
Raspberry Pi Foundation Research

Teaching programming in 
schools: 
A review of approaches and 
strategies

Raspberry Pi Foundation 
Jane Waite and Sue Sentance
November 2021 



2

Teaching programming in schools: A review of approaches and strategies

Published in November 2021
by the Raspberry Pi Foundation 
 
www.raspberrypi.org
 
ISSN 2514-586X (19)

Teaching programming in 
schools: 
A review of approaches and 
strategies 

Raspberry Pi Foundation 
Jane Waite and Sue Sentance
November 2021

https://www.raspberrypi.org/


3

Teaching programming in schools: A review of approaches and strategies

Table of contents

Introduction

Teaching programming: Approaches 
and techniques

1. Classroom strategies

1.1. Pair programming

1.2. Peer instruction

1.3. Live coding

1.4. PRIMM

1.5. Worked examples and subgoal 
labelling

1.6. Reading and tracing code

1.7. Pattern-orientated instruction

1.8. Targeted tasks (e.g. debugging, 
sabotage, annotation, fill in the gaps, 
Parson's Problems)

2. Contexts and environments for learning 
programming

2.1. Physical computing

2.2. Block-based programming

2.3. Project-based learning

5 2.4. Programming unplugged

2.5. Games

3. Supporting learners

3.1. Addressing potential and common 
difficulties and alternative conceptions

3.2. Cognitive apprenticeship

3.3. Developing metacognition around 
abstraction

3.4. Include design

3.5. Focus on vocabulary and language

3.6. Supporting learning and a blended 
approach

3.7. Develop generic problem-solving skills 
(computational thinking)

4. Conclusion

References

6

7

9

10

8

11

12

14

15

17

18

19

21

22

22

24

26

28

28

27

29

31

32

36

34

38



4

Teaching programming in schools: A review of approaches and strategies



5

Teaching programming in schools: A review of approaches and strategies

Globally, computer science (CS) education has 
been generating increasing interest as a school 
subject in the last few years. Programming is a 
key part of computer science and computing; 
it is a skill that cannot sit separately from the 
theoretical components of computing. Rather, 
programming is the application of concepts that 
often are hard to understand until they are put 
into practice. If your program does not do as you 
intended, then it is likely you have not understood 
a computer science concept. This leads us to 
the conclusion that 'practice' is not simply skill 
reinforcement, it is the route to understanding. 
It is in this context, and with the knowledge that 
programming has been found to be "difficult" 
by many learners in undergraduate education, 
that we have drawn together some of the 
research on how to teach programming, which 
we refer to as programming pedagogy. We must 
acknowledge that we still lack evidence in the 
field of teaching and learning for primary and 
secondary school students, as programming 
research is often conducted with older learners 
in university or with small numbers of students in 
particular contexts where generalisation cannot 
be guaranteed. Therefore, we have chosen 
approaches with emerging evidence and that 
merit further investigation. 
To teach any subject requires good teaching 
skills, knowledge about the subject being taught, 
and specific knowledge — known as pedagogical 
content knowledge — that a teacher gains about 
how to teach a particular topic, to their students, 
in the learning context, at a given moment in 
time. When reading our report, you might wish 
to think carefully about which combination of 
instructional approaches is likely to ensure that 
learning is accessible for all your students. 
Research into teaching computer science at 
university level has mirrored its delivery: there is 

a long history of investigations into both content 
and associated pedagogy. For research related 
to younger learners, focus in the 1980s was on 
the teaching and learning of IT skills, on work 
related to Logo (a programming language aimed 
at younger pupils (Papert, 1980)), and on how 
teachers might leverage new technology-based 
teaching aids. As outlined by the 2017 Royal 
Society report After the reboot, research into 
how computer science can be taught in primary 
and secondary classrooms is as yet very limited, 
having only recently started to emerge (The Royal 
Society, 2017). We need continued research to 
consider many aspects of teaching computing, 
including:

• Why programming is difficult
• How to teach it effectively
• How to motivate and encourage students
• What contexts and classroom tools work 

best
• What roles vocabulary and tools play
• What computational thinking is and how can 

it be effectively embedded

Some consensus is emerging regarding research 
questions, but computing education is a new 
field, and much of the underlying research is in 
its early stages; the reliability of current evidence 
may perhaps be restricted due to the limitations 
of the studies from which it was gained. These 
studies have often been conducted with short 
time frames and small numbers of learners, 
in informal rather than classroom settings, 
and without robust means for pre- and post-
assessment of interventions. Nevertheless, the 
evidence we have gives us a starting point.

