
Raspberry Pi Foundation Research

Teaching programming in
schools:
A review of approaches and
strategies

Raspberry Pi Foundation
Jane Waite and Sue Sentance
November 2021

2

Teaching programming in schools: A review of approaches and strategies

Published in November 2021
by the Raspberry Pi Foundation

www.raspberrypi.org

ISSN 2514-586X (19)

Teaching programming in
schools:
A review of approaches and
strategies

Raspberry Pi Foundation
Jane Waite and Sue Sentance
November 2021

https://www.raspberrypi.org/

3

Teaching programming in schools: A review of approaches and strategies

Table of contents

Introduction

Teaching programming: Approaches
and techniques

1. Classroom strategies

1.1. Pair programming

1.2. Peer instruction

1.3. Live coding

1.4. PRIMM

1.5. Worked examples and subgoal
labelling

1.6. Reading and tracing code

1.7. Pattern-orientated instruction

1.8. Targeted tasks (e.g. debugging,
sabotage, annotation, fill in the gaps,
Parson's Problems)

2. Contexts and environments for learning
programming

2.1. Physical computing

2.2. Block-based programming

2.3. Project-based learning

5 2.4. Programming unplugged

2.5. Games

3. Supporting learners

3.1. Addressing potential and common
difficulties and alternative conceptions

3.2. Cognitive apprenticeship

3.3. Developing metacognition around
abstraction

3.4. Include design

3.5. Focus on vocabulary and language

3.6. Supporting learning and a blended
approach

3.7. Develop generic problem-solving skills
(computational thinking)

4. Conclusion

References

6

7

9

10

8

11

12

14

15

17

18

19

21

22

22

24

26

28

28

27

29

31

32

36

34

38

4

Teaching programming in schools: A review of approaches and strategies

5

Teaching programming in schools: A review of approaches and strategies

Globally, computer science (CS) education has
been generating increasing interest as a school
subject in the last few years. Programming is a
key part of computer science and computing;
it is a skill that cannot sit separately from the
theoretical components of computing. Rather,
programming is the application of concepts that
often are hard to understand until they are put
into practice. If your program does not do as you
intended, then it is likely you have not understood
a computer science concept. This leads us to
the conclusion that 'practice' is not simply skill
reinforcement, it is the route to understanding.
It is in this context, and with the knowledge that
programming has been found to be "difficult"
by many learners in undergraduate education,
that we have drawn together some of the
research on how to teach programming, which
we refer to as programming pedagogy. We must
acknowledge that we still lack evidence in the
field of teaching and learning for primary and
secondary school students, as programming
research is often conducted with older learners
in university or with small numbers of students in
particular contexts where generalisation cannot
be guaranteed. Therefore, we have chosen
approaches with emerging evidence and that
merit further investigation.
To teach any subject requires good teaching
skills, knowledge about the subject being taught,
and specific knowledge — known as pedagogical
content knowledge — that a teacher gains about
how to teach a particular topic, to their students,
in the learning context, at a given moment in
time. When reading our report, you might wish
to think carefully about which combination of
instructional approaches is likely to ensure that
learning is accessible for all your students.
Research into teaching computer science at
university level has mirrored its delivery: there is

a long history of investigations into both content
and associated pedagogy. For research related
to younger learners, focus in the 1980s was on
the teaching and learning of IT skills, on work
related to Logo (a programming language aimed
at younger pupils (Papert, 1980)), and on how
teachers might leverage new technology-based
teaching aids. As outlined by the 2017 Royal
Society report After the reboot, research into
how computer science can be taught in primary
and secondary classrooms is as yet very limited,
having only recently started to emerge (The Royal
Society, 2017). We need continued research to
consider many aspects of teaching computing,
including:

• Why programming is difficult
• How to teach it effectively
• How to motivate and encourage students
• What contexts and classroom tools work

best
• What roles vocabulary and tools play
• What computational thinking is and how can

it be effectively embedded

Some consensus is emerging regarding research
questions, but computing education is a new
field, and much of the underlying research is in
its early stages; the reliability of current evidence
may perhaps be restricted due to the limitations
of the studies from which it was gained. These
studies have often been conducted with short
time frames and small numbers of learners,
in informal rather than classroom settings,
and without robust means for pre- and post-
assessment of interventions. Nevertheless, the
evidence we have gives us a starting point.

Introduction

6

Teaching programming in schools: A review of approaches and strategies

Computer programming is now part of the
curriculum in schools in England and many
other countries. Although it is not necessarily
the primary focus of the curriculum, it is the
area of computing that many teachers find most
difficult to teach, and also the one into which the
most computing education research has been
conducted.

Teaching programming: Approaches
and techniques

7

Teaching programming in schools: A review of approaches and strategies

1. Classroom strategies

8

Teaching programming in schools: A review of approaches and strategies

In this section, we consider some well-
researched classroom strategies that teachers
can use to teach programming in schools. These
include:

 Pair programming
• Peer instruction
• Live coding
• PRIMM
• Worked examples
• Subgoal labelling
• Reading and tracing code
• Pattern-oriented instruction
• Targeted tasks, e.g. debugging, sabotage,

annotation, fill in the gaps, Parson’s Problems

1.1. Pair programming

Used in industry and education, pair
programming is a collaborative approach where
two people simultaneously work on a single
software development project. Swapping roles
regularly, one person (the driver) has control
of the mouse and keyboard, and the other
(the navigator) continuously collaborates by
reviewing the code written and keeping track of
work done against the design (McDowell, Werner,
Bullock, & Fernald, 2006).

Few studies have examined pair programming
in primary and secondary education. Most
research has been done with university students,
producing evidence that pair programming leads
to increased learning and improved code quality,
with the caveat that careful implementation is
needed to ensure success (Hanks, Fitzgerald,
McCauley, Murphy, & Zander, 2011; Salleh,
Mendes, & Grundy, 2011; Umapathy & Ritzhaupt,
2017).

One ten-year, school-based research programme
in the US concluded that pair work had
advantages over solo programming for building
programming knowledge and computational
thinking (Denner, Werner, Campe, & Ortiz, 2014)
but that the greatest increases in knowledge
occurred for confident partners who were
paired with a friend who had comparatively less
programming knowledge (Werner et al., 2013).
The team behind this programme also reported
subtle differences in approaches to collaboration
related to ethnicity (Ruvalcaba, Werner, & Denner,
2016). However, the programme’s studies were
performed with relatively small numbers of
pupils, as was a study that found that secondary
school girls preferred pair programming
(Liebenberg, Mentz, & Breed, 2012).

In opposition to these positive conclusions on
pair programming, research at a summer school
coding course concluded that pair programming
resulted in less work being completed and no
increase in the overall progression of learning
(Lewis, 2011). However, there were significant
differences in the implementation of the pair
programming between the summer school study
and the class-based studies: in the summer
school study, new partners were assigned every
day by the teacher; in the classroom programme,
learners were involved in pair assignment and
worked together throughout a project. Moreover,
roles were swapped every 5 minutes in the
summer school study and every 20 minutes in
the classroom programme.

Pair programming is thus a plausible method
for engaging students in programming, with
evidence that it can improve teaching and
learning. However, care needs to be taken
with implementing this approach with social

1. Classroom strategies

Pair programming

9

Teaching programming in schools: A review of approaches and strategies

dynamics, power struggles, friendship
dynamics, confidence with computers,
inequity of roles, how students talk to each
other, the structure of tasks, and teacher
intervention all potentially impacting
interactions and learning (Lewis & Shah, 2015;
Shah & Lewis, 2019; Denner, Green, & Campe,
2021). Further research with larger numbers
of students in different contexts with carefully
controlled interventions is needed to provide
robust recommendations for classroom
practice.

1.2. Peer instruction

Peer instruction (PI) is not simply peers
teaching each other — it is a specific peer-
to-peer teaching approach championed
in university physics courses, and there is
evidence that it increases students’ learning
(Crouch & Mazur, 2001). In class, learners are
provided with carefully constructed, concept-
based, multiple-choice questions, which
are based on pre-lesson reading. Learners
independently consider the questions and
give their answer (vote) using flashcards or
an online voting system. They then share their
responses with their peers and discuss their
thinking before re-submitting their answer
(re-vote). The teacher reviews learners’ first
and second answers and, if needed, provides
further support after the second answers
before moving on to the next question.

The popularity and success of PI in university
physics courses have led to it being used
in other areas, including undergraduate
programming classes. In undergraduate
computer science courses, the introduction
of PI (using electronic clickers) has been
reported to lead to improvements in student
retention (Porter & Simon, 2013), self-efficacy

(Zingaro, 2014), in-class learning (Taylor et
al., 2018), and longer-term exam outcomes
(Zingaro & Porter, 2015). However, despite
students saying they like PI and despite better
short-term learning gains, a recent review
of studies into PI reported little evidence of
improved final examination performance. The
review authors commented on the importance
of the pre-lesson reading and the educators’
explanation of the purpose of the PI activities
for a greater likelihood of success of the
approach (Luxton-Reilly et al., 2018).

Fewer studies on the impact of PI have been
conducted in school settings, and fewer
still in classroom computing contexts. In a
Czech high-school physics class case study,
teachers reported a preference for flashcards
over electronic voting, and learners reported
improved learning (Šestáková, 2016). The
authors of a US study with five high-school
physics classes reported that, despite
improved learner outcomes, it was unclear
whether this improvement was due to PI or
to other aspects of the learning scenario
such as student ability, teacher differences,
or increased familiarity with question types
(Cummings & Roberts, 2008).

In classroom settings, teachers sometimes
use some of the constituent components of
PI, e.g. carefully constructed, concept-related
questions, flipped learning, and cooperative
learning such as ‘think, pair, share’ (Lyman,
1981).

Think, pair, share has a long history of
research involving younger learners, with
evidence of its positive impact on pupil
contribution (Rowe, 1986) and motivation, and
on teachers’ opportunities for assessment
(Cooper & Robinson, 2000). In undergraduate
programming research, think, pair, share has

10

Teaching programming in schools: A review of approaches and strategies

been found to positively impact learning
outcomes (Kothiyal, Murthy, & Iyer, 2014). On
the other hand, a comparison of grade 5 and
6 (n=108) students learning binary numbers
using an unplugged approach or a think,
pair, share approach found no difference
in learning outcomes (Thies & Vahrenhold,
2016).

Peer instruction appears to be useful for
teaching programming, and it could be used
for all aspects of computing teaching.

In Morrison and colleagues’ recent review of
undergraduate computer science research
with a focus on broadening participation for
women, PI was found to be implemented in
a wide variety of ways and often associated
with other interventions, making it difficult
to draw conclusions about this approach
by itself. However, the majority of PI
studies included in the review reported
some form of positive affective (attitude,
motivation, engagement, identity formation),
cognitive (academic performance, learning
performance), or population (retention in
field, graduation rates, employability, culture)
outcome, often for all students not just for
women. The authors suggest that educators
try collaborative learning to broaden
participation, especially PI, but caveat this
with advice to carefully structure activities,
include student training on how to be a good
partner or team member, and look out for
microaggressions and biased behaviour
(Morrison et al., 2021). While studies of PI in
university settings have promising results,
further work is needed to investigate PI
itself, its components, its outcomes, and
other collaborative and peer-to-peer forms of
learning in classroom settings.

1.3. Live coding
Modelling is a form of in-class demonstration
where students observe as a teacher
completes an activity whilst talking through
their thought process. This brings an
apprenticeship approach to teaching, and
in the teaching of programming, it is also
referred to as live coding (Rubin, 2013)
(not to be confused with ‘live coding’ as a
form of performance art). Pupil interaction
may be introduced into this approach by
asking learners what to do next at various
points in the activity, and by asking them
to spot mistakes. Modelling is also used in
the teaching of other subjects, e.g. English:
teachers may model writing as a direct form
of instruction with little student involvement,
or they may engage learners in active joint
composition (shared writing) (Swartz, Klein, &
Shook, 2001; Cremin & Baker, 2010).

To support learning through live coding,
two things are essential. First, the teacher
must carefully select appropriate examples
for teaching new concepts, consolidating
understanding, or addressing existing or
potential misconceptions. Second, live
coding should reveal the thinking of the
demonstrator: what the teacher says as they
‘think aloud’ is crucial to the effectiveness of
live coding.

In research with undergraduates, live coding
has been compared to learning from static
code, and it was found to be as good as, if
not better than, letting learners read code
examples, especially for helping learners
approach larger coding assignments by
demonstrating good programming habits
(Rubin, 2013). Additional modelling can be
provided by video recordings of experts
programming (Bennedsen & Caspersen,
2005). In research into the creation of a

11

Teaching programming in schools: A review of approaches and strategies

primary school maths and programming
curriculum (ScratchMaths), live coding
was noted as a technique used by more
experienced teachers to supplement other
approaches, and the researchers concluded
that this was likely to lead to deep learning
(Benton, Hoyles, Kalas, & Noss, 2017). In a
recent review of teaching and learning of
computational thinking through programming,
the importance of encouraging learners to
‘think aloud’ was emphasised, as was the
role of demonstration to model the problem-
solving process (Lye & Koh, 2014).

1.4. PRIMM

PRIMM (Predict, Run, Investigate, Modify,
Make), developed by Sue Sentance, is a
pedagogy that has been evidenced to improve
the learning of programming in classrooms
(Sentance & Waite, 2017; Sentance, Waite,

& Kalia, 2019). Building upon the findings of
several other research groups, the pedagogy
includes a sequence of instructional
approaches and an emphasis on teachers
and students talking about programming
(Sentance & Waite, 2021).

The first stage is Predict and is centred
around students reading a high-quality sample
program that was created by their teacher,
or a resource developer, which exemplifies
the learning objectives. See Figure 1 for an
example Predict activity. Learning to read
code has been proven to be an essential
first step needed before students write code
(Lister, Fidge, & Teague, 2009). Importantly,
students do not spend time typing in the
sample program used at the Predict stage,
rather they are given the program and spend
time reading and talking about it. Following
prediction, the code is Run, the next stage

Figure 1: An example Predict activity (Sentance, Waite, & Kalia, 2019, p.478).

12

Teaching programming in schools: A review of approaches and strategies

of PRIMM. Then, students move on to the
Investigate stage, which requires them to
answer carefully constructed questions
that draw out important learning points.
Teachers and resource developers who design
Investigate stage questions are encouraged
to use the Block Model (Schulte, 2008) to help
them create their questions. The Block Model
provides a holistic view of programs, from the
detail of individual commands to what the
overall program achieves.

The last two stages of PRIMM are Modify and
Make; these stages particularly build on the
Use–Modify–Create model (Lee et al., 2011)
that has become popular in helping students
take ownership of the products they make.
Throughout the stages, classroom discussion
is built into the process and fosters a socially
rich experience of learning to program
(Sentance, Waite, & Kalia, 2019).

1.5. Worked examples and
subgoal labelling

As well as using sample programs for
students to predict what the program will do,
teachers also use sample programs when they
model how to write code based on worked
examples. Worked examples can be provided
to students for them to learn about concepts,
processes, and features of programming
environments, such as the concept of
iteration, the process of development, the role
of variables, and tools for debugging.

