker	ALAN J. PERLIS Director of the Computation Center Carnegie Institute of Technology
Discussants	PETER ELIAS Head, Department of Electrical Engine Professor of Electrical Engineering Massachusetts Institute of Technology J. C. R. LICKLIDER Vice President Bolt Beranek & Newman Inc.
Moderator	DONALD G. MARQUIS Professor of Industrial Management Massachusetts Institute of Technology

Programming changes how we understand

1961

	5
	The
	Comput
	in the
	Univers
s Computation ute of Technol	Center logy
ient of Electric ectrical Engine Institute of Te	al Engineering ering chnology
JDER	
Newman Inc.	
languis dustrial Manag	ement
austinit working	outone

1000

Alan Perlis

Photo: CMU

First published definition of Computer Science

"The study of computers and all the phenomena surrounding them." *Science*, 1967

This is broader than how most people define computer science today. Let's call this Computing

Alan Perlis

Herb Simon

Alan Newell

Percentage of US high school students enrolled in a CS course

By Gender

COMPUTER SCIENCE & ENGINEERING

Computer science in high schools is growing very slowly

- In England (from Roehampton Report 2018):
 - 53% of schools offer CS GCSE, 12% of students take it.
 - < 20% female
 - 36% offer A Level CS, under 3% take it.
 - < 10% female

Data from Peter Kemp

Fig. 2. GCSE computer science and ICT: influence of IDACI on uptake by gender.

BOTTOMLINE:

THE MAJORITY OF SECONDARY SCHOOL **STUDENTS IN THE US AND ENGLAND HAVE NEVER SEEN COMPUTER SCIENCE**

COMPUTER SCIENCE & ENGINEERING

AP US History vs. AP CS Principles

399K vs 114K

>50% female vs. <30% female

6x more Black

14x more Hispanic

Teaspoon Languages

 A Teaspoon language is a task-specific programming (TSP) language — specification of process to be executed by a computational agent.

Adding a teaspoon of computing to other subjects.

- CS teacher wants to achieve.
- **USABLE**: Can be learned in less than 10 minutes

USEFUL: Supports a task (learning activity) that an other-than-

#1: DV4L: Data Visualization for Learning

For History Courses

Collaboration with Tammy Shreiner

History In Data Data HELP Enter Driving Question Understand Unde	Graphs
Graph 1: Database (y-axis): Year Range (x-axis): 1800 Craph type: bar Color: SUBMIT Database (y-axis): Populations Location: Rwanda Year Range (x-axis): 1800 Cottor: Rwanda Year Range (x-axis): 1800	1400000 1200000 1200000 1000000 8000000 6000000 0 <td< td=""></td<>

History In Data Visualizations

Graphs

Are there any noticeable differences in the trend of population growth in the following countries? Why?

#2: Pixel Equations For Math and Engineering classes

x > 200 255 y < 200	
y < 200	A
	2 * green
blue > 200	
x = y - 20	Ο

Result Picture Appears Here:

Show Result

300 400 500 500 500 700 800 900 10

Pixel Equations

Select your preferred language

English Idioma/Language

Step 1: Pick your input picture Which picture would you like to use?

File named: arch.jpg

File named: Bayamon.jpeg

File named: beach.jpg

File named: dog.png

File named: san-juan.jpeg

File named: TSM-Map.png

File named: detroit.jpg

File named: DetroitSkyline.jpg

*

which will select all pixels where the x coordinate is greater than the y coordinate.

Then write equations for how to change red, green, and blue (rojo, verde, y azul) for the selected pixels. You can invert each color by subtracting from 255 (e.g., set red/rojo to 255-red (0 255-rojo)).

Set R Asigi	
255	
1.	
4	

Result Picture Appears Here:

Show Result

200

set rea/rojo to 255-rea (0 255-rojo)).

lf this is true Si esto es cierto	Set F Asig
x > 200	255
y < 200	
•	
	10
	1

Result Picture Appears Here:

Show Result

0 100 200 300 400 500 600 700 800 800 900 10000 10000 11000 12000

200 400 500

Red Set Green Set Blue nar Rojo Asignar Verde Asignar Azul

men write equations for now to change red, green, and blue (rojo, verde, y azur) for the selected pixels. You can invert each color by subtracting from 255 (e.g., set red/rojo to 255-red (o 255-rojo)).