Introduction



6

Teaching programming in schools: A review of approaches and strategies

Computer programming is now part of the 
curriculum in schools in England and many 
other countries. Although it is not necessarily 
the primary focus of the curriculum, it is the 
area of computing that many teachers find most 
difficult to teach, and also the one into which the 
most computing education research has been 
conducted.

Teaching programming: Approaches 
and techniques
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1. Classroom strategies
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In this section, we consider some well-
researched classroom strategies that teachers 
can use to teach programming in schools. These 
include:  

       Pair programming
• Peer instruction
• Live coding
• PRIMM
• Worked examples
• Subgoal labelling
• Reading and tracing code
• Pattern-oriented instruction
• Targeted tasks, e.g. debugging, sabotage, 

annotation, fill in the gaps, Parson’s Problems

1.1. Pair programming

Used in industry and education, pair 
programming is a collaborative approach where 
two people simultaneously work on a single 
software development project. Swapping roles 
regularly, one person (the driver) has control 
of the mouse and keyboard, and the other 
(the navigator) continuously collaborates by 
reviewing the code written and keeping track of 
work done against the design (McDowell, Werner, 
Bullock, & Fernald, 2006). 

Few studies have examined pair programming 
in primary and secondary education. Most 
research has been done with university students, 
producing evidence that pair programming leads 
to increased learning and improved code quality, 
with the caveat that careful implementation is 
needed to ensure success (Hanks, Fitzgerald, 
McCauley, Murphy, & Zander, 2011; Salleh, 
Mendes, & Grundy, 2011; Umapathy & Ritzhaupt, 
2017).

One ten-year, school-based research programme 
in the US concluded that pair work had 
advantages over solo programming for building 
programming knowledge and computational 
thinking (Denner, Werner, Campe, & Ortiz, 2014) 
but that the greatest increases in knowledge 
occurred for confident partners who were 
paired with a friend who had comparatively less 
programming knowledge (Werner et al., 2013). 
The team behind this programme also reported 
subtle differences in approaches to collaboration 
related to ethnicity (Ruvalcaba, Werner, & Denner, 
2016). However, the programme’s studies were 
performed with relatively small numbers of 
pupils, as was a study that found that secondary 
school girls preferred pair programming 
(Liebenberg, Mentz, & Breed, 2012).

In opposition to these positive conclusions on 
pair programming, research at a summer school 
coding course concluded that pair programming 
resulted in less work being completed and no 
increase in the overall progression of learning 
(Lewis, 2011). However, there were significant 
differences in the implementation of the pair 
programming between the summer school study 
and the class-based studies: in the summer 
school study, new partners were assigned every 
day by the teacher; in the classroom programme, 
learners were involved in pair assignment and 
worked together throughout a project. Moreover, 
roles were swapped every 5 minutes in the 
summer school study and every 20 minutes in 
the classroom programme. 

Pair programming is thus a plausible method 
for engaging students in programming, with 
evidence that it can improve teaching and 
learning. However, care needs to be taken 
with implementing this approach with social 

1. Classroom strategies

Pair programming
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dynamics, power struggles, friendship 
dynamics, confidence with computers, 
inequity of roles, how students talk to each 
other, the structure of tasks, and teacher 
intervention all potentially impacting 
interactions and learning (Lewis & Shah, 2015; 
Shah & Lewis, 2019; Denner, Green, & Campe, 
2021). Further research with larger numbers 
of students in different contexts with carefully 
controlled interventions is needed to provide 
robust recommendations for classroom 
practice. 

1.2. Peer instruction

Peer instruction (PI) is not simply peers 
teaching each other — it is a specific peer-
to-peer teaching approach championed 
in university physics courses, and there is 
evidence that it increases students’ learning 
(Crouch & Mazur, 2001). In class, learners are 
provided with carefully constructed, concept-
based, multiple-choice questions, which 
are based on pre-lesson reading. Learners 
independently consider the questions and 
give their answer (vote) using flashcards or 
an online voting system. They then share their 
responses with their peers and discuss their 
thinking before re-submitting their answer 
(re-vote). The teacher reviews learners’ first 
and second answers and, if needed, provides 
further support after the second answers 
before moving on to the next question.