A further enhancement of the use of worked
examples is subgoal modelling: meaningful
labels are added to worked examples
to visually group steps into subgoals,
highlighting the structure of code (see Figure
2). Students can be given code with subgoals,
or they can be asked to add subgoals.
Research indicates that students given code

Figure 2: Partial worked example formatted with no labels, given labels, and placeholders for student-
generated labels (Morrison, Margulieux, Ericson, & Guzdial, 2016).

No Labels Given Labels Generate Labels

13

Teaching programming in schools: A review of approaches and strategies

including subgoals perform significantly better
on programming tasks than students given
code without subgoals, and than students
who are asked to add subgoals (Margulieux
& Catrambone, 2016; Morrison, Margulieux,
Ericson, & Guzdial, 2016). The researchers
involved in these studies suggest that these
results may be due to subgoals reducing

cognitive load as students do not have to
concern themselves with the extraneous load
of the incidental information of the context.
Instead, as shown in Figure 3, students can
use the abstracted subgoal labels, which
provide meaningfully labelled chunks and
grouped steps, to work with the structure of
the program that is already organised and

Figure 3: Diagram of how subgoal labelled worked examples can help learners improve problem solving
performance. The “properties of subgoal labelled examples” level describes the physical characteristics of
subgoal labels. The “effect on learners studying examples” level describes how these characteristics help the
learners use effective learning strategies (Margulieux & Catrambone, 2016, p.60).

14

Teaching programming in schools: A review of approaches and strategies

promotes self explanation (Margulieux &
Catrambone, 2016; Morrison, Margulieux,
Ericson, & Guzdial, 2016).

Most research on worked examples with
subgoals has been done in university settings.
Recently, Margulieux, Morrison, Franke, and
Ramilison (2020) redesigned a resource
aimed at 15–18 years olds, adding subgoal
labels to code.org¹ resources in an Advanced
Placement programming course. The authors
compared the performance of students who
used the original unit to students using the
redesigned unit and found some positive
effects on outcomes. Students learning with
subgoals performed no better on knowledge-
based assessment but performed better on
problem solving questions, wrote more on
open ended questions, and continued to use
subgoals after the course. Teachers working
with students on the redesigned activities
were surveyed and suggested that struggling
students found subgoals the most useful
(Margulieux, Morrison, Franke, & Ramilison,
2020).

1.6. Reading and tracing code

Substantial research in university settings
has found that learning to read code is an
essential part of learning to program (Lister,
Fidge, & Teague, 2009; Lopez, Whalley,
Robbins, & Lister, 2008; Venables, Tan, &
Lister, 2009), with evidence suggesting that
novices must be able to read 50% of their
code (tracing code accuracy) before they can
independently and confidently write code
(Lister, Fidge, & Teague, 2009). Tracing is the
skill by which one predicts the order in which
programmed commands will be executed,
including working out data values at each
point in the program. A path of learning to

support programming development has been
suggested that requires learners to know
about basic data structures and programming
constructs before being required to trace
code, which then leads to activities that
involve explaining and writing code (Lopez,
Whalley, Robbins, & Lister, 2008). Teague
and Lister also found that using a carefully
scaffolded sequence incorporating very small
tasks with single elements for code reading
and tracing led to increased programming
knowledge for university students (Teague &
Lister, 2014a).

Other researchers suggested a similar
approach for primary school learners working
with route-based programming, using a
sequence of activities moving from reading
and interpreting lines of code to eventually
reading an entire program and predicting what
it will do (Gujberova & Kalas, 2013). However,
the challenge with this approach is to identify
what stage a student is at, and to ensure they
are given the right tasks and time to master
skills before moving on (Teague & Lister,
2014b).

Eye-tracking has been used to investigate
how students learn to read code and how
this might change as they become more
experienced, with evidence suggesting that
experts read code less linearly than novices
(Busjahn et al., 2015).

In a study with much younger learners,
Dwyer et al. (2015) reported unintended
affordances of visually complex block-
based programming environments. For
example, some students predicted a sprite’s
movement based on its visual appearance,
such as where it was 'looking’, rather than
using the code associated with the sprite.
Other students were unaware that there

¹ https://code.org/ accessed 11 November 2021

https://code.org/

15

Teaching programming in schools: A review of approaches and strategies

was code associated with the sprite, not
realising they needed to click on the object
to see the code. The authors recommended
using explicit instruction to help students
learn about a programming environment’s
different features, e.g. that the user interface/
execution area and code editing area work
independently and together (Dwyer et al.,
2015).

Some research has focused on developing
tools and processes to teach how to trace
and support the act of tracing programs. For
example, tools to draw learners’ attention
to significant code features (beacons) have
been used with undergraduates (Leppan,
Cilliers, & Taljaard, 2007). In school settings,
processes that systemise the teaching of
tracing have also been devised, e.g. TRACS²,
a methodology developed in Scotland
(Donaldson & Cutts, 2018).

More widely, approaches to teaching
programming often include elements of code
reading and tracing; for example, PRIMM
includes carefully chosen code examples
for students to read as the code exemplifies
certain concepts or skills to be learned
(Sentance & Waite, 2017).

1.7. Pattern-oriented
instruction

Many programming lessons require students
to assemble programming commands into
programs to achieve a particular purpose.
As an intermediary step, some instructional
approaches draw students' attention to
commonly used patterns of commands.
Students learn about and then re-use these
patterns. Pattern-oriented instruction (POI) is
one such approach.

POI was developed by Orna Muller and is
thought to reduce students' cognitive load
as students can think about the pattern as
a ‘black box’ that meets a particular goal
(Muller, 2005). The approach has been
reported to help undergraduate computer
science students learn how to better
break problems down into parts and build
up potential solutions (Muller, Ginat, &
Haberman, 2007).

In POI, lessons are carefully planned to
introduce students to lots of examples of a
pattern and examples become more complex
over time. Students are required to look for
similarities and differences in the application
of patterns and to discover how patterns
are misused and to think about alternative
patterns that might solve the same task
(Muller, Haberman, & Averbuch, 2004).

POI often involves much student talk, as
learners discuss different ways to solve
problems. Using common patterns to teach
programming has been used in universities
for some time (e.g. Beck, Thomas, Drake,
East, & Wallingford, 1996) and has been
suggested for games development in
school contexts (Repenning et al., 2015;
Barnes et al., 2017). However, more work is
needed to establish what patterns are most
useful for different types of programs, in
what programming languages, and what a
pattern-based progression might look like for
students.

² https://trace.dcs.gla.ac.uk/planc/tag/tracs/ accessed 12 November 2021

https://trace.dcs.gla.ac.uk/planc/tag/tracs/

16

Teaching programming in schools: A review of approaches and strategies

Figure 4, top: A two-dimensional
Parson’s Problem with the solution
on the right and a distractor on the
left (Ericson, McCall, & Cunningham,
2019, p.1). Bottom: A nearly correct
Faded Parson’s Problem finding
the depth of a tree. (a) Optional
timer. (b) Problem description. (c)
Faded Parson’s Problem interface;
participants can drag blocks between
the bin (left) and the solution (right).
(d) An optional print block being
dragged to the right. (e) A blank that
has been filled in with code by the
student. (f) Students can navigate
back to the exercise list or (g) run
tests on their current solution. After
“effort-completing” an exercise, they
can view the instructor solution (g).
(h) Descriptive test case results up to
the first failed test (Weinman, Fox, &
Hearst, 2021, p.6).

17

Teaching programming in schools: A review of approaches and strategies

1.8. Targeted tasks (e.g.
debugging, sabotage,
annotation, fill in the gaps,
Parson’s Problems)
In this section, we group a range of other
classroom activities together and are giving
them the collective name targeted tasks. We
define targeted tasks as those that focus
students on specific learning goals. Such
focused activities have been suggested to be
particularly important for the teaching of the
more difficult concepts such as programming
initialisation, variables and loops, and
assignment, which need to be explicitly taught
(Hubwieser, Armoni, Giannakos, & Mittermeir,
2014; Meerbaum-Salant, Armoni, & Ben-Ari,
2013) and within a carefully considered
progression of learning experiences (Seiter &
Foreman, 2013; Falkner & Vivian, 2015; Dwyer,
Hill, Carpenter, Harlow, & Franklin, 2014).

There are a wide range of potential targeted
tasks that can be used as learning activities
to highlight students’ alternate conceptions
or exemplify programming concepts. Some
examples are spotting concepts, recalling
facts or examples, changing aspects of
programs, grouping and classifying example
work, comparing solutions, following
instructions, decomposing solutions,
checking and improving work.

More specifically, students can predict what
code will do, match designs to programs,
investigate and fix buggy code, or sabotage
code for their peers to fix. Students can be
asked to annotate code with an explanation of
what the code is intended to do. Parts of code
can be removed and students asked to fill the
gaps.

One particular format of targeted tasks is that
of Parson’s Problems; these provide learners
with all the code required, but in sections, and
with the sections in the wrong order (Parsons
& Hadon, 2006). There are many variants
of Parson’s Problems, such as including
superfluous lines of code with common
syntactic or semantic errors to act as
distractors (Ericson, Margulieux, & Rick, 2017)
(see Figure 4, top), faded Parson’s Problems
where students increasingly complete some
lines of code (Weinman, Fox, & Hearst, 2020)
(see Figure 4, bottom), and adaptive Parson’s
Problems, which dynamically control problem
difficulty based on a student’s performance
(Ericson, Foley, & Rick, 2018). Predominantly
studied in undergraduate settings, Parson’s
Problems have been suggested to be
particularly effective to help students with
tasks that are not unusual (Haynes & Ericson,
2021), help students understand patterns
in programs (Weinman et al., 2021), and to
improve student engagement (Ericson et
al., 2017). Notably, Parson’s Problems have
been compared to code reading and tracing
activities with students being found to make
more progress when using Parson’s Problems
(Ericson et al., 2017). However, a review of
studies on Parson’s Problems calls for more
research due to a lack of replicated research
(Du, Luxton-Reilly, & Denny, 2020).

The selection of tasks, along with how
they are presented and scaffolded, within a
progression of learning is important for both
teachers' expectations as well as student
confidence. The tasks need to be matched
to each student's current level of knowledge,
skills, and understanding. Such tasks can also
be used for assessment purposes, but we do
not cover assessment in any detail here.

18

Teaching programming in schools: A review of approaches and strategies

2. Contexts and environments for
learning programming

19

Teaching programming in schools: A review of approaches and strategies

In this section, we consider the ways in which
programming can be taught, including the type of
language and the classroom context, with focus
on:
• Physical computing
• Block-based programming
• Project-based learning
• Programming unplugged
• Games

2.1. Physical computing
Using different contexts for teaching
programming may inspire learners’ interest, and
some contexts appear to be more motivational
than others. A common finding from research is
that physical computing projects are particularly
motivational to pupils (Garneli, Giannakos, &
Chorianopoulos, 2015).

There are many different types of physical
computing devices. As shown in Figure 5,
devices can include packaged electronics with
no programming required, programmable robots
and construction sets, programmable boards
with integrated or external input and output
devices that need a PC during use, battery-
powered embedded programmable boards,
which can operate without a PC, and general-
purpose programmable boards that often use
wired power (Hodges, Sentance, Finney, & Ball,
2020).

Particularly popular, and inspired by Papert, the
programmable robots of the 1970s and 1980s
(such as the Roamer³ and the Bee-Bot4) have
been used to teach primary programming for

some time. Similarly, small general-purpose
programmable boards such as the Raspberry
Pi5, microcontrollers such as the Arduino6, and
similar products have been used in education for
many years.

The recent development of low-cost educational
microcontrollers and block-based programming
languages has renewed interest in physical
computing, exerting pressure on, and providing
new opportunities for, teachers to incorporate
physical computing and robotics into their
teaching and learning activities. However,
there is limited robust empirical evidence on
the pedagogies to use, or on the impact of
using physical computing on teaching and
learning (Toh, Causo, Tzuo, Chen, & Yeo, 2016).
Moreover, a multitude of high-profile resources
for physical computing projects is now available.
This abundance of options, combined with the
lack of evidence-based teaching approaches,
means there is a risk that schools will invest in
resources that they cannot use effectively, or that
have little impact on pupil progress; the product
rather than the learning objectives may become
the focus.

Research into the pedagogy to use with the
current range of resources has started to
emerge, and studies suggest sometimes
conflicting approaches. Pre-teaching skills is
advised by some, but a just-in-time approach
is recommended by others; some researchers
advocate for an exploratory approach (Przybylla
& Romeike, 2014), while others promote
following a design process (Bers, Flannery,
Kazakoff, & Sullivan, 2014); often a range of
targeted tasks, such as debugging activities

2. Contexts and environments for
learning programming

³ http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8 accessed 11 November 2021
4 https://www.tts-group.co.uk/bee-bot-classroom-set-/1017264.html?gclid=Cj0KCQjwt-6LBhDlARIsAIPRQcK5CujcblAajX9coOmbvKArDyFtUIpvWIomY2n4W4wIGZFKSHr
 ta4aAj2TEALw_wcB accessed 11 November 2021
5 https://www.raspberrypi.com accessed 11 November 2021
6 https://www.arduino.cc/ accessed 11 November 2021

http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8
https://www.tts-group.co.uk/bee-bot-classroom-set-/1017264.html?gclid=Cj0KCQjwt-6LBhDlARIsAIPRQcK5CujcblAajX9coOmbvKArDyFtUIpvWIomY2n4W4wIGZFKSHrlta4aAj2TEALw_wcB
https://www.raspberrypi.com
https://www.arduino.cc/

20

Teaching programming in schools: A review of approaches and strategies

Figure 5: Suggested classification of physical computing devices (Hodges et al., 2020, p.26).

21

Teaching programming in schools: A review of approaches and strategies

and code tracing work, is proposed (Kafai et
al., 2014; Major, Kyriacou, & Brereton, 2012). A
study by Kalelioglu and Sentance (2020) found
that teachers commonly used demonstrations/
live coding, pair programming, tinkering, copying
programs, and explaining code verbally in their
physical computing lessons.

When code tracing and debugging, students use
their understanding of the notional machine to
help them predict what will happen when the
program executes. Recently, physical computing
in high-school contexts has been used to study
how teachers introduce notional machines in
their explanations, role play, analogies, and
metaphors (Jayathirtha & Kafai, 2021). Physical
computing contexts have also been used
to investigate culturally relevant pedagogy,
including introducing handcrafting electronic
textiles in non-formal (e.g. museums, after-
school) and classroom settings, with promising
results for broadening participation (e.g.
Buchholz, Shively, Peppler, & Wohlwend, 2014;
Kafai et al., 2014; Kafai et al., 2019).

2.2. Block-based programming
Sometimes called block-based, visual, or
graphical programming languages, these
languages use graphical images to represent
programming commands. These easy-to-use
languages are used not only with the youngest
learners in formal and non-formal learning
contexts, but also with older students in formal
introductory programming lessons.

Block-based languages and their programming
environments provide a range of affordances
over and above text-based languages.
Affordances include not requiring students to
memorise and type in commands, not requiring
students to deal with unfamiliar and sometimes
confusing characters such as {}, [], and ==, and
presenting natural language type block labels.
Commands are often grouped by colour to give

hints about their shared purpose, and shapes
dynamically change their size to signal the scope
of the command. Common shapes indicate
which combinations of programming objects
are allowed and provide an environment that
allows quick and easy program-building (Bau,
Gray, Kelleher, Sheldon, & Turbak, 2017; Weintrop,
Killen, Munzar, & Franke, 2019).