OFF
255
4
1

Result Picture Appears Here:

Show Result

Set Green Set Blue ?ed nar Rojo Asignar Verde Asignar Azul

12000

#3: Counting Sheets Elise Lockwood: Teaching combinatorics with Python

Student challenge: How many arrangements do you expect to get from the letters in the word **ROCKET?**

- No repeated letters
- Order matters

Why do you think that? How will the list of outcomes be structured?


```
arrangements = 0
People = ['R', 'O', 'C', 'K', 'E', 'T']
for p1 in People:
    for p2 in People:
        if p2 != p1:
            for p3 in People:
                if p3 != p1 and p3 != p2:
                    for p4 in People:
                        if p4 != p3 and p4 != p2 and p4 != p1:
                             for p5 in People:
                                 if p5!=p4 and p5!=p3 and p5!=p2 and p5!=p1:
                                     for p6 in People:
                                         if p6!=p5 and p6!=p4 and p6!=p3 and p6!=p2 and p6!=p1:
                                             arrangements = arrangements + 1
                                             print(p1, p2, p3, p4, p5, p6)
print(arrangements)
```

"Reinforcing key combinatorial ideas in a computational setting: A case of encoding outcomes in computer programming," 2021, Journal of Mathematical Behavior, Lockwood and De Chenne

Counting Sheet Interactive Tool

First time here?

2: Shirts and pants	~	
Counting Sheet: 0		
col1	col2	col3
tee,polo,swea ter	jeans,khaki	
Generate Chart O Results: ①	utput O	
tee jeans		
polo jeans		
polo khaki		

sweater jeans

sweater khaki

Collaboration with Elise Lockwood

WHAT ARE STUDENTS **LEARNING HERE?**

Is this computing education?

COMPUTER SCIENCE & ENGINEERING

Rich, Strickland, Binkowski, Moran, and Franklin (ICER 2017) asked the question:

What's the starting place for K-8 CS learners?

Figure 3: Sequence learning trajectory.

Figure 4: Repetition learning trajectory.

Proposed: What comes first when learning programming?

- 1. Precision and completeness are important when writing instructions in advance.
- 2. Different sets of instructions can produce the same outcome.
- 3. Programs are made by assembling instructions from a limited set.
- 4. Some tasks involve repeating actions.
- 5. Programs use conditions to end loops.

Figure 3: Sequence learning trajectory.

Figure 4: Repetition learning trajectory.

Scratch fluency doesn't need that whole list

- Over 60 million users.
- Most Scratch projects are stories that use...
 - Only Forever loops
 - No booleans
 - Just movement and sequence.

There is *expressive* power in even a subset of CS.

Active to the Untilled-	1 (Jhan) (7) See Community	Cive Feedback	Cl. 👩 seniorest •
Blooks Costumes Sounds		N •	x 🖬 🗊
Motion Motion Looks Sound Sound Cverts Do to recom position *			
Control plots 1 more to x: (21) y: (8) Sensing plots 1 more to x: (21) y: (8) plots 1 more to x mandom position + Coperators Um (* 15 degrees Um (* 15 degrees	rowwer move () steps x position x (20) mer set x lo (18)		
My Blocks point in direction (9) point lowards mouse-pointer - shange x by (1)		Sprite Call Pying ++ x Drow O O Bis 100 Call Flying Call Flying	0 1 y 00 Stegar Director 60 Backdrops 2
ent x to 21		9 3	00

Bootstrap: Algebra doesn't use all of that list

- Improves learning in algebra
- Students do not code repetition.

Functional

Unit	Game Feature	Programming Concept	Math Concept
1	locating elements on screen	expressions, Circles of Evaluation	coordinates
2	creating text and images	string and image operations	domain, range, kinds of data
3–5	making moving images	defining functions, examples	multiple function representations: as formulas and as tables
6	determine when game elements are off-screen	Booleans and Boolean operators	inequalities
7	responding to key-presses	conditional	piecewise function
8	collision detection	(nothing new)	Pythagorean Theorem
9	polishing games for presentation	code reviews	explaining math concepts to others

Figure 1: Curriculum structure: each unit introduces game, programming, and math concepts in parallel.

There is *learning* power in even a subset of CS.

Schanzer, Fisler, Krishnamurthi, Felleisen, 2015

Learning challenges that our teachers face

- Intermediate representations:
 - program execution).
- **Debugging**:
 - your intention. the result, you will have to debug.

And probably our students, too.

Much of computing involves use of a notation (HTML, programs) that is interpreted by a computer for a final result (web page,

The computer only interprets your notation — it does not know

When the interpretation does not match what you intended for

REPEATING THE BOTTOMLINE:

THE MAJORITY OF SECONDARY SCHOOL **STUDENTS IN THE US AND ENGLAND HAVE NEVER** SEEN COMPUTER SCIENCE

We don't know much about teaching <u>all</u> students about computing

COMPUTER SCIENCE & ENGINEERING

This too is Programming

A place to learn about intermediate representations and debugging. Useful tools in social studies, mathematics, and engineering.

	UPLOAD SCRIPT DEFAULT CLEAR HELP	14000	col1	col2	col3
("DB": "Po "Yaxis": "I "lowDate" "highDate "gtype": "I "color": "o }	pulations", Rwanda", " 1800, " 2019, bar", nange"	8000 8000 6000 4000 2000	r,o,c,k,e,t	= data1 minus item1 after index1	= data2 menos ítem2
("DB": "Po "Yaxis": " "lowDate" "highDate "gtype": " "color": "d	pulations", Congo", * 1800, * 2019, bar", larkBrown"	600000 500000 400000 300000	Generate Cha Results: ① r o c r o k r o e	art Output ()	
We are and Sp	e developing panish keywo	Teas	spoon lan	guages with	English

2/3 of the world does not speak English.