The popularity and success of PI in university 
physics courses have led to it being used 
in other areas, including undergraduate 
programming classes. In undergraduate 
computer science courses, the introduction 
of PI (using electronic clickers) has been 
reported to lead to improvements in student 
retention (Porter & Simon, 2013), self-efficacy 

(Zingaro, 2014), in-class learning (Taylor et 
al., 2018), and longer-term exam outcomes 
(Zingaro & Porter, 2015). However, despite 
students saying they like PI and despite better 
short-term learning gains, a recent review 
of studies into PI reported little evidence of 
improved final examination performance. The 
review authors commented on the importance 
of the pre-lesson reading and the educators’ 
explanation of the purpose of the PI activities 
for a greater likelihood of success of the 
approach (Luxton-Reilly et al., 2018).

Fewer studies on the impact of PI have been 
conducted in school settings, and fewer 
still in classroom computing contexts. In a 
Czech high-school physics class case study, 
teachers reported a preference for flashcards 
over electronic voting, and learners reported 
improved learning (Šestáková, 2016). The 
authors of a US study with five high-school 
physics classes reported that, despite 
improved learner outcomes, it was unclear 
whether this improvement was due to PI or 
to other aspects of the learning scenario 
such as student ability, teacher differences, 
or increased familiarity with question types 
(Cummings & Roberts, 2008). 

In classroom settings, teachers sometimes 
use some of the constituent components of 
PI, e.g. carefully constructed, concept-related 
questions, flipped learning, and cooperative 
learning such as ‘think, pair, share’ (Lyman, 
1981).

Think, pair, share has a long history of 
research involving younger learners, with 
evidence of its positive impact on pupil 
contribution (Rowe, 1986) and motivation, and 
on teachers’ opportunities for assessment 
(Cooper & Robinson, 2000). In undergraduate 
programming research, think, pair, share has 
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been found to positively impact learning 
outcomes (Kothiyal, Murthy, & Iyer, 2014). On 
the other hand, a comparison of grade 5 and 
6 (n=108) students learning binary numbers 
using an unplugged approach or a think, 
pair, share approach found no difference 
in learning outcomes (Thies & Vahrenhold, 
2016). 

Peer instruction appears to be useful for 
teaching programming, and it could be used 
for all aspects of computing teaching. 

In Morrison and colleagues’ recent review of 
undergraduate computer science research 
with a focus on broadening participation for 
women, PI was found to be implemented in 
a wide variety of ways and often associated 
with other interventions, making it difficult 
to draw conclusions about this approach 
by itself. However, the majority of PI 
studies included in the review reported 
some form of positive affective (attitude, 
motivation, engagement, identity formation), 
cognitive (academic performance, learning 
performance), or population (retention in 
field, graduation rates, employability, culture) 
outcome, often for all students not just for 
women. The authors suggest that educators 
try collaborative learning to broaden 
participation, especially PI, but caveat this 
with advice to carefully structure activities, 
include student training on how to be a good 
partner or team member, and look out for 
microaggressions and biased behaviour 
(Morrison et al., 2021). While studies of PI in 
university settings have promising results, 
further work is needed to investigate PI 
itself, its components, its outcomes, and 
other collaborative and peer-to-peer forms of 
learning in classroom settings.

1.3. Live coding
Modelling is a form of in-class demonstration 
where students observe as a teacher 
completes an activity whilst talking through 
their thought process. This brings an 
apprenticeship approach to teaching, and 
in the teaching of programming, it is also 
referred to as live coding (Rubin, 2013) 
(not to be confused with ‘live coding’ as a 
form of performance art). Pupil interaction 
may be introduced into this approach by 
asking learners what to do next at various 
points in the activity, and by asking them 
to spot mistakes. Modelling is also used in 
the teaching of other subjects, e.g. English: 
teachers may model writing as a direct form 
of instruction with little student involvement, 
or they may engage learners in active joint 
composition (shared writing) (Swartz, Klein, & 
Shook, 2001; Cremin & Baker, 2010).