Available since the 1990s, educational block-
based languages have been developed to be
easy to get started with, but also to be powerful
enough to create advanced programs. Block-
based languages such as Alice (Cooper, Dann,
& Pausch, 2000), Scratch (Resnick et al., 2009),
and Blockly (Fraser, 2015) have been suggested
to be the most appropriate type of programming
environment for young learners, such as those at
primary (K–5) schools, with a prediction that this
will remain so for the foreseeable future (Kölling,
2015).

As well as being heralded as improving
students’ outcomes from primary students
to undergraduate contexts (Franklin et al.,
2017; Grover & Basu, 2017; Price & Barnes,
2015; Weintrop & Wilensky, 2017; Malan &
Leitner, 2007), block-based languages have
been suggested to increase student interest in
computing (Lewis, 2010; Maloney, Peppler, Kafai,
Resnick, & Rusk, 2008).

Despite their popularity across settings,
identifying the features of block-based
programming languages that have the greatest
impact on student outcomes and interest is an
open question. In a recent large-scale research
study comparing US high-school students'
understanding of block-based versus text-based
pseudocode, students were found to perform
better with the block-based versions of the same
questions (Weintrop et al., 2019). This is despite
the block-based pseudocode not including many
of the features of block-based programming
languages that have been attributed as the
main affordances of this form of programming

22

Teaching programming in schools: A review of approaches and strategies

language. The pseudocode was not colour
coded, did not use natural-language type labels,
and was not dynamic.

With an ever-growing number of educational
block-based languages used in an ever-growing
range of educational contexts, teachers must
decide which language is best for their learners
both in terms of their current level of expertise
and how this will support their next steps in
learning. However, which features of block-based
languages and their programming environments
are most important for these different users is
unclear.

2.3. Project-based learning
Advice to provide opportunities for learner
autonomy in school is not new (Rose, 2009).
Autonomy increases intrinsic motivation as
learners take ownership and pride in their work
(Deci, 1971). Self-determination theory suggests
that motivation is elicited and sustained by the
three basic needs of autonomy, competence,
and relatedness (Deci & Ryan, 1985, 2000).
Project-based learning (Thomas, 2000), problem-
based learning (Savery & Duffy, 1995), and
inquiry-based learning (Edelson, Gordin, & Pea,
1999) vary in their definitions (Thomas, 2000);
however, all incorporate the essential features
of autonomy, ownership, and realism as learners
are provided with choices of what to investigate
and how to run their project.

Construction and constructionism are
associated with these types of project-, problem-,
and inquiry-based approaches as learners make
things (or knowledge) through active exploration
(Papert, 1980) and where the products made are
meaningful in some way to the maker (Kafai &
Resnick, 1996).

Criticism has been levelled at purely autonomous
learning scenarios as learners left entirely to their

own devices may develop alternate conceptions,
ineffective mental models, or learn little, with the
suggestion that a structured, guided approach
is preferential (Mayer, 2004; Meerbaum-Salant
et al., 2013; Clement & Merriman, 1988). Lye and
Koh, in their review of teaching and learning of
computational thinking through programming,
found that construction (creating programs) with
scaffolding was the most popular approach used
by teachers (Lye & Koh, 2014). Finding the right
level of scaffolding is not easy, as evidenced in a
recent teacher survey where some respondents
said they wanted to increase student autonomy
and others wanted to reduce it (Rich et al.,
2018). What seems to be important is to provide
sufficient scaffolding to ensure that competence
needs are met, and at the same time to provide
opportunities for autonomy and relatedness.

2.4. Programming unplugged
Originally developed to raise awareness of, and
enthusiasm in, computer science, unplugged
activities teach about computing without a
computer (Bell, Alexander, Freeman, & Grimley,
2009). Concepts such as abstraction, data
representation, binary, and sorting algorithms
can be introduced or further developed to deepen
learning in this way (Rodriguez, Kennicutt, Rader,
& Camp, 2017). Unplugged approaches include
the use of stories, role play, magic, analogies, and
metaphors (Curzon & McOwan, 2017; Curzon,
2013). Despite unplugged activities being named
as a popular instructional method by teachers
(Sentance & Csizmadia, 2017) and being claimed
to be an effective teaching approach (Berry et al.,
2015; Computer Science Teachers Association,
2011), research evidence on their effectiveness
on learning outcomes is mixed (Bell et al., 2009;
Curzon, 2013; Thies & Vahrenhold, 2016).

Stories, factual or fictional, can be used to
provide real-world or imaginary contexts to
introduce new and unfamiliar concepts. For

23

Teaching programming in schools: A review of approaches and strategies

example, algorithm development has been
introduced using the true story of a person with
locked-in syndrome who developed a set of rules
to communicate through blinking (Curzon, 2013).

Role play can provide a physical enactment of
a complex concept. For example, acting out
a bubble-sort breaks down the process into
individual steps and highlights features that
might otherwise be difficult to envisage (Katai,
Toth, & Adorjani, 2014). Role play can also be
used to help learners design new products,
as they step through and try out their ideas.
For example, when learning how to program
programmable toys, students can ‘play turtle’
to help them understand the way the machine
works, as they embody and execute the steps of
their solution (Papert, 1980).

Analogies and metaphors can be used to
introduce new concepts by using the learner's
knowledge of other concepts as a springboard
to make links and build new understanding.
However, this requires teachers to have a

depth of understanding of: the concept being
introduced; the concept being compared against;
the learners’ understanding of the comparative
concept; the progression of learners'
understanding of the analogy or metaphor; and
potential misconceptions associated with the
developing mental model.

A common analogy in computing is the
explanation that a variable is like a box, for
which research has uncovered a range of
misconceptions (Hermans, Swidan, Aivaloglou,
& Smit, 2018). However, there is limited research
on the use of other analogies and metaphors
in classroom settings within current curriculum
progression. For example, it is not clear what
impact there is on young children’s mental model
of a computer if they are informed that a CPU is
a brain or that some computer files are viruses
that replicate and damage other computers.

Semantic waves, a sociological knowledge-
building theory, have been suggested to be
a useful pedagogical tool for planning and

Figure 6: Traversing a semantic wave (Waite, Maton, Curzon, & Tuttiett, 2019, p.3).

24

Teaching programming in schools: A review of approaches and strategies

evaluating the concept-rich, yet practically
applied subject of computer science. It has
been used to study why unplugged approaches
may be more or less effective (Waite et al.,
2019; Curzon, Waite, Maton, & Donohue, 2020).
Simply put, in this theory, contexts and concept
vocabulary are mapped over time as a profile. A
wave shape to the profile, as shown in Figure 6,
has been associated with successful knowledge
building across subject areas from biology
to dance as abstract concepts and familiar
contexts and vocabulary are successfully
connected for prior learning (unpacking) and
for new learning (repacking) (Maton, 2013;
Maton, Hood, & Shay, 2016). Figure 7 shows
the semantic profile of an unplugged learning
activity, showing how the lesson is taught
over time, including staged repacking, and
opportunities to improve the unpacking phase
(Waite et al., 2019). Further research is needed

to investigate semantic profiling and unplugged
activities, and their long-term impact, as well as
whether the approach is useful more generally in
computer science education.

2.5. Games
Similarly to physical computing, game creation
as a context for learning how to program has
been cited as being motivational for students
(Repenning et al., 2015). However, as with
research into physical computing pedagogy, the
evidence for game creation being beneficial is
often not robust (Kafai & Burke, 2015).

One notable example of a games context being
used to teach programming is the work of
the Scalable Design Team (Repenning et al.,
2015). This group have developed software

Figure 7: Semantic profile for the Crazy Characters lesson plan introduction (Waite et al., 2019, p.5).

25

Teaching programming in schools: A review of approaches and strategies

(AgentSheets & AgentCubes7), curricula, and a
framework, which requires learners to design
and program games as a precursor to designing
and programming simulations for science and
other subjects. Rather than basing teaching on
objectives related to students learning about
programming constructs such as sequence,
selection, and repetition, the curricula focus on
common patterns used in creating simulations.
Patterns such as ‘generation’, ‘absorption’,
‘diffusion’, and ‘transportation’ are exemplified
and used to drive the learning objectives. Also,
a Use–Modify–Create type approach with much
group work and a focus on pupil ownership of
work is used. The team have reported success
in terms of both pupils’ learning and motivation
(Repenning et al., 2015).

7 https://agentsheets.com/ accessed 11 November 2021

https://agentsheets.com/

26

Teaching programming in schools: A review of approaches and strategies

3. Supporting learners

27

Teaching programming in schools: A review of approaches and strategies

Using the strategies outlined in Section 1 and
contexts in Section 2 will help students learn how
to program. In this section, we consider what the
research says about how we can further support
learners, particularly those who have difficulties
with programming. We look at:

• Addressing potential and common
difficulties and alternative conceptions
(misconceptions)

• Cognitive apprenticeship
• Developing metacognition around abstraction
• Include design
• Focus on vocabulary and language
• Scaffolding and a blended approach
• Developing problem-solving skills

(computational thinking)

3.1. Addressing potential
and common difficulties and
alternative conceptions

Several school-based studies have suggested
that more difficult programming concepts, such
as initialisation, variables, loops, and assignment
need to be explicitly taught (Grover & Basu,
2017; Meerbaum-Salant et al., 2013). Studies
of alternative conceptions, sometimes called
misconceptions8, have mostly been undertaken
in higher education rather than schools, and
include what concepts are judged as difficult or
not and how to approach them (Du Boulay, 1986;
Veerasamy, D’Souza, & Laakso, 2016), with far
fewer studies focusing on younger students (Gal-
Ezer & Zur, 2004; Hermans et al., 2018). Sorva,
in his PhD research, noted over 150 potential
programming misconceptions (Sorva, 2012).
A lack of teacher knowledge can contribute

to development of misconceptions, as well as
limited dissemination of approaches and tools
that can reduce misconceptions and difficulties
(Qian & Lehman, 2017; Sorva, 2018).

The relationship between difficulties and
misconceptions has been evidenced by
several studies. Students who have alternate
conceptions about the operation of various
constructs (e.g. in-built functions, parameter
passing, nested if statements, for loops, using
lists) have been found to make mistakes in
related knowledge-based tasks and coding
activities (Veerasamy, D’Souza, & Laakso, 2016).
For example, learners may have difficulty using
variables, because they have the misconception
that variables hold more than one value, formed
due to a mental model based on the ‘variable as
a box’ metaphor (Hermans et al., 2018).

Shared alternate conceptions about vocabulary
have also been noted. These arise from learners
thinking that terminology that exists across
subjects, including mathematics and familiar
English terms, has a shared meaning (Qian
& Lehman, 2017; Sorva, 2018). For example,
learners may believe that the symbol “=” means
the same thing in maths and programming, or
that a variable in science is the same in some
ways as a variable in computer science.

There is a long history of research around
misconceptions that relate to the notional
machine (Du Boulay, 1986). Simply put,
researchers have claimed that there are
misconceptions based on learners’ inaccurate
or incomplete understanding of how a computer
works and how it executes the code for a
specific programming language. Another similar,
commonly held false belief is claimed to be that

3. Supporting learners

8 Misconceptions is a term that is often used in education literature when discussing a learner's evolving understanding and the points at which this understanding
(mental model) deviates in some way from what was expected or planned. Misconceptions implies there is a problem, a faulty mental model, and something that needs
to be addressed and overcome. Alternate or alternative conceptions are terms also used in this field and are interpreted by some as synonyms for misconceptions or
they can be seen as having less of a negative connotation; this allows them to be used in a way that accepts that learners’ mental models will develop along different
lines moving towards a planned view. Other terms used in this area include preconceptions, naive beliefs and theories, alternative beliefs and frameworks. We use the
term misconception where studies have used this term and do not differentiate or analyse the study authors’ view of the term.

28

Teaching programming in schools: A review of approaches and strategies

novices attribute computers with an innate ability
to sort out errors in students’ code (Pea, 1986).

Several approaches have been found to counter
alternate conceptions where students believe
that longer programs are more inefficient than
shorter programs, or that more variables mean
less efficiency. These approaches include
earlier teaching of related concepts, work on
underpinning vocabulary, and introduction of
tasks that directly address the misconception
(Gal-Ezer & Zur, 2004). Such activities are
targeted tasks that pre-empt or directly address
and rectify misconceptions, including asking
learners to compare programs line by line or
create new versions (Gal-Ezer & Zur, 2004).

Some approaches for directly tackling difficulties
may in themselves cause misconceptions. For
example, using the box analogy to help learners
understand variables can introduce limited and
faulty mental models (Qian & Lehman, 2017).
Research suggests that teachers should carefully
assess learners’ understanding to reveal the
details of their current mental models, enabling
them to work out what approach might be best
to help their learners overcome difficulties and
make progress (Qian & Lehman, 2017; Sorva,
2018).

3.2. Cognitive apprenticeship

Cognitive apprenticeship is a concept introduced
by Collins, Brown, and Newman back in 1987
and refers to the way that novices gain expert
skills by observing and then practising expert
activity (Collins, Brown, & Newman, 1987). Some
teaching approaches associated with cognitive
apprenticeship are modelling, coaching,
scaffolding, student articulation, reflection, and
exploration.

As a form of cognitive apprenticeship,
collaborative learning through pupil-to-pupil

support, such as with Digital Leaders, appears
to provide opportunities for peer apprenticeship.
However, the effectiveness of this approach
regarding learner outcomes has not yet been
formally evaluated. Passey (2014) highlighted
the benefits of Digital Leaders for teachers and
pupils, as technological support was provided.
Still, the author recommended further research
on the balance of activities undertaken and
the outcomes and perceptions for all pupils
engaged in the programme. Similarly, the need
for research into the impact on pupils who
are providing support in collaborative learning
approaches has also been raised (Ching & Kafai,
2008).

In their review of teaching and learning of
computational thinking through programming,
Lye and Koh found that authentic contexts with
scaffolding and reflection activities appeared
to be most successful, but the authors advised
that no one pedagogical solution is appropriate
for all classes. They suggested using a number
of approaches that fall under the umbrella
of cognitive apprenticeship, including much
scaffolding at the start of projects, modelling,
and studying, modifying, and extending code
samples (Lye & Koh, 2014).

3.3. Developing metacognition
around abstraction

Abstraction has been cited as the cornerstone
of computer science (Wing, 2008) and although
it has been argued that it is not a skill that is
unique to computer science (Ubiquity staff,
2007), there appears to be a consensus that
being able to use and understand abstractions
is a fundamental aspect of learning to program
(Barr & Stephenson, 2011; Tedre & Denning,
2016).

Several frameworks have been suggested that
support teachers, and their students, to build

29

Teaching programming in schools: A review of approaches and strategies

mental models about abstractions related to
programming, which will help them to teach and
learn how to program.

Established through research with university
students, the Abstraction Transition Taxonomy
(AT) divides student knowledge and practices
in learning to program into three levels: Code,
Computer Science (CS) Speak, and English; AT
also describes the transitions between these
levels. An example transition goal given by
the study is “Given a technical description (CS
Speak) of how to achieve a goal, choose code
that will accomplish that goal” (Cutts, Esper,
Fecho, Foster, & Simon, 2012).