Reaching everyone requires new languages and tools

If this is true Si esto es cierto	Set Red Asignar Re	Set Green ojo Asignar Ver	Se de As
red < 120	rojo*2		
blue > 250			20
verde > 120		80	

Step 3: Run Equations

Result Picture Appears Here:

Teaspoon Languages as a CS for All Strategy

- Hour of Code: One hour of a Turing-complete programming language every year.
- Teaspoon Languages: One to three little languages in every social studies, mathematics, and language arts class.
- Which results in more retained and transferrable CS learning? Which creates more of a school culture about using programming across disciplines?

If this is true Si esto es cierto	Set Red Asignar Re	Set Green Dio Asignar Verg	Set Blue de Asignar Azul
red < 120	rojo*2		
blue > 250			200
verde > 120		80	
	1		
Step 3: Run Equations	201		
Result Picture Appears	Here:		
Charles and the second s			
- 10 Ma			
Bas Alle			

Time to Play with **PROTOTYPES**

For history: DV4L

Graph 2:

ph type: bar 🗸 Color:

For Mathematics/Engineering: **Pixel Equations**

For Mathematics/Counting: **Counting Sheets**

Si esto es cierto Asignar Rojo Asignar Verde Asignar / x > 200 255 y < 200 2 * green blue > 200 blue / 2 x = y - 20 0 0 Step 3: Run Equations Step 3: Run Equations Step 3: Run Equations	f this is true	Set Red	Set Green	Set Blue
x > 200 255 2 4 green 2 4 green 2 4 green 2 5 5 2 5 2 5 2 5 2 5 2 5 5 2 5 5 5 5	Si esto es cierto	Asignar Ro	ojo Asignar Vere	de Asignar A
y < 200 2 * green blue > 200 blue > 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	x > 200	255		
blue > 200 blue / 2 blue / 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	y < 200	10	2 * green	
x = y - 20 0 0 0 0	blue > 200			blue / 2
Step 3: Run Equations	x = y - 20	0	0	0
Step 3: Run Equations		1		
Den de Dictore Accesse Llance	Step 3: Run Equations			
		Here:		
n para na 1997 na na tan 2997 na	Result Picture Appears Show Result	Here: 500		1
is na hara din na hara din Na hara din na h	Result Picture Appears	Here:	ntan ^{jese} tan hartan ^j esetan laa	
n panlan na 1997 na dan na 1	Result Picture Appears	Here:	1990 taulaa taul 200 taulaan	
	Result Picture Appears Show Result upted on the first of	Here:		taal999 kaadaastaal999 ka
	Result Picture Appears	Here:	nter##tudutu##tudor	1001 99 10010010019910
	Result Picture Appears	Here:	nder Witzeler der Mitzeler	talWhalantadWh
	Result Picture Appears Show Result Up to the second	Here:	nteel990 teelesteel990 teelese	ta Minda ta Min
	Result Picture Appears Show Result uppediate the second se	Here:	n teol ⁹⁹⁹ t color teol ⁹⁹⁹ t color	tau 1999 tau dan tau 1999 ta
	Result Picture Appears Show Result upted on the Instantial Part of the Instantial	Here:	n tradëst tradou tradëst tradou	tau 199 kauluo tau 199 ku
	Result Picture Appears Show Result a parlamentation and an angle and an angle	Here:	n traditti talan ta 200 tralam	taa 199 taa baataa 199 ta

o c o k

Questions to Think About

- What would it take to get other-than-CS teachers in your schools to try a Teaspoon language?
- Do you see students struggling with the fundamental issues of intermediate representations and the left side of the learning trajectories?
- How would you improve Teaspoon languages? For what tasks should we be developing new Teaspoon languages?

5: 2 Ltr Words without	It Rep or Reuse from Rocket ~	
Counting sheet: 0	12	<i>a</i> .
100	0012	col3
r,o,c,k,e,t	wdata1 after index1 minus slot1	
	slot1	
Generate Chart	Output 0	
Results: You can	select the results and copy them into 1	he Analysis Tool
ro		
rc		
rk		
10		
rt		

Collaborators on This Work

- Adaline de Chenne.
- Houghton.
- http://computinged.wordpress.com
- http://guzdial.engin.umich.edu

Bahare Naimipour, Tamara Nelson-Fromm, Emma Dodoo, Tammy Shreiner, Elise Lockwood,

Undergraduate researchers: Aryan Bannerjee, Alexandra Rostkowycz, Erin Shi, Brandon Geng, Jessica Zhang, Ben Steinig, Kashmira Reddy, Kristen Taurence, Angela Li, Derrick White, Jessie

Some of this material is based upon work supported by the National Science Foundation under Grant No. 2030919. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Thank you!

SPARE SLIDES

COMPUTER SCIENCE & ENGINEERING