To support learning through live coding, 
two things are essential. First, the teacher 
must carefully select appropriate examples 
for teaching new concepts, consolidating 
understanding, or addressing existing or 
potential misconceptions. Second, live 
coding should reveal the thinking of the 
demonstrator: what the teacher says as they 
‘think aloud’ is crucial to the effectiveness of 
live coding.

In research with undergraduates, live coding 
has been compared to learning from static 
code, and it was found to be as good as, if 
not better than, letting learners read code 
examples, especially for helping learners 
approach larger coding assignments by 
demonstrating good programming habits 
(Rubin, 2013). Additional modelling can be 
provided by video recordings of experts 
programming (Bennedsen & Caspersen, 
2005). In research into the creation of a 
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primary school maths and programming 
curriculum (ScratchMaths), live coding 
was noted as a technique used by more 
experienced teachers to supplement other 
approaches, and the researchers concluded 
that this was likely to lead to deep learning 
(Benton, Hoyles, Kalas, & Noss, 2017). In a 
recent review of teaching and learning of 
computational thinking through programming, 
the importance of encouraging learners to 
‘think aloud’ was emphasised, as was the 
role of demonstration to model the problem-
solving process (Lye & Koh, 2014).

1.4. PRIMM

PRIMM (Predict, Run, Investigate, Modify, 
Make), developed by Sue Sentance, is a 
pedagogy that has been evidenced to improve 
the learning of programming in classrooms 
(Sentance & Waite, 2017; Sentance, Waite, 

& Kalia, 2019). Building upon the findings of 
several other research groups, the pedagogy 
includes a sequence of instructional 
approaches and an emphasis on teachers 
and students talking about programming 
(Sentance & Waite, 2021).

The first stage is Predict and is centred 
around students reading a high-quality sample 
program that was created by their teacher, 
or a resource developer, which exemplifies 
the learning objectives. See Figure 1 for an 
example Predict activity. Learning to read 
code has been proven to be an essential 
first step needed before students write code 
(Lister, Fidge, & Teague, 2009). Importantly, 
students do not spend time typing in the 
sample program used at the Predict stage, 
rather they are given the program and spend 
time reading and talking about it. Following 
prediction, the code is Run, the next stage 

Figure 1: An example Predict activity (Sentance, Waite, & Kalia, 2019, p.478).
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of PRIMM. Then, students move on to the 
Investigate stage, which requires them to 
answer carefully constructed questions 
that draw out important learning points. 
Teachers and resource developers who design 
Investigate stage questions are encouraged 
to use the Block Model (Schulte, 2008) to help 
them create their questions. The Block Model 
provides a holistic view of programs, from the 
detail of individual commands to what the 
overall program achieves.

The last two stages of PRIMM are Modify and 
Make; these stages particularly build on the 
Use–Modify–Create model (Lee et al., 2011) 
that has become popular in helping students 
take ownership of the products they make. 
Throughout the stages, classroom discussion 
is built into the process and fosters a socially 
rich experience of learning to program 
(Sentance, Waite, & Kalia, 2019).

1.5. Worked examples and 
subgoal labelling

As well as using sample programs for 
students to predict what the program will do, 
teachers also use sample programs when they 
model how to write code based on worked 
examples. Worked examples can be provided 
to students for them to learn about concepts, 
processes, and features of programming 
environments, such as the concept of 
iteration, the process of development, the role 
of variables, and tools for debugging. 

A further enhancement of the use of worked 
examples is subgoal modelling: meaningful 
labels are added to worked examples 
to visually group steps into subgoals, 
highlighting the structure of code (see Figure 
2). Students can be given code with subgoals, 
or they can be asked to add subgoals. 
Research indicates that students given code 

Figure 2: Partial worked example formatted with no labels, given labels, and placeholders for student-
generated labels (Morrison, Margulieux, Ericson, & Guzdial, 2016). 

No Labels Given Labels Generate Labels
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including subgoals perform significantly better 
on programming tasks than students given 
code without subgoals, and than students 
who are asked to add subgoals (Margulieux 
& Catrambone, 2016; Morrison, Margulieux, 
Ericson, & Guzdial, 2016). The researchers 
involved in these studies suggest that these 
results may be due to subgoals reducing 

cognitive load as students do not have to 
concern themselves with the extraneous load 
of the incidental information of the context. 
Instead, as shown in Figure 3, students can 
use the abstracted subgoal labels, which 
provide meaningfully labelled chunks and 
grouped steps, to work with the structure of 
the program that is already organised and 

Figure 3: Diagram of how subgoal labelled worked examples can help learners improve problem solving 
performance. The “properties of subgoal labelled examples” level describes the physical characteristics of 
subgoal labels. The “effect on learners studying examples” level describes how these characteristics help the 
learners use effective learning strategies (Margulieux & Catrambone, 2016, p.60).
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promotes self explanation (Margulieux & 
Catrambone, 2016; Morrison, Margulieux, 
Ericson, & Guzdial, 2016).