For the understanding of algorithms by university
students, researchers have defined Levels of
Abstraction (LOA), a framework similar to AT but
with four levels: execution of code, code, object,

and goals (Perrenet & Kaasenbrood, 2006).
Armoni (2013) further developed this framework
for high-school students, in which the ‘object’
level was renamed ‘algorithm’ level to support
teacher and pupil understanding, and transitions
across the levels were also defined.

Armoni and Statter successfully used this
adapted LOA framework in high schools (Statter
& Armoni, 2016), and reported that learners
using the framework showed improvements in
attendance, algorithm development, algorithm
creation, ability to explain solutions, and
understanding of initialisation, with more
improvement by girls than boys (Statter &
Armoni, 2017). To support primary classrooms,
the LOA levels have been further renamed as
running the code, code, design, and task (Waite,
Curzon, Marsh, Sentance, & Hawden-Bennett,
2018).

The importance of students being able to move
from the ‘task’ level to the ‘code’ level and vice
versa is linked with advice that learners would
benefit from being able to draw on existing
templates or plans that solve a certain type of
problem. This ability to abstract a task into such
templates was noted in expert programmers
and a recommendation was made that novice
programmers would benefit from being taught
‘learning templates’ as well as a process for
problem solving (Lokkila et al., 2016).

3.4. Include design
Teaching the process of problem solving is
not a new requirement in computing (Soloway,
1986; Robins, Rountree, & Rountree, 2003) and
yet it appears to be rarely addressed as a goal
in curricula (Rich, Strickland, & Franklin, 2017)
or included in resources for teachers to use
(Falkner & Vivian, 2015).

For younger learners, a simplified engineering
design process, see Figure 8, has been

Figure 8: An illustration of the simplified
engineering design process (Bers et al., 2014,
p.155).

30

Teaching programming in schools: A review of approaches and strategies

suggested to support program development;
this process includes phases of ask, imagine,
plan, create, test and improve, and share (Bers et
al., 2014). However, difficulties of implementing
design in primary classrooms have been found
to include student resistance to design, a lack
of time to do design, a lack of teacher and
pupil expertise in design, conflicting pedagogy
choices, a lack of teaching resources, and
confusion over what an algorithm is (Waite,
Curzon, Marsh, & Sentance, 2020).

In industry, the classic approach to software
development is a waterfall: the software
requirements are gathered; these are then
analysed; then a design is created; the design
is implemented as code; the code is tested and

finally delivered. Other development approaches
are now popular, including test-driven design and
iterative methods. Simply put, iterative methods
run through a similar cycle to the waterfall for
parts of the solution instead of the whole, and
these parts are combined as the development
moves along. Another professional software
development approach is agile methodology.
Several studies have reported on the use of
agile methodologies in high schools, including
development of an agile process for school use
(see Figure 9) (Romeike & Göttel, 2012) and with
indications of increased code quality, student
motivation (Missiroli, Russo, & Ciancarini, 2016),
and student self-sufficiency (Kastl, Kiesmüller, &
Romeike, 2016).

Figure 9: Agile model for projects in computing education (AMoPCE) (Romeike & Göttel, 2012, p.55).

31

Teaching programming in schools: A review of approaches and strategies

However, the design process used by students
learning to program is considered to be
different to the process used by professional
programmers, because students are likely to
explore more than experts do, and they don’t
have to consider issues such as how a software
system might change in the longer term or how
it might be reused. Researchers have suggested
the use of two consecutive cycles for teaching
students problem solving in programming: an
exploration process cycle in which students
analyse and understand programs, and a design
process cycle in which students design and
construct programs (Schulte, Magenheim,
Müller, & Budde, 2017). Teachers employing this
approach need to consider which cycle learners
are moving through and how to nimbly move
students from one cycle to the other and back
again. This design–exploration cycle has not yet
been used in practice and further work is needed
to explore it in action.

Besides using industry methodologies, other
approaches for teaching how to design have
been suggested that are included in overall
structured problem-, process-, or project-based
approaches to running projects in which students
learn how to program.

In higher education research into Problem-Based
Learning (PBL), improved student motivation
and increased generic design skills have been
reported (Nuutila, Törmä, & Malmi, 2005). Middle
school education researchers have claimed
Process-Oriented Guided Inquiry Learning
(PoGiL) to be effective in teaching computing
including design (Griffin, Pirmann, & Gray, 2016).
The authors of a study comparing a Project-
Based Learning (PjBL) strategy, a traditional
learning strategy, and a game-development
strategy reported that the PjBL students
completed their activity with fewer mistakes,
while the traditional group experimented
with more complex concepts, although not
always successfully (Garneli, Giannakos, &

Chorianopoulos, 2015).

Design and software life cycle teaching is
incorporated explicitly, to different degrees,
in models and frameworks for teaching
programming, but further research is needed
to evaluate what design objectives should be
included and which approach is best to improve
design expertise for pupils in classroom settings.

3.5. Focus on vocabulary and
language
Research connecting concept development to
speech has a long history. Sapir remarked in
1921: “The birth of a new concept is invariably
foreshadowed by a more or less strained or
extended use of old linguistic material; the
concept does not attain to individual and
independent life until it has found a distinctive
linguistic embodiment” (Sapir, 1921, para. 15).
Student performance has a clear association
with an understanding of subject-related
vocabulary (Espin & Foegen, 1996), and explicit
instruction including integration, repetition, and
meaningful use is cited as being essential for
vocabulary development (Beck, McKeown, &
Kucan, 2013; Nagy, 1988). Incidental, or topical,
experiences from general listening and reading
in other contexts have improved learner progress
in developing conceptual understanding (Carlisle,
Fleming, & Gudbrandsen, 2000).

In maths, a subject where conceptual
understanding is bound to vocabulary (Capraro,
Capraro, & Rupley, 2010), topical word learning
can be problematical as the colloquial meaning
of terms can be different to the mathematical
meaning, and some terms are unique to maths
(Dunston & Tyminski, 2013). Computing poses
similar problems, as the terminology can be
unfamiliar or have different meanings to more
general use. For example, the words bit, bug,
memory, and cloud have different meanings in

32

Teaching programming in schools: A review of approaches and strategies

computing to their general use. More technical
words such as algorithm may have subtly
different meanings across school subjects and a
range of definitions within computing (Diethelm
& Goshler, 2015).

Not all educators may be aware of the confusion
that these ‘reused’, or differing definition terms
pose for those new to computing. Conversely,
teachers may be unaware of the nuanced
differences and misconceptions that may arise
from exploiting apparent analogies of common
terms. Therefore, although key vocabulary is
essential to develop understanding, it must be
introduced with an awareness of the potential
mental models and alternate conceptions
that may emerge. Further research is needed
to explore learners' understanding of terms,
teachers' use of terms, and the impact of
inconsistent use of terms (Diethelm & Goshler,
2015).

International studies and curricula have been
developed that focus on the importance of
pupil talk and vocabulary. In the US, Grover and
Pea (2013) developed a discourse-intensive
curriculum, whereby the significance of
terminology was emphasised, and activities
developed that required learners to rehearse
and use key terms, verifying and constructing
personal understanding through social
interactions. Working on Israeli secondary
computing materials, Armoni has developed a
framework with carefully constructed levels.
The importance of using different vocabulary
to distinguish between the development of
the algorithm and its implementation as code
was suggested as essential for developing
conceptual understanding (Armoni, 2013;
Statter & Armoni, 2016). Work with university
learners in Scotland on the language used in
solving computing tasks paints a similar picture,
with the importance of talk and the use of
English–computer science talk being key for
the development of understanding (Cutts et al.,
2012).

Sentance and Waite (2021) synthesised
discourse frameworks associated with the
study of talk in general teaching and learning
to analyse talk in high-school programming
classrooms where the PRIMM pedagogy was
being used. The authors developed a generic
theoretical model for planning and evaluating
talk in the programming classroom (see Figure
10) and found several key factors that enhanced
discourse. Key factors included encouraging talk
through classroom routines, using questions and
explanations, including goals on vocabulary, and
careful design of learning contexts, including
using example code, activity structure, and the
student’s own code to stimulate talk (Sentance &
Waite, 2021).

Applying theories related to classroom talk,
Zakaria et al. have designed and investigated a
structured feedback intervention for teachers
to use to support students doing shared
programming tasks. Comparing the dialogue
and activity of six pairs of students, aged 10 to
11 years old, from classes with and without the
intervention, the authors reported promising
results in productive collaboration and discourse
such as increased exploratory talk including
more justification and an increase in shared
alternative ideas. The authors reported that
further work is needed to refine the feedback
framework and larger and more diverse sample
sizes are needed to validate the approach
(Zakaria et al., 2021). The impact on learning
outcomes also needs to be investigated.

3.6. Supporting learning and a
blended approach
Three broad theories, or approaches to learning,
have been noted as prevalent in research studies
on teaching programming in classrooms (Waite,
2017):
• Exploration
• Problem solving and making (Papert, 1980)
• Direct instruction (Dreyfus & Dreyfus, 1980)

33

Teaching programming in schools: A review of approaches and strategies

Figure 10: Talk in the programming classroom (Sentance & Waite, 2021, p.13).

Within these approaches, the degree of control
pupils have over what they are learning about
can vary. Generally speaking, direct instruction
gives the teachers more control of the learning
objectives, whereas with the exploration and
making activities the students have more control.
However, even in problem solving and making
and exploration activities, a teacher can give
pupils more or less freedom with the task at
hand and can constrain the learning, for example,
by limiting resources available or by framing the
task.

Associated with providing support is the idea
of scaffolding, which is used in education to
describe both the micro-level scaffolding of
teachers interacting with students in lessons
and also the macro-level scaffolding of planning
lesson goals and the organisation of learning
tasks (Hammond & Gibbons, 2001). A simple
example of a continuum of scaffolding has
been suggested to provide initial guidance for
teachers to understand their choices better; the
Computer Science Student-Centred Instructional

Continuum (CS-SCIC) includes broad categories
of instructional approaches such as copying
code, targeted tasks, shared coding, project-
based, inquiry-based, and tinkering. This has
been successfully used in England and the USA
to support teacher professional development
(Waite & Liebe, 2021). CS-SCIC reflects the
tension between exploration, making, and direct
teaching, but does not advocate any approach
or order of use of approaches over any others.
It simply gives teachers a way to talk about their
choices with the expectation that teachers will
create a sequence of learning experiences (Waite
& Liebe, 2021).

In creating learning experiences, rather than just
using one approach to teach programming, some
advocate a blended approach encompassing
a range of approaches (Grover, Pea, & Cooper,
2015). Which approaches should be included,
and in what order, is suggested by studies,
and sometimes the advice provided can be
combined, but sometimes there are conflicting
views. Some research suggests a controlled

34

Teaching programming in schools: A review of approaches and strategies

progression of more direct teaching approaches
should be planned for teaching programming,
particularly for more difficult concepts
(Hubwieser et al., 2014).

Curricula often include exploration activities at
different points in a sequence and progression of
learning (Grover, Pea, & Cooper, 2015; Meerbaum-
Salant et al., 2013; Repenning et al., 2015).
Exploration might be used to: introduce new
concepts; revise or consolidate ideas; pre-empt,
address or challenge misconceptions; or provide
opportunities for extension and creativity.

Hansen, Hansen, Dwyer, Harlow, & Franklin
(2016) used the Universal Design for Learning
(UDL) framework to underpin their US grades
4 to 6 computing curriculum, which focuses
on differentiation to support all learners. By
incorporating a carefully constructed learning
progression and tasks moving from simple
to complex (Franklin et al., 2016), a range of
instructional strategies are included, such as
unplugged activities, modelling, small group
work, a sandbox to try out new skills, as well as
more targeted tasks to teach specific concepts.

In their review of the teaching and learning of
computational thinking through programming,
Lye and Koh emphasise constructionism. Still,
they advise that no one pedagogical solution
is appropriate for all classes. They suggest
scaffolding at the start of projects, studying,
modifying, and extending code samples, as well
as recommending that demonstrations, tutorials,
and debugging tools be used (Lye & Koh, 2014).
They also suggest the use of Use–Modify–
Create (Lee et al., 2011) as well as problem and
project-based learning, using authentic contexts,
with a 'just-in-time’ approach to present new
concepts as and when needed, and scaffolding
and reflection activities emphasising that
students ought to be 'thinking-doing and not just
doing' (Lye & Koh, 2014).
In suggesting their concepts, practices, and

perspectives, Brennan and Resnick (2012) have
proposed a framework for learning block-based
programming. However, this framework does
not prescribe in detail a classroom pedagogy for
teaching programming. Insight from a blended
approach that may reflect the framework is
offered by the Creative Curriculum authored
by Brennan, Balch, and Chung (2014), where
concepts are introduced through a series of
projects. Instructional techniques, including
minimally guided exploration, guided exploration
with suggested blocks, debugging activities,
reusing and remixing example code snippets,
and learners creating their own work with
support from examples of code (Scratch cards
and example Scratch projects), are included
as well as design journals to record ideas and
provide a means to share and reflect on learning.

It seems likely that a blended approach is
most effective. However, further research is
needed to investigate the effectiveness of each
instructional approach in different contexts,
in particular orders, for different learners at
different points in their progression (Webb,
Repenning, & Koh, 2012).

3.7. Develop generic problem-
solving skills (computational
thinking)
Definitions of computational thinking vary. Some
definitions include programming concepts
(such as sequence, repetition, and events),
others a range of problem-solving practices
(such as logical reasoning, algorithmic thinking,
abstraction, decomposition, and evaluation),
and some include generic skills (such as
collaboration and questioning). Complicating
this, popular views and definitions of the topic
seem to change over time.
The link between aspects of computational

35

Teaching programming in schools: A review of approaches and strategies

thinking ability and aspects of general problem-
solving ability have been correlated through
recent research comparing the results of
a computational thinking test to standard
psychometric tests (Román-González, Pérez-
González, & Jiménez-Fernández, 2017). However,
this research focused on only one narrow view
of computational thinking. Which components
of computational thinking are most useful for
learners and what instructional approaches to
teach computational thinking are most effective
is still unproven.

Despite this uncertainty of the impact of
computational thinking or its components
(Tedre & Denning, 2016; Curzon, Bell, Waite,
& Dorling, 2019), there are a wide range of
resources and approaches for inclusion of
computational thinking in teaching and learning
of programming (Falkner & Vivian, 2015). Based
on a knowledge of computational thinking,
educators are advised by some that they can
draw out points of learning in existing lesson
activities or incorporate specific computational
thinking activities in schemes of work teaching
programming (Curzon et al., 2019).

Any ongoing research on computing pedagogy
requires a review of what computational thinking
is viewed as at the considered point in time, how
it impacts teaching and learning, and its role
within programming pedagogy.

36

Teaching programming in schools: A review of approaches and strategies

4. Conclusion

37

Teaching programming in schools: A review of approaches and strategies

In this report, we have described research that
teachers can use to support their teaching of
programming in schools. We have covered a
range of classroom strategies such as reading
code and pair programming, contexts in which
programming may be taught, and how to support
students. This is a substantial research area, so
there may be some omissions. We have focused
on topics and strategies that are particularly
applicable to teachers in the classroom, based
on our experience.

If you’re a teacher, you will probably already use
a toolkit of approaches to support your teaching;
programming is no different and this review
may help you with your choice of instructional
strategy, and selecting different techniques
according to the needs of your learners to ensure
all students make progress.

