
Adding a Teaspoon of Computing to History and Mathematics
Classes
Mark Guzdial 1

2

1959

Today’s Story

▪ Computing was created to be taught to everyone.

▪ Are we reaching everyone now? (Hint: “No.”)

▪ Teaspoon languages as a way to change computing to reach everyone.
▪ For History: DV4L
▪ For Mathematics/Engineering: Pixel Equations
▪ For Mathematics/Combinatorics: Counting Sheet

▪ Big question: What are students learning?

3

1961

4

“A handful of people, having no
relation to the will of society,

having no communication with the
rest of society, will be taking

decisions in secret which are going
to affect our lives in the deepest

sense."

Alan Perlis

1961

Photo: CMU 5

Programming changes how we understand

First published definition of Computer Science

“The study of computers and all the
phenomena surrounding them.”

6

Alan Perlis

Herb
Simon

Alan
Newell

Science, 1967

This is broader than how most people define
computer science today.
Let’s call this Computing

Percentage of US high school students enrolled in a CS course

4.7%

8

4.7%

Computer science in high schools is growing very slowly
▪ In England (from Roehampton Report

2018):
▪ 53% of schools offer CS GCSE,

12% of students take it.
▪ < 20% female

▪ 36% offer A Level CS, under 3% take
it.
▪ < 10% female

9

Data from Peter Kemp

BOTTOMLINE: 

THE MAJORITY OF SECONDARY SCHOOL
STUDENTS IN THE US AND ENGLAND HAVE NEVER
SEEN COMPUTER SCIENCE

10

AP US History vs. AP CS Principles

 399K vs 114K

>50% female vs. <30% female 

6x more Black

14x more Hispanic

Teaspoon Languages

▪ A Teaspoon language is a task-specific programming (TSP)
language — specification of process to be executed by a
computational agent. 
 
Adding a teaspoon of computing to other subjects.  

▪ USEFUL: Supports a task (learning activity) that an other-than-
CS teacher wants to achieve. 

▪ USABLE: Can be learned in less than 10 minutes

12

#1: DV4L: Data Visualization for Learning
For History Courses Collaboration with Tammy Shreiner

#2: Pixel Equations
For Math and Engineering classes

#3: Counting Sheets

Student challenge:
How many arrangements
do you expect to get from
the letters in the word
ROCKET?
• No repeated letters
• Order matters
Why do you think that?
How will the list of
outcomes be structured?

22

“Reinforcing key combinatorial ideas in a computational setting: A case of
encoding outcomes in computer programming,” 2021, Journal of Mathematical
Behavior, Lockwood and De Chenne

Elise Lockwood: Teaching combinatorics with Python

Counting Sheets

23Collaboration with Elise Lockwood

WHAT ARE STUDENTS
LEARNING HERE?

Is this computing education?

24

25

Rich, Strickland,
Binkowski, Moran,
and Franklin (ICER
2017) asked the
question:

What’s the starting
place for K-8 CS
learners?

Proposed:  
What comes first when learning programming?

1. Precision and completeness are important
when writing instructions in advance.

2. Different sets of instructions can produce the
same outcome.

3. Programs are made by assembling
instructions from a limited
set.

4. Some tasks involve repeating actions.

5. Programs use conditions to end loops.

26

Scratch fluency doesn’t need that whole list

▪ Over 60 million users.
▪ Most Scratch projects are stories

that use…
▪ Only Forever loops
▪ No booleans
▪ Just movement and sequence.

There is expressive
power in even a subset

of CS.

27

Bootstrap:Algebra doesn’t use all of that list

▪ Improves learning in algebra

▪ Students do not code repetition.

▪ Functional

There is
learning power

in even a subset of CS.

28Schanzer, Fisler, Krishnamurthi, Felleisen, 2015

Learning challenges that our teachers face

▪ Intermediate representations:
▪ Much of computing involves use of a notation (HTML, programs)

that is interpreted by a computer for a final result (web page,
program execution).

▪ Debugging:
▪ The computer only interprets your notation — it does not know

your intention.
When the interpretation does not match what you intended for
the result, you will have to debug.

29Work by Bahare Naimipour and Tamara Nelson-Fromm

And probably our students, too.

REPEATING THE BOTTOMLINE: 

THE MAJORITY OF SECONDARY SCHOOL
STUDENTS IN THE US AND ENGLAND HAVE NEVER
SEEN COMPUTER SCIENCE

30

We don’t know much about teaching all students about computing

This too is Programming

A place to learn about intermediate representations and debugging.
Useful tools in social studies, mathematics, and engineering.

31

We are developing Teaspoon languages with English
and Spanish keywords.

2/3 of the world does not speak English.

Reaching everyone requires new languages and tools

Teaspoon Languages as a CS for All Strategy

▪ Hour of Code: One hour of a Turing-complete
programming language every year.

▪ Teaspoon Languages: One to three little
languages in every social studies,
mathematics, and language arts class. 

▪ Which results in more retained and
transferrable CS learning?
Which creates more of a school culture about
using programming across disciplines?

32

Time to Play with PROTOTYPES

▪ For history: DV4L

▪ For Mathematics/Engineering:
Pixel Equations

▪ For Mathematics/Counting:
Counting Sheets

33

Questions to Think About
▪ What would it take to get other-than-CS

teachers in your schools to try a Teaspoon
language?

▪ Do you see students struggling with the
fundamental issues of intermediate
representations and the left side of the
learning trajectories?

▪ How would you improve Teaspoon
languages? For what tasks should we be
developing new Teaspoon languages?

34

Collaborators on This Work

▪ Bahare Naimipour, Tamara Nelson-Fromm, Emma Dodoo, Tammy Shreiner, Elise Lockwood,
Adaline de Chenne.

▪ Undergraduate researchers: Aryan Bannerjee, Alexandra Rostkowycz, Erin Shi, Brandon Geng,
Jessica Zhang, Ben Steinig, Kashmira Reddy, Kristen Taurence, Angela Li, Derrick White, Jessie
Houghton. 

▪ http://computinged.wordpress.com

▪ http://guzdial.engin.umich.edu

35

Thank you!

Some of this material is based upon work supported by the
National Science Foundation under Grant No. 2030919. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

http://computinged.wordpress.com/
http://guzdial.engin.umich.edu

SPARE SLIDES

36