Most research on worked examples with 
subgoals has been done in university settings. 
Recently, Margulieux, Morrison, Franke, and 
Ramilison (2020) redesigned a resource 
aimed at 15–18 years olds, adding subgoal 
labels to code.org¹ resources in an Advanced 
Placement programming course. The authors 
compared the performance of students who 
used the original unit to students using the 
redesigned unit and found some positive 
effects on outcomes. Students learning with 
subgoals performed no better on knowledge-
based assessment but performed better on 
problem solving questions, wrote more on 
open ended questions, and continued to use 
subgoals after the course. Teachers working 
with students on the redesigned activities 
were surveyed and suggested that struggling 
students found subgoals the most useful 
(Margulieux, Morrison, Franke, & Ramilison, 
2020).

1.6. Reading and tracing code

Substantial research in university settings 
has found that learning to read code is an 
essential part of learning to program (Lister, 
Fidge, & Teague, 2009; Lopez, Whalley, 
Robbins, & Lister, 2008; Venables, Tan, & 
Lister, 2009), with evidence suggesting that 
novices must be able to read 50% of their 
code (tracing code accuracy) before they can 
independently and confidently write code 
(Lister, Fidge, & Teague, 2009). Tracing is the 
skill by which one predicts the order in which 
programmed commands will be executed, 
including working out data values at each 
point in the program. A path of learning to 

support programming development has been 
suggested that requires learners to know 
about basic data structures and programming 
constructs before being required to trace 
code, which then leads to activities that 
involve explaining and writing code (Lopez, 
Whalley, Robbins, & Lister, 2008). Teague 
and Lister also found that using a carefully 
scaffolded sequence incorporating very small 
tasks with single elements for code reading 
and tracing led to increased programming 
knowledge for university students (Teague & 
Lister, 2014a).

Other researchers suggested a similar 
approach for primary school learners working 
with route-based programming, using a 
sequence of activities moving from reading 
and interpreting lines of code to eventually 
reading an entire program and predicting what 
it will do (Gujberova & Kalas, 2013). However, 
the challenge with this approach is to identify 
what stage a student is at, and to ensure they 
are given the right tasks and time to master 
skills before moving on (Teague & Lister, 
2014b). 

Eye-tracking has been used to investigate 
how students learn to read code and how 
this might change as they become more 
experienced, with evidence suggesting that 
experts read code less linearly than novices 
(Busjahn et al., 2015). 

In a study with much younger learners, 
Dwyer et al. (2015) reported unintended 
affordances of visually complex block-
based programming environments. For 
example, some students predicted a sprite’s 
movement based on its visual appearance, 
such as where it was 'looking’, rather than 
using the code associated with the sprite. 
Other students were unaware that there 

¹ https://code.org/ accessed 11 November 2021

https://code.org/
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was code associated with the sprite, not 
realising they needed to click on the object 
to see the code. The authors recommended 
using explicit instruction to help students 
learn about a programming environment’s 
different features, e.g. that the user interface/
execution area and code editing area work 
independently and together (Dwyer et al., 
2015). 

Some research has focused on developing 
tools and processes to teach how to trace 
and support the act of tracing programs. For 
example, tools to draw learners’ attention 
to significant code features (beacons) have 
been used with undergraduates (Leppan, 
Cilliers, & Taljaard, 2007). In school settings, 
processes that systemise the teaching of 
tracing have also been devised, e.g. TRACS², 
a methodology developed in Scotland 
(Donaldson & Cutts, 2018). 

More widely, approaches to teaching 
programming often include elements of code 
reading and tracing; for example, PRIMM 
includes carefully chosen code examples 
for students to read as the code exemplifies 
certain concepts or skills to be learned 
(Sentance & Waite, 2017).