Robust pedagogical content knowledge for
programming in schools is only just starting to
emerge, unlike other subjects where "how to
teach it" has been more widely researched. Over
time, we hope to see more evidence emerge
for the approaches outlined here as we move
towards an even more informed and evidence-
based view of "what works in computing".

4. Conclusion

38

Teaching programming in schools: A review of approaches and strategies

References

Armoni, M. (2013). On Teaching Abstraction
in Computer Science to Novices. Journal
of Computers in Mathematics and Science
Teaching, 32(3), 265–284.
https://www.learntechlib.org/p/41271/

Barnes, J., Hoover, A. K., Fatehi, B., Moreno-
León, J., Smith, G., & Harteveld, C. (2017).
Exploring emerging design patterns in
student-made climate change games.
Proceedings of the 12th International
Conference on the Foundations of Digital
Games, 64, 1–6.
https://doi.org/10.1145/3102071.3116224

Barr, V., & Stephenson, C. (2011). Bringing
computational thinking to K-12: what is
involved and what is the role of the computer
science education community? ACM Inroads,
2(1), 48–54.
https://doi.org/10.1145/1929887.1929905

Bau, D., Gray, J., Kelleher, C., Sheldon, J., &
Turbak, F. (2017). Learnable programming:
Blocks and beyond. Communications of the
ACM, 60(6), 72–80.
https://doi.org/10.1145/3015455

Beck, I. L., McKeown, M. G., & Kucan, L.
(2013). Bringing words to life: Robust
vocabulary instruction. Guilford Press.

Beck, W., Thomas, S. R., Drake, J., East, J.
P., & Wallingford, E. (1996). Pattern Based
Programming Instruction. 1996 Annual
Conference Proceedings, 1.349.1–1.349.10.
https://peer.asee.org/6228

Bell, T., Alexander, J., Freeman, I., & Grimley,
M. (2009). Computer science unplugged:
School students doing real computing
without computers. The New Zealand Journal
of Applied Computing and Information
Technology, 13(1), 20–29.

Bennedsen, J., & Caspersen, M. E. (2005).
Revealing the programming process. ACM
SIGCSE Bulletin, 37(1), 186–190.
https://doi.org/10.1145/1047124.1047413

Benton, L., Hoyles, C., Kalas, I., & Noss, R.
(2017). Bridging primary programming and
mathematics: Some findings of design
research in England. Digital Experiences
in Mathematics Education, 3(2), 115–138.
https://link.springer.com/article/10.1007/
s40751-017-0028-x

Berry, M., Woollard, J., Hughes, P.,
Chippendale, J., Ross, Z., & Waite, J. (2015).
Barefoot computing resources. Available
at https://www.barefootcomputing.org/
primary-computing-resources (accessed 23
September 2021)

Bers, M., Flannery, L., Kazakoff, E. R., &
Sullivan, A. (2014). Computational thinking
and tinkering: Exploration of an early
childhood robotics curriculum. Computers
& Education, 72, 145–157. https://doi.
org/10.1016/j.compedu.2013.10.020

Brennan, K., Balch, C., & Chung, M. (2014).
Creative computing. Harvard Graduate
School of Education. Available at

https://www.learntechlib.org/p/41271/
https://dl.acm.org/doi/10.1145/3102071.3116224
https://dl.acm.org/doi/10.1145/1929887.1929905
https://dl.acm.org/doi/10.1145/3015455
https://www.google.com/url?q=https://peer.asee.org/6228&sa=D&source=docs&ust=1637240762981000&usg=AOvVaw2Db085WMcj6Wh7zz5Had_v
https://dl.acm.org/doi/10.1145/1047124.1047413
https://link.springer.com/article/10.1007/s40751-017-0028-x
https://www.barefootcomputing.org/primary-computing-resources
https://linkinghub.elsevier.com/retrieve/pii/S0360131513003059

39

Teaching programming in schools: A review of approaches and strategies

https://creativecomputing.gse.harvard.edu/
guide/curriculum.html (accessed 6 October
2021)

Brennan, K., & Resnick, M. (2012). New
frameworks for studying and assessing the
development of computational thinking.
Proceedings of the 2012 Annual Meeting
of the American Educational Research
Association. Available at
https://web.media.mit.edu/~kbrennan/
files/Brennan_Resnick_AERA2012_CT.pdf
(accessed 6 October 2021)

Buchholz, B., Shively, K., Peppler, K., &
Wohlwend, K. (2014). Hands On, Hands Off:
Gendered Access in Crafting and Electronics
Practices. Mind, Culture, and Activity, 21(4),
278–297. https://doi.org/10.1080/1074903
9.2014.939762

Busjahn, T., Bednarik, R., Begel, A., Crosby,
M., Paterson, J. H., Schulte, C., Sharif, B.,
& Tamm, S. (2015). Eye movements in
code reading: relaxing the linear order.
Proceedings of the 2015 IEEE 23rd
International Conference on Program
Comprehension (ICPC '15), pp.255–265.
https://doi.org/10.1109/ICPC.2015.36

Capraro, R. M., Capraro, M. M., & Rupley,
W. H. (2010). Semantics and Syntax: A
Theoretical Model for How Students May
Build Mathematical Misunderstandings.
Journal of Mathematics Education, 3(2),
58−66. Available at http://educationforatoz.
org/images/4.Robert_M._Capraro%2C_
Mary_Margaret_Capraro%2C_William_H._
Rupley.pdf (accessed 23 November 2021)

Carlisle, J. F., Fleming, J. E., & Gudbrandsen,
B. (2000). Incidental word learning in
science classes. Contemporary Educational
Psychology, 25(2), 184–211.
https://doi.org/10.1006/ceps.1998.1001

Ching, C. C., & Kafai, Y. B. (2008). Peer
pedagogy: Student collaboration and
reflection in a learning- through-design
project. Teachers College Record, 110(12),
2601–2632.

Clement, D. H., & Merriman, S. (1988).
Componential developments in Logo
programming and environments. In R. E.
Mayer (Ed.), Teaching and learning computer
programming (pp. 13–54). Erlbaum. https://
psycnet.apa.org/record/1988-98743-002

Collins, A., Brown, J., & Newman, S.
(1987). Cognitive Apprenticeship:
Teaching the Craft of Reading, Writing,
and Mathematics. Technical Report No.
403. Center for the Study of Reading,
University of Illinois at Urbana-Champaign.
Available at https://www.ideals.illinois.
edu/bitstream/handle/2142/17958/
ctrstreadtechrepv01987i00403_opt.pdf
(accessed 5 November 2021)

Computer Science Teachers Association
(2011). Computational Thinking Teacher
Resources 2nd Edition. Available at
https://cdn.iste.org/www-root/2020-10/
ISTE_CT_Teacher_Resources_2ed.pdf?_
ga=2.156427001.378398415.1633422919-
869434791.1633422919 (accessed 5
October 2021)

Cooper, J. L., & Robinson, P. (2000). Getting
started: informal small‐group strategies in

https://creativecomputing.gse.harvard.edu/guide/curriculum.html
https://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
https://www.google.com/url?q=https://doi.org/10.1080/10749039.2014.939762&sa=D&source=docs&ust=1637241028806000&usg=AOvVaw0PeRkJKqstdWpYpGQbK_rS
https://ieeexplore.ieee.org/document/7181454/
http://educationforatoz.org/images/4.Robert_M._Capraro%2C_Mary_Margaret_Capraro%2C_William_H._Rupley.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0361476X98910013?via%3Dihub
https://psycnet.apa.org/record/1988-98743-002
https://www.ideals.illinois.edu/bitstream/handle/2142/17958/ctrstreadtechrepv01987i00403_opt.pdf
https://cdn.iste.org/www-root/2020-10/ISTE_CT_Teacher_Resources_2ed.pdf?_ga=2.156427001.378398415.1633422919-869434791.1633422919

40

Teaching programming in schools: A review of approaches and strategies

large classes. New Directions for Teaching &
Learning, 2000(81), 17–24.
https://doi.org/10.1002/tl.8102

Cooper, S., Dann, W., & Pausch, R.
(2000). Alice: a 3-D tool for introductory
programming concepts. Journal of
Computing Sciences in Colleges, 15(5),
107–116. Available at https://dl.acm.org/
doi/10.5555/364133.364161 (accessed 6
October 2021)

Cremin, T., & Baker, S. (2010). Exploring
teacher-writer identities in the classroom:
Conceptualising the struggle. English
Teaching: Practice and Critique, 9(3), 8–25.
Available at https://edlinked.soe.waikato.
ac.nz/journal/files/etpc/files/2010v9n3art1.
pdf (accessed 29 October 2021)

Crouch, C. H., & Mazur, E. (2001). Peer
instruction: Ten years of experience and
results. American Journal of Physics, 69(9),
970–977.
https://doi.org/10.1119/1.1374249

Cummings, K., & Roberts, S. G. (2008). A
study of peer instruction methods with high
school physics students. AIP Conference
Proceedings, 1064(1), 103–106.
 https://doi.org/10.1063/1.3021227

Curzon, P. (2013). cs4fn and computational
thinking unplugged. Proceedings of the
8th Workshop in Primary and Secondary
Computing Education, pp.47–50.
https://doi.org/10.1145/2532748.2611263

Curzon, P., Bell, T., Waite, J., & Dorling, M.
(2019). Computational thinking. In S. A.
Fincher & A. V. Robins (Eds.), The Cambridge

Handbook of Computing Education Research
(pp.513–546). Cambridge University Press.
Available at https://qmro.qmul.ac.uk/xmlui/
handle/123456789/57010 (accessed 6
October 2021)

Curzon, P., & McOwan, P. W. (2017). The
power of computational thinking: Games,
magic and puzzles to help you become a
computational thinker. World Scientific.

Curzon, P., Waite, J., Maton, K., & Donohue,
J. (2020). Using semantic waves to analyse
the effectiveness of unplugged computing
activities. Proceedings of the 15th Workshop
on Primary and Secondary Computing
Education, 18, 1–10.
https://doi.org/10.1145/3421590.3421606

Cutts, Q., Esper, S., Fecho, M., Foster, S. R., &
Simon, B. (2012). The abstraction transition
taxonomy: developing desired learning
outcomes through the lens of situated
cognition. Proceedings of the 9th Annual
International Conference on International
Computing Education Research, pp.63–70.
https://doi.org/10.1145/2361276.2361290

Deci, E. L. (1971). Effects of externally
mediated rewards on intrinsic motivation.
Journal of Personality and Social Psychology,
18(1), 105–115.
https://doi.org/10.1037/h0030644

Deci, E., & Ryan, R. M. (1985). Intrinsic
motivation and self-determination in human
behavior. Springer Science & Business
Media.

Deci, E. L., & Ryan, R. M. (2000). The
“what?” and “why?” of goal pursuits:

https://dl.acm.org/doi/10.5555/364133.364161
https://www.google.com/url?q=https://edlinked.soe.waikato.ac.nz/journal/files/etpc/files/2010v9n3art1.pdf&sa=D&source=docs&ust=1637241609550000&usg=AOvVaw3x4UNB2xNSh-jju72E3qhx
https://www.google.com/url?q=https://doi.org/10.1119/1.1374249&sa=D&source=docs&ust=1637241631843000&usg=AOvVaw2WQsJ8jnzqIECow-7f1qw-
https://www.google.com/url?q=https://doi.org/10.1063/1.3021227&sa=D&source=docs&ust=1637241666886000&usg=AOvVaw3RQNCQiEci1MjfCphMUR7s
https://www.google.com/url?q=https://doi.org/10.1145/2532748.2611263&sa=D&source=docs&ust=1637241694228000&usg=AOvVaw0pObAU7xEh851Nl5lq3Osl
https://qmro.qmul.ac.uk/xmlui/handle/123456789/57010
https://dl.acm.org/doi/10.1145/3421590.3421606
https://www.google.com/url?q=https://doi.org/10.1145/2361276.2361290&sa=D&source=docs&ust=1637241794017000&usg=AOvVaw2td2J5fds2aAI8We1KkEND
https://psycnet.apa.org/doiLanding?doi=10.1037%2Fh0030644
https://onlinelibrary.wiley.com/doi/10.1002/tl.8102

41

Teaching programming in schools: A review of approaches and strategies

Human needs and the self-determination
of behavior. Psychological Inquiry, 11(4),
227–268. https://doi.org/10.1207/
S15327965PLI1104_01

Denner, J., Green, E., & Campe, S. (2021).
Learning to program in middle school: How
pair programming helps and hinders intrepid
exploration. Journal of the Learning Sciences,
in press https://doi.org/10.1080/10508406.
2021.1939028

Denner, J., Werner, L., Campe, S., & Ortiz,
E. (2014). Pair programming: Under what
conditions is it advantageous for middle
school students? Journal of Research on
Technology in Education, 46(3), 277–296.
https://doi.org/10.1080/15391523.2014.88
8272

Diethelm, I., & Goschler, J. (2015). Questions
on spoken language and terminology for
teaching computer science. Proceedings of
the 2015 ACM Conference on Innovation and
Technology in Computer Science Education,
pp.21–26.
https://doi.org/10.1145/2729094.2742600

Donaldson, P., & Cutts, Q. (2018). Flexible
low-cost activities to develop novice
code comprehension skills in schools.
Proceedings of the 13th Workshop on Primary
and Secondary Computing Education, p.19.
https://doi.org/10.1145/3265757.3265776

Dreyfus, S. E., & Dreyfus, H. L. (1980). A five-
stage model of the mental activities involved
in directed skill acquisition. California
University Berkeley Operations Research
Center. Available at
https://apps.dtic.mil/sti/citations/

ADA084551 (accessed 6 October 2021)

Du, Y., Luxton-Reilly, A., & Denny, P.
(2020). A Review of Research on Parsons
Problems. Proceedings of the Twenty-
Second Australasian Computing Education
Conference (ACE’20), pp.195–202.
https://doi.org/10.1145/3373165.3373187

Du Boulay, B. (1986). Some difficulties of
learning to program. Journal of Educational
Computing Research, 2(1), 57–73. https://
doi.org/10.2190/3LFX-9RRF-67T8-UVK9

Dunston, P. J., & Tyminski, A. M. (2013).
What’s the Big Deal about Vocabulary?
Mathematics Teaching in the Middle School,
1, 38–45.
http://www.jstor.org/stable/10.5951/
mathteacmiddscho.19.1.0038

Dwyer, H., Hill, C., Carpenter, S., Harlow, D.,
& Franklin, D. (2014). Identifying elementary
students’ pre- instructional ability to develop
algorithms and step-by-step instructions.
Proceedings of the 45th ACM Technical
Symposium on Computer Science Education,
pp.511–516.
https://doi.org/10.1145/2538862.2538905

Dwyer, H., Hill, C., Hansen, A., Iveland, A.,
Franklin, D., & Harlow, D. (2015). Fourth Grade
Students Reading Block-Based Programs:
Predictions, Visual Cues, and Affordances.
Proceedings of the Eleventh Annual
International Conference on International
Computing Education Research, pp.111–119.
https://doi.org/10.1145/2787622.2787729