1.7. Pattern-oriented 
instruction

Many programming lessons require students 
to assemble programming commands into 
programs to achieve a particular purpose. 
As an intermediary step, some instructional 
approaches draw students' attention to 
commonly used patterns of commands. 
Students learn about and then re-use these 
patterns. Pattern-oriented instruction (POI) is 
one such approach. 

POI was developed by Orna Muller and is 
thought to reduce students' cognitive load 
as students can think about the pattern as 
a ‘black box’ that meets a particular goal 
(Muller, 2005). The approach has been 
reported to help undergraduate computer 
science students learn how to better 
break problems down into parts and build 
up potential solutions (Muller, Ginat, & 
Haberman, 2007). 

In POI, lessons are carefully planned to 
introduce students to lots of examples of a 
pattern and examples become more complex 
over time. Students are required to look for 
similarities and differences in the application 
of patterns and to discover how patterns 
are misused and to think about alternative 
patterns that might solve the same task 
(Muller, Haberman, & Averbuch, 2004). 

POI often involves much student talk, as 
learners discuss different ways to solve 
problems. Using common patterns to teach 
programming has been used in universities 
for some time (e.g. Beck, Thomas, Drake, 
East, & Wallingford, 1996) and has been 
suggested for games development in 
school contexts (Repenning et al., 2015; 
Barnes et al., 2017). However, more work is 
needed to establish what patterns are most 
useful for different types of programs, in 
what programming languages, and what a 
pattern-based progression might look like for 
students.

² https://trace.dcs.gla.ac.uk/planc/tag/tracs/ accessed 12 November 2021

https://trace.dcs.gla.ac.uk/planc/tag/tracs/
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Figure 4, top: A two-dimensional 
Parson’s Problem with the solution 
on the right and a distractor on the 
left (Ericson, McCall, & Cunningham, 
2019, p.1). Bottom: A nearly correct 
Faded Parson’s Problem finding 
the depth of a tree. (a) Optional 
timer. (b) Problem description. (c) 
Faded Parson’s Problem interface; 
participants can drag blocks between 
the bin (left) and the solution (right). 
(d) An optional print block being 
dragged to the right. (e) A blank that 
has been filled in with code by the 
student. (f) Students can navigate 
back to the exercise list or (g) run 
tests on their current solution. After 
“effort-completing” an exercise, they 
can view the instructor solution (g). 
(h) Descriptive test case results up to 
the first failed test (Weinman, Fox, & 
Hearst, 2021, p.6).
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1.8. Targeted tasks (e.g. 
debugging, sabotage, 
annotation, fill in the gaps, 
Parson’s Problems)
In this section, we group a range of other 
classroom activities together and are giving 
them the collective name targeted tasks. We 
define targeted tasks as those that focus 
students on specific learning goals. Such 
focused activities have been suggested to be 
particularly important for the teaching of the 
more difficult concepts such as programming 
initialisation, variables and loops, and 
assignment, which need to be explicitly taught 
(Hubwieser, Armoni,  Giannakos, & Mittermeir, 
2014; Meerbaum-Salant, Armoni, & Ben-Ari, 
2013) and within a carefully considered 
progression of learning experiences (Seiter & 
Foreman, 2013; Falkner & Vivian, 2015; Dwyer, 
Hill, Carpenter, Harlow, & Franklin, 2014).

There are a wide range of potential targeted 
tasks that can be used as learning activities 
to highlight students’ alternate conceptions 
or exemplify programming concepts. Some 
examples are spotting concepts, recalling 
facts or examples, changing aspects of 
programs, grouping and classifying example 
work, comparing solutions, following 
instructions, decomposing solutions, 
checking and improving work.

More specifically, students can predict what 
code will do, match designs to programs, 
investigate and fix buggy code, or sabotage 
code for their peers to fix. Students can be 
asked to annotate code with an explanation of 
what the code is intended to do. Parts of code 
can be removed and students asked to fill the 
gaps.