Edelson, D. C., Gordin, D. N., & Pea, R. D.
(1999). Addressing the Challenges of Inquiry-

https://www.tandfonline.com/doi/abs/10.1207/S15327965PLI1104_01
https://www.tandfonline.com/doi/abs/10.1080/10508406.2021.1939028?journalCode=hlns20
https://www.tandfonline.com/doi/abs/10.1080/15391523.2014.888272
https://dl.acm.org/doi/10.1145/2729094.2742600
https://dl.acm.org/doi/10.1145/3265757.3265776
https://www.google.com/url?q=https://apps.dtic.mil/sti/citations/ADA084551&sa=D&source=docs&ust=1637242067264000&usg=AOvVaw0eKORhJMXwya8FxFCavwoG
https://dl.acm.org/doi/10.1145/3373165.3373187
https://www.google.com/url?q=https://doi.org/10.2190%252F3LFX-9RRF-67T8-UVK9&sa=D&source=docs&ust=1637242150520000&usg=AOvVaw13uUQx0MGXnmBfbseV82xn
https://www.google.com/url?q=http://www.jstor.org/stable/10.5951/mathteacmiddscho.19.1.0038&sa=D&source=docs&ust=1637242179289000&usg=AOvVaw3aR3XYurocRO7K30bNvFzP
https://dl.acm.org/doi/10.1145/2538862.2538905
https://dl.acm.org/doi/10.1145/2787622.2787729
https://www.google.com/url?q=https://apps.dtic.mil/sti/citations/ADA084551&sa=D&source=docs&ust=1637242067264000&usg=AOvVaw0eKORhJMXwya8FxFCavwoG

42

Teaching programming in schools: A review of approaches and strategies

Based Learning Through Technology and
Curriculum Design. Journal of the Learning
Sciences, 8(3–4), 391–450.
https://doi.org/10.1080/10508406.1999.96
72075

Ericson, B. J., Foley, J. D., & Rick, J. (2018).
Evaluating the Efficiency and Effectiveness
of Adaptive Parsons Problems. Proceedings
of the 2018 ACM Conference on International
Computing Education Research (ICER ’18),
pp.60–68.
https://doi.org/10.1145/3230977.3231000

Ericson, B. J., Margulieux, L. E., & Rick, J.
(2017). Solving Parson’s problems versus
fixing and writing code. Proceedings of the
17th Koli Calling International Conference on
Computing Education Research, pp.20–29.
https://doi.org/10.1145/3141880.3141895

Ericson, B., McCall, A., & Cunningham, K.
(2019). Investigating the Affect and Effect of
Adaptive Parsons Problems. Proceedings of
the 19th Koli Calling International Conference
on Computing Education Research, pp.1–10.
https://doi.org/10.1145/3364510.3364524

Espin, C. A., & Foegen, A. (1996). Validity of
general outcome measures for predicting
secondary students’ performance
on content-area tasks. Exceptional
Children, 62, 497–514. https://doi.
org/10.1177/001440299606200602

Falkner, K., & Vivian, R. (2015). A review of
computer science resources for learning
and teaching with K-12 computing curricula:
An Australian case study. Computer Science
Education, 25, 390–429. https://doi.org/10.1
080/08993408.2016.1140410

Franklin, D., Hill, C., Dwyer, H. A., Hansen,
A. K., Iveland, A., & Harlow, D. B. (2016).
Initialization in Scratch: Seeking Knowledge
Transfer. Proceedings of the 47th ACM
Technical Symposium on Computing Science
Education, pp.217–222.
https://doi.org/10.1145/2839509.2844569

Franklin, D., Skifstad, G., Rolock, R., Mehrotra,
I., Ding, V., Hansen, A., Weintrop, D., & Harlow,
D. (2017). Using Upper-Elementary Student
Performance to Understand Conceptual
Sequencing in a Blocks-based Curriculum.
Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science
Education, pp.231–236.
https://doi.org/10.1145/3017680.3017760

Fraser, N. (2015). Ten things we've
learned from Blockly. IEEE Blocks and
Beyond Workshop (Blocks and Beyond)
2015, pp.49–50. https://doi.org/10.1109/
BLOCKS.2015.7369000

Gal-Ezer, J., & Zur, E. (2004). The efficiency
of algorithms—misconceptions. Computers
& Education, 42(3), 215–226. https://doi.
org/10.1016/j.compedu.2003.07.004

Garneli, V., Giannakos, M. N., &
Chorianopoulos, K. (2015). Computing
education in K-12 schools: A review of the
literature. 2015 IEEE Global Engineering
Education Conference (EDUCON),
pp.543–551. https://doi.org/10.1109/
EDUCON.2015.7096023

Griffin, J., Pirmann, T., & Gray, B. (2016).
Two Teachers, Two Perspectives on CS
Principles. Proceedings of the 47th ACM
Technical Symposium on Computing Science

https://dl.acm.org/doi/10.1145/3230977.3231000
https://dl.acm.org/doi/10.1145/3141880.3141895
https://dl.acm.org/doi/10.1145/3364510.3364524
https://journals.sagepub.com/doi/10.1177/001440299606200602
https://www.tandfonline.com/doi/full/10.1080/08993408.2016.1140410
https://dl.acm.org/doi/10.1145/2839509.2844569
https://dl.acm.org/doi/10.1145/3017680.3017760
https://www.google.com/url?q=https://doi.org/10.1109/BLOCKS.2015.7369000&sa=D&source=docs&ust=1637250036922000&usg=AOvVaw1lRpnUAdUfHDQKHL09ouQR
https://www.sciencedirect.com/science/article/abs/pii/S0360131503000848?via%3Dihub
https://ieeexplore.ieee.org/document/7096023
https://www.tandfonline.com/doi/abs/10.1080/10508406.1999.9672075

43

Teaching programming in schools: A review of approaches and strategies

Education, pp.461–466.
https://doi.org/10.1145/2839509.2844630

Grover, S., & Basu, S. (2017). Measuring
Student Learning in Introductory Block-Based
Programming: Examining Misconceptions
of Loops, Variables, and Boolean Logic.
Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science
Education, pp. 267–272.
https://doi.org/10.1145/3017680.3017723

Grover, S., & Pea, R. (2013). Using a
discourse-intensive pedagogy and android’s
app inventor for introducing computational
concepts to middle school students.
Proceedings of the 44th ACM Technical
Symposium on Computer Science Education,
pp.723–728.
https://doi.org/10.1145/2445196.2445404

Grover, S., Pea, R., & Cooper, S. (2015).
Designing for deeper learning in a blended
computer science course for middle school
students. Computer Science Education, 25,
199–237. https://doi.org/10.1080/08993408
.2015.1033142

Gujberova, M., & Kalas, I. (2013). Designing
productive gradations of tasks in primary
programming education. Proceedings of
the 8th Workshop in Primary and Secondary
Computing Education, pp.108–117. https://
dl.acm.org/doi/10.1145/2532748.2532750

Hammond, J., & Gibbons, P. (2001). What
is Scaffolding? In J. Hammond (Ed.),
Scaffolding: Teaching and learning in
language and literacy education, pp.1–14.
Primary English Teaching Association.
Available at

https://eric.ed.gov/?id=ED456447 (accessed
15 October 2021)

Hanks, B., Fitzgerald, S., McCauley, R.,
Murphy, L., & Zander, C. (2011). Pair
programming in education: a literature
review. Computer Science Education, 21(2),
135–173. https://doi.org/10.1080/08993408
.2011.579808

Hansen, A., Hansen, E., Dwyer, H., Harlow,
D., & Franklin, D. (2016). Differentiating
for Diversity: Using Universal Design for
Learning in Elementary Computer Science
Education. Proceedings of the 47th ACM
Technical Symposium on Computing Science
Education, pp.376–381.

Haynes, C. C., & Ericson, B. J. (2021).
Problem-Solving Efficiency and Cognitive
Load for Adaptive Parsons Problems vs.
Writing the Equivalent Code. Proceedings of
the 2021 CHI Conference on Human Factors
in Computing Systems, 60.
https://doi.org/10.1145/3411764.3445292

Hermans, F., Swidan, A., Aivaloglou, E., &
Smit, M. (2018). Thinking out of the box:
comparing metaphors for variables in
programming education. Proceedings of the
13th Workshop on Primary and Secondary
Computing Education, pp.1–8.
https://doi.org/10.1145/3265757.3265765

Hodges, S., Sentance, S., Finney, J., & Ball, T.
(2020). Physical Computing: A Key Element
of Modern Computer Science Education.
Computer, 53(4), 20–30.
https://doi.org/10.1109/MC.2019.2935058

https://dl.acm.org/doi/10.1145/2839509.2844630
https://dl.acm.org/doi/10.1145/3017680.3017723
https://dl.acm.org/doi/10.1145/2445196.2445404
https://www.tandfonline.com/doi/full/10.1080/08993408.2015.1033142
https://dl.acm.org/doi/10.1145/2532748.2532750
https://eric.ed.gov/?id=ED456447
https://www.tandfonline.com/doi/abs/10.1080/08993408.2011.579808?journalCode=ncse20
https://dl.acm.org/doi/10.1145/3411764.3445292
https://dl.acm.org/doi/10.1145/3265757.3265765
https://ieeexplore.ieee.org/document/9062372/

44

Teaching programming in schools: A review of approaches and strategies

Hubwieser, P., Armoni, M., Giannakos, M. N.,
& Mittermeir, R. T. (2014). Perspectives and
visions of computer science education in
primary and secondary (K-12) schools. ACM
Transactions on Computing Education, 14(2),
7. https://doi.org/10.1145/2602482

Jayathirtha, G., & Kafai, Y. (2021). Notional
Machines in a Semester-long Introductory
Physical Computing High School Unit.
Proceedings of the 17th ACM Conference on
International Computing Education Research,
pp.448–449.
https://doi.org/10.1145/3446871.3469796

Kafai, Y. B., & Burke, Q. (2015).
Constructionist gaming: Understanding
the benefits of making games for learning.
Educational Psychologist, 50(4), 313–334.
https://doi.org/10.1080/00461520.2015.11
24022

Kafai, Y. B., Fields, D. A., Lui, D. A., Walker,
J. T., Shaw, M. S., Jayathirtha, G., Nakajima,
T. M., Goode, J., & Giang, M. T. (2019).
Stitching the Loop with Electronic Textiles:
Promoting Equity in High School Students’
Competencies and Perceptions of Computer
Science. Proceedings of the 50th ACM
Technical Symposium on Computer Science
Education, pp.1176–1182.
https://doi.org/10.1145/3287324.3287426

Kafai, Y. B., Lee, E., Searle, K., Fields, D.,
Kaplan, E., & Lui, D. (2014). A crafts-oriented
approach to computing in high school:
Introducing computational concepts,
practices, and perspectives with electronic
textiles. ACM Transactions on Computing
Education, 14(1), 1.
https://doi.org/10.1145/2576874

Kafai, Y. B., & Resnick, M. (1996).
Constructionism in Practice: Designing,
Thinking, and Learning in a Digital World.
Lawrence Erlbaum Associates.

Kalelioglu, F., & Sentance, S. (2020). Teaching
with physical computing in school: the
case of the micro:bit. Education Information
Technology, 25, 2577–2603.
https://doi.org/10.1007/s10639-019-10080-
8

Kastl, P., Kiesmüller, U., & Romeike, R. (2016).
Starting out with Projects: Experiences with
Agile Software Development in High Schools.
Proceedings of the 11th Workshop in Primary
and Secondary Computing Education, pp.60–
65.
https://doi.org/10.1145/2978249.2978257

Katai, Z., Toth, L., & Adorjani, A. K. (2014).
Multi-Sensory Informatics Education.
Informatics in Education, 13(2), 225–240.
https://www.learntechlib.org/p/158137/

Kölling, M. (2015). Lessons from the
Design of Three Educational Programming
Environments: Blue, BlueJ and Greenfoot.
International Journal of People-Oriented
Programming, 4(1), 5–32.
https://doi.org/10.4018/IJPOP.2015010102

Kothiyal, A., Murthy, S., & Iyer. S. (2014).
Think-pair-share in a large CS1 class: does
learning really happen? Proceedings of the
2014 Conference on Innovation & Technology
in Computer Science Education (ITiCSE '14),
pp.51–56.
https://doi.org/10.1145/2591708.2591739

https://dl.acm.org/doi/10.1145/3446871.3469796
https://www.tandfonline.com/doi/full/10.1080/00461520.2015.1124022
https://dl.acm.org/doi/10.1145/3287324.3287426
https://dl.acm.org/doi/10.1145/2576874
https://www.google.com/url?q=https://doi.org/10.1007/s10639-019-10080-8&sa=D&source=docs&ust=1637250883348000&usg=AOvVaw0x_ru1vLIbH6Hxah9vf79O
https://dl.acm.org/doi/10.1145/2978249.2978257
https://www.google.com/url?q=https://www.learntechlib.org/p/158137/&sa=D&source=docs&ust=1637250942800000&usg=AOvVaw39D7L_miz_z7sKuK3W4YI1
https://www.google.com/url?q=https://doi.org/10.4018/IJPOP.2015010102&sa=D&source=docs&ust=1637250974486000&usg=AOvVaw3gyLhb9yM6rH7JjWB7L7f3
https://dl.acm.org/doi/10.1145/2591708.2591739
https://dl.acm.org/doi/10.1145/2602482

45

Teaching programming in schools: A review of approaches and strategies

Lee, I., Martin, F., Denner, J., Coulter, B., Allan,
W., Erickson, J., Malyn-Smith, J., & Werner. L.
(2011). Computational thinking for youth in
practice. ACM Inroads, 2(1), 32–37.
https://doi.org/10.1145/1929887.1929902

Leppan, R., Cilliers, C., & Taljaard, M. (2007).
Supporting CS1 with a program beacon
recognition tool. Proceedings of the 2007
annual research conference of the South
African institute of computer scientists and
information technologists on IT research in
developing countries (SAICSIT '07), pp.66–75.
https://doi.org/10.1145/1292491.1292499

Lewis, C. M. (2010). How programming
environment shapes perception, learning and
goals: Logo vs. Scratch. Proceedings of the
41st ACM Technical Symposium on Computer
Science Education, pp.346–350. https://doi.
org/10.1145/1734263.1734383

Lewis, C. M. (2011). Is pair programming
more effective than other forms of
collaboration for young students? Computer
Science Education, 21(2), 105–134. https://
doi.org/10.1080/08993408.2011.579805

Lewis, C. M., & Shah, N. (2015). How
equity and inequity can emerge in pair
programming. Proceedings of the Eleventh
Annual International Conference on
International Computing Education Research,
pp.41–50.
https://doi.org/10.1145/2787622.2787716

Liebenberg, J., Mentz, E., & Breed, B. (2012).
Pair programming and secondary school
girls’ enjoyment of programming and
the subject Information Technology (IT).
Computer Science Education, 22(3), 219–

236. https://doi.org/10.1080/08993408.201
2.713180

Lister, R., Fidge, C., & Teague, D. (2009).
Further Evidence of a Relationship Between
Explaining, Tracing and Writing Skills in
Introductory Programming. Proceedings of
the 14th Annual ACM SIGCSE Conference
on Innovation and Technology in Computer
Science Education (ITiCSE ’09), pp.161–165.
https://doi.org/10.1145/1595496.1562930

Lokkila, E., Rajala, T., Veerasamy, A., Enges-
Pyykönen, P., Laakso, M. J., & Salakoski, T.
(2016). How students’ programming process
differs from experts – a case study with a
robot programming exercise. EDULEARN16
Proceedings of the 8th International
Conference on Education and New Learning
Technologies, pp.1555–1562. http://dx.doi.
org/10.21125/edulearn.2016.1308

Lopez, M., Whalley, J., Robbins, P., & Lister,
R. (2008). Relationships between reading,
tracing and writing skills in introductory
programming. Proceedings of the fourth
international workshop on computing
education research, pp.101–112.
https://doi.org/10.1145/1404520.1404531

Luxton-Reilly, A., Albluwi, I., Becker, B. A.,
Giannakos, M., Kumar, A. N., Ott, L., Paterson,
J., Scott, M. J., Sheard, J., & Szabo, C. (2018).
A review of introductory programming
research 2003–2017. Proceedings of the
23rd Annual ACM Conference on Innovation
and Technology in Computer Science
Education, pp.342–343.
https://doi.org/10.1145/3197091.3205841

https://dl.acm.org/doi/10.1145/1929887.1929902
https://www.google.com/url?q=https://doi.org/10.1145/1292491.1292499&sa=D&source=docs&ust=1637251062314000&usg=AOvVaw1WwCerK-tcRVSAXyD9Jeia
https://dl.acm.org/doi/10.1145/1734263.1734383
https://www.google.com/url?q=https://doi.org/10.1080/08993408.2011.579805&sa=D&source=docs&ust=1637251132727000&usg=AOvVaw0GKvHwmzp0TqrnuKlP5MfD
https://dl.acm.org/doi/10.1145/2787622.2787716
https://www.tandfonline.com/doi/abs/10.1080/08993408.2012.713180
https://dl.acm.org/doi/10.1145/1595496.1562930
https://library.iated.org/view/LOKKILA2016HOW
https://dl.acm.org/doi/10.1145/1404520.1404531
https://dl.acm.org/doi/10.1145/3197091.3205841

46

Teaching programming in schools: A review of approaches and strategies

Lye, S. Y., & Koh, J. H. L. (2014). Review on
teaching and learning of computational
thinking through programming: What is next
for K-12? Computers in Human Behavior,
41, 51–61. https://doi.org/10.1016/j.
chb.2014.09.012

Lyman, F. T. (1981). The responsive
classroom discussion: The inclusion of all
students. Mainstreaming Digest, 109, 113.
Available at https://www.scienceopen.com/
document?vid=347f5de1-c4d9-46e9-a869-
fc37cf19383b (accessed 6 October 2021)

Major, L., Kyriacou, T., & Brereton, O. P.
(2012). Systematic literature review:
Teaching novices programming using robots.
IET Software, 6(6), 502–513.
https://doi.org/10.1049/iet-sen.2011.0125

Malan, D. J., & Leitner, H. H. (2007). Scratch
for budding computer scientists. ACM
SIGCSE Bulletin, 39(1), 223–227.
https://doi.org/10.1145/1227504.1227388

Maloney, J. H., Peppler, K., Kafai, Y., Resnick,
M., & Rusk, N. (2008). Programming by
choice: Urban youth learning programming
with Scratch. ACM SIGCSE Bulletin, 40(1),
367–371.
https://doi.org/10.1145/1352322.1352260

Margulieux, L. E., & Catrambone, R. (2016).
Improving problem solving with subgoal
labels in expository text and worked
examples. Learning and Instruction,
42, 58–71. https://doi.org/10.1016/j.
learninstruc.2015.12.002

Margulieux, L. E., Morrison, B. B., Franke, B., &
Ramilison, H. (2020). Effect of Implementing

Subgoals in Code.org’s Intro to Programming
Unit in Computer Science Principles. ACM
Transactions on Computing Education, 20(4),
1–24. https://doi.org/10.1145/3415594

Maton, K. (2013). Making semantic waves:
a key to cumulative knowledge-building.
Linguistics and Education, 24, 8–22.

Maton, K., Hood, S., & Shay, S. (2016).
Knowledge-building: educational studies in
legitimation code theory. Routledge.

Mayer, R. E. (2004). Should there be a three-
strikes rule against pure discovery learning?
American Psychologist, 59(1), 14–19. https://
doi.org/10.1037/0003-066x.59.1.14

McDowell, C., Werner, L., Bullock, H., &
Fernald, J. (2006). Pair programming
improves student retention, confidence, and
program quality. Communications of the
ACM, 49(8), 90–95.
https://doi.org/10.1145/1145287.1145293

Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.
(2013). Learning computer science concepts
with Scratch. Computer Science Education,
23, 239–264. https://doi.org/10.1080/08993
408.2013.832022

Missiroli, M., Russo, D., & Ciancarini, P.
(2016). Learning Agile software development
in high school: an investigation. Proceedings
of the 38th International Conference
on Software Engineering Companion,
pp.293–302. https://ieeexplore.ieee.org/
document/7883313

Morrison, B. B., Margulieux, L. E., Ericson, B.,
& Guzdial, M. (2016). Subgoals help students

https://www.scienceopen.com/document?vid=347f5de1-c4d9-46e9-a869-fc37cf19383b
https://www.google.com/url?q=https://doi.org/10.1049/iet-sen.2011.0125&sa=D&source=docs&ust=1637251550465000&usg=AOvVaw3kvluaHAC8AersnqbdiG90http://
https://dl.acm.org/doi/10.1145/1227504.1227388
https://dl.acm.org/doi/10.1145/1352322.1352260
https://www.google.com/url?q=https://doi.org/10.1016/j.learninstruc.2015.12.002&sa=D&source=docs&ust=1637251627789000&usg=AOvVaw01kOzjX7GbeKEMoFHdlEJr
https://dl.acm.org/doi/10.1145/3415594
https://doi.apa.org/doiLanding?doi=10.1037%2F0003-066X.59.1.14
https://dl.acm.org/doi/10.1145/1145287.1145293
https://www.tandfonline.com/doi/abs/10.1080/08993408.2013.832022
https://ieeexplore.ieee.org/document/7883313
https://www.sciencedirect.com/science/article/abs/pii/S0747563214004634?via%3Dihub

47

Teaching programming in schools: A review of approaches and strategies

solve Parsons problems. Proceedings of
the 47th ACM Technical Symposium on
Computing Science Education, pp.42–47.
https://doi.org/10.1145/2839509.2844617

Morrison, B. B., Quinn, B., Bradley, S., Buffardi,
K., Harrington, B., Hu, H., Kallia, M., McNeill,
F., Ola, O., Parker, M. C., Rosato, J., & Waite.
J. (2021). Chronicling the Evidence for
Broadening Participation. Proceedings of
the 26th ACM Conference on Innovation and
Technology in Computer Science Education
V. 2 (ITiCSE 2021), pp.601–602. https://doi.
org/10.1145/3456565.3461441

Muller, O. (2005). Pattern oriented
instruction and the enhancement of
analogical reasoning. Proceedings of the
first international workshop on computing
education research (ICER '05), pp.57–67.
https://doi.org/10.1145/1089786.1089792

Muller, O., Ginat, D., & Haberman, B. (2007).
Pattern-oriented instruction and its influence
on problem decomposition and solution
construction. Proceedings of the 12th
annual SIGCSE conference on innovation and
technology in computer science education
(ITiCSE '07), pp.151–155.
https://doi.org/10.1145/1268784.1268830

Muller, O., Haberman, B., & Averbuch, H.
(2004). (An almost) pedagogical pattern for
pattern-based problem-solving instruction.
Proceedings of the 9th annual SIGCSE
conference on innovation and technology
in computer science education (ITiCSE '04),
pp.102–106.
https://doi.org/10.1145/1007996.1008025

Nagy, W. E. (1988). Teaching vocabulary
to improve reading comprehension. ERIC.
Available at
https://eric.ed.gov/?id=ED298471 (accessed
5 October 2021)

Nuutila, E., Törmä, S., & Malmi, L. (2005).
PBL and computer programming—the seven
steps method with adaptations. Computer
Science Education, 15(2), 123–142. https://
doi.org/10.1080/08993400500150788

Papert, S. (1980). Mindstorms: Children,
computers, and powerful ideas. Basic Books,
Inc.

Parsons, D., & Haden, P. (2006). Parson’s
Programming Puzzles: A Fun and Effective
Learning Tool for First Programming
Courses. Proceedings of the 8th Australasian
Conference on Computing Education (ACE
’06), pp.157–163.

Passey, D. (2014). Intergenerational learning
practices—Digital leaders in schools.
Education and Information Technologies,
19(3), 473–494. https://doi.org/10.1007/
s10639-014-9322-z

Pea, R. D. (1986). Language-independent
conceptual “bugs” in novice programming.
Journal of Educational Computing Research,
2, 25–36. https://doi.org/10.2190/689T-
1R2A-X4W4-29J2

Perrenet, J., & Kaasenbrood, E. (2006). Levels
of abstraction in students’ understanding
of the concept of algorithm: the qualitative
perspective. ACM SIGCSE Bulletin, 38(3),
270–274.
https://doi.org/10.1145/1140124.1140196

https://dl.acm.org/doi/10.1145/2839509.2844617
https://dl.acm.org/doi/10.1145/3456565.3461441
https://www.google.com/url?q=https://doi.org/10.1145/1089786.1089792&sa=D&source=docs&ust=1637251925428000&usg=AOvVaw0ykb4Ixg-FGvme2Ah0KA5m
https://dl.acm.org/doi/10.1145/1269900.1268830
https://dl.acm.org/doi/10.1145/1026487.1008025
https://eric.ed.gov/?id=ED298471
https://idp.springer.com/authorize?response_type=cookie&client_id=springerlink&redirect_uri=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs10639-014-9322-z
https://journals.sagepub.com/doi/10.2190/689T-1R2A-X4W4-29J2
https://dl.acm.org/doi/10.1145/1140123.1140196
https://www.tandfonline.com/doi/abs/10.1080/08993400500150788

48

Teaching programming in schools: A review of approaches and strategies

Porter, L., & Simon, B. (2013). Retaining
nearly one-third more majors with a trio
of instructional best practices in CS1.
Proceedings of the 44th ACM technical
symposium on computer science education,
pp.165–170.
https://doi.org/10.1145/2445196.2445248

Price, T. W., & Barnes, T. (2015). Comparing
Textual and Block Interfaces in a Novice
Programming Environment. Proceedings of
the Eleventh Annual International Conference
on International Computing Education
Research (ICER '15), pp.91–99.
https://doi.org/10.1145/2787622.2787712

Przybylla, M., & Romeike, R. (2014). Physical
computing in computer science education.
Proceedings of the 9th Workshop in Primary
and Secondary Computing Education,
pp.136–137.
https://doi.org/10.1145/2670757.2670782

Qian, Y., & Lehman, J. (2017). Students’
misconceptions and other difficulties in
introductory programming: a literature
review. ACM Transactions on Computing
Education, 18, 1.
https://doi.org/10.1145/3077618

Repenning, A., Webb, D. C., Koh, K. H.,
Nickerson, H., Miller, S. B., Brand, C., Horses,
I. H. M., Basawapatna, A., Gluck, F., Grover,
R., Gutierrez, K., & Repenning, N. (2015).
Scalable Game Design: A Strategy to Bring
Systemic Computer Science Education
to Schools through Game Design and
Simulation Creation. ACM Transactions on
Computing Education, 15(2), 1–31.
https://doi.org/10.1145/2700517

Resnick, M., Silverman, B., Kafai, Y.,
Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A.,
Rosenbaum, E., & Silver, J. (2009). Scratch:
Programming for all. Communications of the
ACM, 52(11), 60–67.
https://doi.org/10.1145/1592761.1592779

Rich, P. J., Browning, S. F., Perkins, M.,
Shoop, T., Yoshikawa, E., & Belikov, O. M.
(2018). Coding in K-8: International Trends
in Teaching Elementary/Primary Computing.
TechTrends, 63, 311–329. http://dx.doi.
org/10.13140/RG.2.2.29782.14409/1

Rich, K., Strickland, C., & Franklin, D. (2017).
A Literature Review through the Lens of
Computer Science Learning Goals Theorized
and Explored in Research. Proceedings of the
2017 ACM SIGCSE Technical Symposium on
Computer Science Education, pp.495–500.
https://doi.org/10.1145/3017680.3017772

Robins, A., Rountree, J., Rountree, N. (2003).
Learning and teaching programming: A
review and discussion. Computer Science
Education, 13, 137–172. https://doi.
org/10.1076/csed.13.2.137.14200

Rodriguez, B., Kennicutt, S., Rader, C., &
Camp, T. (2017). Assessing Computational
Thinking in CS Unplugged Activities.
Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science
Education, pp. 501–506.
https://doi.org/10.1145/3017680.3017779

Román-González, M., Pérez-González, J.-
C., & Jiménez-Fernández, C. (2017). Which
cognitive abilities underlie computational
thinking? Criterion validity of the

https://dl.acm.org/doi/10.1145/2787622.2787712
https://dl.acm.org/doi/abs/10.1145/2670757.2670782
https://dl.acm.org/doi/10.1145/3077618
https://dl.acm.org/doi/10.1145/2700517
https://dl.acm.org/doi/10.1145/1592761.1592779
https://www.google.com/url?q=http://dx.doi.org/10.13140/RG.2.2.29782.14409/1&sa=D&source=docs&ust=1637252905216000&usg=AOvVaw0TY5YAUr9zfAnVgm7C4GAo
https://dl.acm.org/doi/10.1145/3017680.3017772
https://www.tandfonline.com/doi/abs/10.1076/csed.13.2.137.14200
https://www.google.com/url?q=https://doi.org/10.1145/3017680.3017779&sa=D&source=docs&ust=1637252981061000&usg=AOvVaw1MKxW_2kJuY4LmFwIIByye
https://dl.acm.org/doi/10.1145/2445196.2445248

49

Teaching programming in schools: A review of approaches and strategies

Computational Thinking Test. Computers in
Human Behavior, 72, 678–691.
https://doi.org/10.1016/j.chb.2016.08.047

Romeike, R., & Götte, T. (2012). Agile projects
in high school computing education:
emphasizing a learners' perspective.
Proceedings of the 7th Workshop in Primary
and Secondary Computing Education
(WiPSCE '12), pp.48–57.
https://doi.org/10.1145/2481449.2481461

Rose, J. (2009). Independent review of the
primary curriculum. Department for Children,
Schools and Families. Available at
https://dera.ioe.ac.uk//30098/ (accessed 5
October 2021)

Rowe, M. B. (1986). Wait time: slowing down
may be a way of speeding up! Journal of
Teacher Education, 37(1), 43–50. https://doi.
org/10.1177/002248718603700110

The Royal Society (2017). After the reboot:
computing education in UK schools.
The Royal Society. Available at https://
royalsociety.org/~/media/policy/projects/
computing-education/computing-education-
report.pdf (accessed 5 October 2021)

Rubin, M. J. (2013). The effectiveness of live-
coding to teach introductory programming.
Proceedings of the 44th ACM technical
symposium on computer science education,
pp.651–656.
https://doi.org/10.1145/2445196.2445388

Ruvalcaba, O., Werner, L., & Denner, J.
(2016). Observations of Pair Programming:
Variations in Collaboration Across
Demographic Groups. Proceedings of

the 47th ACM Technical Symposium on
Computing Science Education, pp.90–95.
https://doi.org/10.1145/2839509.2844558

Salleh, N., Mendes, E., & Grundy, J. (2011).
Empirical studies of pair programming
for CS/SE teaching in higher education:
A systematic literature review. IEEE
Transactions on Software Engineering,
37(4), 509–525. https://doi.org/10.1109/
TSE.2010.59

Sapir, E. (1921). Language: An introduction to
the study of speech. Harcourt, Brace & World
Inc.