One particular format of targeted tasks is that 
of Parson’s Problems; these provide learners 
with all the code required, but in sections, and 
with the sections in the wrong order (Parsons 
& Hadon, 2006). There are many variants 
of Parson’s Problems, such as including 
superfluous lines of code with common 
syntactic or semantic errors to act as 
distractors (Ericson, Margulieux, & Rick, 2017) 
(see Figure 4, top), faded Parson’s Problems 
where students increasingly complete some 
lines of code (Weinman, Fox, & Hearst, 2020) 
(see Figure 4, bottom), and adaptive Parson’s 
Problems, which dynamically control problem 
difficulty based on a student’s performance 
(Ericson, Foley, & Rick, 2018). Predominantly 
studied in undergraduate settings, Parson’s 
Problems have been suggested to be 
particularly effective to help students with 
tasks that are not unusual (Haynes & Ericson, 
2021), help students understand patterns 
in programs (Weinman et al., 2021), and to 
improve student engagement (Ericson et 
al., 2017). Notably, Parson’s Problems have 
been compared to code reading and tracing 
activities with students being found to make 
more progress when using Parson’s Problems 
(Ericson et al., 2017). However, a review of 
studies on Parson’s Problems calls for more 
research due to a lack of replicated research 
(Du, Luxton-Reilly, & Denny, 2020). 

The selection of tasks, along with how 
they are presented and scaffolded, within a 
progression of learning is important for both 
teachers' expectations as well as student 
confidence. The tasks need to be matched 
to each student's current level of knowledge, 
skills, and understanding. Such tasks can also 
be used for assessment purposes, but we do 
not cover assessment in any detail here.
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2. Contexts and environments for 
learning programming
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In this section, we consider the ways in which 
programming can be taught, including the type of 
language and the classroom context, with focus 
on: 
• Physical computing
• Block-based programming
• Project-based learning
• Programming unplugged
• Games

2.1. Physical computing
Using different contexts for teaching 
programming may inspire learners’ interest, and 
some contexts appear to be more motivational 
than others. A common finding from research is 
that physical computing projects are particularly 
motivational to pupils (Garneli, Giannakos, & 
Chorianopoulos, 2015).

There are many different types of physical 
computing devices. As shown in Figure 5, 
devices can include packaged electronics with 
no programming required, programmable robots 
and construction sets, programmable boards 
with integrated or external input and output 
devices that need a PC during use, battery-
powered embedded programmable boards, 
which can operate without a PC, and general-
purpose programmable boards that often use 
wired power (Hodges, Sentance, Finney, & Ball, 
2020).

Particularly popular, and inspired by Papert, the 
programmable robots of the 1970s and 1980s 
(such as the Roamer³ and the Bee-Bot4) have 
been used to teach primary programming for 

some time. Similarly, small general-purpose 
programmable boards such as the Raspberry 
Pi5, microcontrollers such as the Arduino6, and 
similar products have been used in education for 
many years. 

The recent development of low-cost educational 
microcontrollers and block-based programming 
languages has renewed interest in physical 
computing, exerting pressure on, and providing 
new opportunities for, teachers to incorporate 
physical computing and robotics into their 
teaching and learning activities. However, 
there is limited robust empirical evidence on 
the pedagogies to use, or on the impact of 
using physical computing on teaching and 
learning (Toh, Causo, Tzuo, Chen, & Yeo, 2016). 
Moreover, a multitude of high-profile resources 
for physical computing projects is now available. 
This abundance of options, combined with the 
lack of evidence-based teaching approaches, 
means there is a risk that schools will invest in 
resources that they cannot use effectively, or that 
have little impact on pupil progress; the product 
rather than the learning objectives may become 
the focus.

Research into the pedagogy to use with the 
current range of resources has started to 
emerge, and studies suggest sometimes 
conflicting approaches. Pre-teaching skills is 
advised by some, but a just-in-time approach 
is recommended by others; some researchers 
advocate for an exploratory approach (Przybylla 
& Romeike, 2014), while others promote 
following a design process (Bers, Flannery, 
Kazakoff, & Sullivan, 2014); often a range of 
targeted tasks, such as debugging activities 