Savery, J., & Duffy, T. (1995). Problem Based
Learning: An Instructional Model and its
Constructivist Framework. Educational
Technology, 35(5), 31–38.
https://www.jstor.org/stable/44428296

Schulte, C. (2008). Block Model:
An Educational Model of Program
Comprehension As a Tool for a Scholarly
Approach to Teaching. Proceedings of the
Fourth International Workshop on Computing
Education Research (ICER ’08), pp.149–160.
https://doi.org/10.1145/1404520.1404535

Schulte, C., Magenheim, J., Müller, K., &
Budde, L. (2017). The design and exploration
cycle as research and development
framework in computing education.
2017 IEEE Global Engineering Education
Conference (EDUCON), pp.867–876. https://
doi.org/10.1109/EDUCON.2017.7942950

Seiter, L., & Foreman, B. (2013). Modeling
the learning progressions of computational
thinking of primary grade students.

https://www.sciencedirect.com/science/article/abs/pii/S0747563216306185?via%3Dihub
https://dl.acm.org/doi/10.1145/2481449.2481461
https://dera.ioe.ac.uk//30098/
https://journals.sagepub.com/doi/10.1177/002248718603700110
https://royalsociety.org/~/media/policy/projects/computing-education/computing-education-report.pdf
https://dl.acm.org/doi/10.1145/2445196.2445388
https://dl.acm.org/doi/10.1145/2839509.2844558
https://www.jstor.org/stable/44428296
https://www.google.com/url?q=https://doi.org/10.1145/1404520.1404535&sa=D&source=docs&ust=1637253302564000&usg=AOvVaw35U3UjW1cjwp9RgTo2ZUzc
https://ieeexplore.ieee.org/document/7942950
https://ieeexplore.ieee.org/document/5482588/

50

Teaching programming in schools: A review of approaches and strategies

Proceedings of the ninth annual international
ACM conference on international computing
education research, pp.59–66.
https://doi.org/10.1145/2493394.2493403

Sentance, S., & Csizmadia, A. (2017).
Computing in the curriculum: Challenges
and strategies from a teacher’s perspective.
Education and Information Technologies, 22,
469–495. https://doi.org/10.1007/s10639-
016-9482-0

Sentance, S., & Waite, J. (2017). PRIMM:
Exploring pedagogical approaches for
teaching text-based programming in school.
Proceedings of the 12th Workshop on
Primary and Secondary Computing Education
(WiPSCE '17), pp.113–114. https://doi.
org/10.1145/3137065.3137084

Sentance, S., & Waite, J. (2021). Teachers’
Perspectives on Talk in the Programming
Classroom: Language as a Mediator.
Proceedings of the 17th ACM Conference on
International Computing Education Research
(ICER 2021), pp.266–280.
https://doi.org/10.1145/3446871.3469751

Sentance, S., Waite, J., & Kallia, M. (2019).
Teaching computer programming with
PRIMM: a sociocultural perspective.
Computer Science Education, 29(2–3), 136–
176. DOI: 10.1080/08993408.2019.1608781

Šestáková, J. (2016). Case Study of Using
Peer Instruction at Upper Secondary School.
Scientia in Educatione, 7(2), 111–127.
https://doi.org/10.14712/18047106.298

Shah, N., & Lewis, C. M. (2019). Amplifying
and attenuating inequity in collaborative

learning: Toward an analytical framework.
Cognition and Instruction, 37(4), 423–452.
https://doi.org/10.1080/07370008.2019.16
31825

Soloway, E. (1986). Learning to program
= learning to construct mechanisms and
explanations. Communications of the ACM,
29, 850–858.
https://doi.org/10.1145/6592.6594

Sorva, J. (2012). Visual program simulation
in introductory programming education. PhD
Thesis, Aalto University. Available at https://
aaltodoc.aalto.fi/handle/123456789/3534
(accessed 5 October 2021)

Sorva, J. (2018). Misconceptions and the
Beginner Programmer. In S. Sentance, E.
Barendsen, C. Schulte (Eds.), Computer
Science Education Perspectives Teaching
Learning School, p.171. Bloomsbury
Publishing.

Statter, D., & Armoni, M. (2016). Teaching
Abstract Thinking in Introduction to
Computer Science for 7th Graders.
Proceedings of the 11th Workshop in Primary
and Secondary Computing Education, pp.80–
83.
https://doi.org/10.1145/2978249.2978261

Statter, D., & Armoni, M. (2017). Learning
Abstraction in Computer Science: A
Gender Perspective. Proceedings of the
12th Workshop on Primary and Secondary
Computing Education (WiPSCE’17), pp.5–14.
https://doi.org/10.1145/3137065.3137081

Swartz, S. L., Klein, A. F., & Shook, R. E.
(2001). Interactive writing & interactive

https://link.springer.com/article/10.1007%2Fs10639-016-9482-0
https://dl.acm.org/doi/10.1145/3137065.3137084
https://dl.acm.org/doi/10.1145/3446871.3469751
https://www.tandfonline.com/doi/abs/10.1080/08993408.2019.1608781?journalCode=ncse20
https://ojs.cuni.cz/scied/article/view/298
https://www.tandfonline.com/doi/full/10.1080/07370008.2019.1631825
https://dl.acm.org/doi/10.1145/6592.6594
https://aaltodoc.aalto.fi/handle/123456789/3534
https://dl.acm.org/doi/10.1145/2978249.2978261
https://dl.acm.org/doi/10.1145/3137065.3137081
https://dl.acm.org/doi/10.1145/2493394.2493403

51

Teaching programming in schools: A review of approaches and strategies

editing: Making connections between writing
and reading. Dominie Press, Inc.

Taylor, C., Spacco, J., Bunde, D. P., Petersen,
A., Liao, S. N., & Porter, L. (2018). A multi-
institution exploration of peer instruction
in practice. Proceedings of the 23rd
Annual ACM Conference on Innovation and
Technology in Computer Science Education
(ITiCSE 2018), pp.308–313. https://doi.
org/10.1145/3197091.3197144

Teague, D., & Lister, R. (2014a).
Programming: reading, writing and reversing.
Proceedings of the 2014 conference on
innovation & technology in computer science
education, pp.285–290.
https://doi.org/10.1145/2591708.2591712

Teague, D., & Lister, R. (2014b). Longitudinal
think aloud study of a novice programmer.
Proceedings of the Sixteenth Australasian
Computing Education Conference, pp.41–50.

Tedre, M., & Denning, P. J. (2016). The
long quest for computational thinking.
Proceedings of the 16th Koli Calling
Conference on Computing Education
Research, pp.24–27.
https://doi.org/10.1145/2999541.2999542

Thies, R., & Vahrenhold, J. (2016). Back
to school: computer science unplugged
in the wild. Proceedings of the 2016 ACM
Conference on Innovation and Technology in
Computer Science Education, pp.118–123.
https://doi.org/10.1145/2899415.2899442

Thomas, J. W. (2000). A review of research
on project-based learning. Autodesk
Foundation. Available at https://www.

asec.purdue.edu/lct/HBCU/documents/
AReviewofResearchofProject-
BasedLearning.pdf (accessed 5 October
2021)

Toh, L. P. E., Causo, A., Tzuo, P., Chen, I., &
Yeo, S. H. (2016). A Review on the Use of
Robots in Education and Young Children.
Journal of Educational Technology & Society,
19(2), 148–163. http://www.jstor.org/stable/
jeductechsoci.19.2.148

Ubiquity staff (2007). An Interview with
Peter Denning on the great principles of
computing. Ubiquity, 2007(June), 1.
https://doi.org/10.1145/1276162.1276163

Umapathy, K., & Ritzhaupt, A. D. (2017).
A meta-analysis of pair-programming
in computer programming courses:
Implications for educational practice. ACM
Transactions on Computing Education, 17(4),
16. https://doi.org/10.1145/2996201

Veerasamy, A. K., D’Souza, D., & Laakso,
M.-J. (2016). Identifying Novice Student
Programming Misconceptions and Errors
From Summative Assessments. Journal
of Educational Technology Systems, 45(1),
50–73.
https://doi.org/10.1177/0047239515627263

Venables, A., Tan, G., & Lister, R. (2009). A
closer look at tracing, explaining and code
writing skills in the novice programmer.
Proceedings of the fifth international
workshop on computing education research,
pp.117–128.
https://doi.org/10.1145/1584322.1584336

https://dl.acm.org/doi/10.1145/3197091.3197144
https://dl.acm.org/doi/10.1145/2591708.2591712
https://dl.acm.org/doi/10.1145/2999541.2999542
https://dl.acm.org/doi/10.1145/2899415.2899442
https://www.asec.purdue.edu/lct/HBCU/documents/AReviewofResearchofProject-BasedLearning.pdf
https://dl.acm.org/doi/10.1145/1276162.1276163
https://dl.acm.org/doi/10.1145/2996201
https://journals.sagepub.com/doi/10.1177/0047239515627263
https://dl.acm.org/doi/10.1145/1584322.1584336
https://www.jstor.org/stable/jeductechsoci.19.2.148
https://www.asec.purdue.edu/lct/HBCU/documents/AReviewofResearchofProject-BasedLearning.pdf

52

Teaching programming in schools: A review of approaches and strategies

Waite, J. (2017). Pedagogy in Teaching
Computer Science in schools: A Literature
Review (After The Reboot: Computing
Education in UK Schools). Available at https://
royalsociety.org/-/media/policy/projects/
computing-education/literature-review-
pedagogy-in-teaching.pdf (accessed 5
October 2021)

Waite, J., Curzon, P., Marsh, D., Sentance, S.,
& Hawden-Bennett, A. (2018). Abstraction
in action: K-5 teachers’ uses of levels of
abstraction, particularly the design level, in
teaching programming. International Journal
of Computer Science Education in Schools,
2(1), 14–40.
https://doi.org/10.21585/ijcses.v2i1.23

Waite, J., Curzon, P., Marsh, W., & Sentance,
S. (2020). Difficulties with design: The
challenges of teaching design in K-5
programming. Computers and Education,
150, 103838. https://doi.org/10.1016/j.
compedu.2020.103838

Waite, J., & Liebe, C. (2021). Computer
Science Student-Centered Instructional
Continuum. Proceedings of the 52nd ACM
Technical Symposium on Computer Science
Education (SIGCSE '21), p.1246.
https://doi.org/10.1145/3408877.3439591

Waite, J., Maton, K., Curzon, P., & Tuttiett,
L. (2019). Unplugged computing and
semantic waves: Analysing crazy characters.
Proceedings of the UK and Ireland Computing
Education Research Conference (UKICER),
pp.1–7.
https://doi.org/10.1145/3351287.3351291

Webb, D. C., Repenning, A., & Koh, K. H.

(2012). Toward an emergent theory of
broadening participation in computer science
education. Proceedings of the 43rd ACM
technical symposium on computer science
education, pp.173–178.
https://doi.org/10.1145/2157136.2157191

Weinman, N., Fox, A., & Hearst, M. (2020).
Exploring Challenging Variations of Parsons
Problems. Proceedings of the 51st ACM
Technical Symposium on Computer Science
Education (SIGCSE ’20), p.1349.
https://doi.org/10.1145/3328778.3372639

Weinman, N., Fox, A., & Hearst, M. A. (2021).
Improving Instruction of Programming
Patterns with Faded Parsons Problems.
Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 53.
https://doi.org/10.1145/3411764.3445228

Weintrop, D., Killen, H., Munzar, T., & Franke,
B. (2019). Block-based Comprehension:
Exploring and Explaining Student Outcomes
from a Read-only Block-based Exam.
Proceedings of the 50th ACM Technical
Symposium on Computer Science Education
(SIGCSE '19), pp.1218–1224.
https://doi.org/10.1145/3287324.3287348

Weintrop, D., & Wilensky, U. (2017).
Comparing Block-Based and Text-Based
Programming in High School Computer
Science Classrooms. ACM Transactions on
Computing Education, 18(1), 3.
https://doi.org/10.1145/3089799

Werner, L., Denner, J., Campe, S., Ortiz,
E., DeLay, D., Hartl, A. C., & Laursen, B.
(2013). Pair programming for middle
school students: does friendship influence

https://www.ijcses.org/index.php/ijcses/article/view/23
https://www.sciencedirect.com/science/article/abs/pii/S0360131520300385?via%3Dihub
https://dl.acm.org/doi/10.1145/3408877.3439591
https://dl.acm.org/doi/10.1145/3351287.3351291
https://www.google.com/url?q=https://doi.org/10.1145/2157136.2157191&sa=D&source=docs&ust=1637254196906000&usg=AOvVaw1vV6zUd6Aeb7z1YPOf9T_g
https://dl.acm.org/doi/10.1145/3328778.3372639
https://dl.acm.org/doi/10.1145/3411764.3445228
https://dl.acm.org/doi/10.1145/3287324.3287348
https://dl.acm.org/doi/10.1145/3089799
https://royalsociety.org/-/media/policy/projects/computing-education/literature-review-pedagogy-in-teaching.pdf

53

Teaching programming in schools: A review of approaches and strategies

academic outcomes? Proceedings of the
44th ACM technical symposium on computer
science education, pp.421–426.
https://doi.org/10.1145/2445196.2445322

Wing, J. (2008). Computational thinking and
thinking about computing. Philosophical
Transactions of The Royal Society A, 366,
3717–3725.
https://doi.org/10.1098/rsta.2008.0118

Zakaria, Z., Vandenberg, J., Tsan, J., Boulden,
D. C., Lynch, C. F., Boyer, K. E., & Wiebe, E. N.
(2021). Two-Computer Pair Programming:
Exploring a Feedback Intervention to Improve
Collaborative Talk in Elementary Students.
Computer Science Education, 1–28.
https://www.tandfonline.com/doi/abs/10.10
80/08993408.2021.1877987

Zingaro, D. (2014). Peer instruction
contributes to self-efficacy in CS1.
Proceedings of the 45th ACM technical
symposium on computer science education,
pp.373–378.
https://doi.org/10.1145/2538862.2538878

Zingaro, D., & Porter, L. (2015). Tracking
student learning from class to exam using
isomorphic questions. Proceedings of the
46th ACM Technical Symposium on Computer
Science Education, pp.356–361. https://doi.
org/10.1145/2676723.2677239

https://dl.acm.org/doi/10.1145/2445196.2445322
https://royalsocietypublishing.org/doi/10.1098/rsta.2008.0118
https://www.tandfonline.com/doi/abs/10.1080/08993408.2021.1877987
https://dl.acm.org/doi/10.1145/2538862.2538878
https://dl.acm.org/doi/10.1145/2676723.2677239

54

Teaching programming in schools: A review of approaches and strategies

www.raspberrypi.org @RaspberryPi_org Raspberry Pi FoundationRaspberry Pi Foundation

https://www.raspberrypi.org/
https://www.linkedin.com/company/raspberrypifoundation
https://twitter.com/raspberrypi_org
https://www.youtube.com/c/RaspberryPiFoundation/featured