2. Contexts and environments for 
learning programming 

³  http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8 accessed 11 November 2021 
4 https://www.tts-group.co.uk/bee-bot-classroom-set-/1017264.html?gclid=Cj0KCQjwt-6LBhDlARIsAIPRQcK5CujcblAajX9coOmbvKArDyFtUIpvWIomY2n4W4wIGZFKSHr   
  ta4aAj2TEALw_wcB accessed 11 November 2021 
5 https://www.raspberrypi.com accessed 11 November 2021 
6 https://www.arduino.cc/ accessed 11 November 2021

http://www.valiant-technology.com/uk/pages/roamertoohome.php?cat=8&8
https://www.tts-group.co.uk/bee-bot-classroom-set-/1017264.html?gclid=Cj0KCQjwt-6LBhDlARIsAIPRQcK5CujcblAajX9coOmbvKArDyFtUIpvWIomY2n4W4wIGZFKSHrlta4aAj2TEALw_wcB
https://www.raspberrypi.com
https://www.arduino.cc/
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Figure 5: Suggested classification of physical computing devices (Hodges et al., 2020, p.26). 
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and code tracing work, is proposed (Kafai et 
al., 2014; Major, Kyriacou, & Brereton, 2012). A 
study by Kalelioglu and Sentance (2020) found 
that teachers commonly used demonstrations/
live coding, pair programming, tinkering, copying 
programs, and explaining code verbally in their 
physical computing lessons. 

When code tracing and debugging, students use 
their understanding of the notional machine to 
help them predict what will happen when the 
program executes. Recently, physical computing 
in high-school contexts has been used to study 
how teachers introduce notional machines in 
their explanations, role play, analogies, and 
metaphors (Jayathirtha & Kafai, 2021). Physical 
computing contexts have also been used 
to investigate culturally relevant pedagogy, 
including introducing handcrafting electronic 
textiles in non-formal (e.g. museums, after-
school) and classroom settings, with promising 
results for broadening participation (e.g. 
Buchholz, Shively, Peppler, & Wohlwend, 2014; 
Kafai et al., 2014; Kafai et al., 2019).

2.2. Block-based programming
Sometimes called block-based, visual, or 
graphical programming languages, these 
languages use graphical images to represent 
programming commands. These easy-to-use 
languages are used not only with the youngest 
learners in formal and non-formal learning 
contexts, but also with older students in formal 
introductory programming lessons.

Block-based languages and their programming 
environments provide a range of affordances 
over and above text-based languages. 
Affordances include not requiring students to 
memorise and type in commands, not requiring 
students to deal with unfamiliar and sometimes 
confusing characters such as {}, [], and ==, and 
presenting natural language type block labels. 
Commands are often grouped by colour to give 

hints about their shared purpose, and shapes 
dynamically change their size to signal the scope 
of the command. Common shapes indicate 
which combinations of programming objects 
are allowed and provide an environment that 
allows quick and easy program-building (Bau, 
Gray, Kelleher, Sheldon, & Turbak, 2017; Weintrop, 
Killen, Munzar, & Franke, 2019).

Available since the 1990s, educational block-
based languages have been developed to be 
easy to get started with, but also to be powerful 
enough to create advanced programs. Block-
based languages such as Alice (Cooper, Dann, 
& Pausch, 2000), Scratch (Resnick et al., 2009), 
and Blockly (Fraser, 2015) have been suggested 
to be the most appropriate type of programming 
environment for young learners, such as those at 
primary (K–5) schools, with a prediction that this 
will remain so for the foreseeable future (Kölling, 
2015). 

As well as being heralded as improving 
students’ outcomes from primary students 
to undergraduate contexts (Franklin et al., 
2017; Grover & Basu, 2017; Price & Barnes, 
2015; Weintrop & Wilensky, 2017; Malan & 
Leitner, 2007), block-based languages have 
been suggested to increase student interest in 
computing (Lewis, 2010; Maloney, Peppler, Kafai, 
Resnick, & Rusk, 2008).

Despite their popularity across settings, 
identifying the features of block-based 
programming languages that have the greatest 
impact on student outcomes and interest is an 
open question. In a recent large-scale research 
study comparing US high-school students' 
understanding of block-based versus text-based 
pseudocode, students were found to perform 
better with the block-based versions of the same 
questions (Weintrop et al., 2019). This is despite 
the block-based pseudocode not including many 
of the features of block-based programming 
languages that have been attributed as the 
main affordances of this form of programming 
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language. The pseudocode was not colour 
coded, did not use natural-language type labels, 
and was not dynamic. 

With an ever-growing number of educational 
block-based languages used in an ever-growing 
range of educational contexts, teachers must 
decide which language is best for their learners 
both in terms of their current level of expertise 
and how this will support their next steps in 
learning. However, which features of block-based 
languages and their programming environments 
are most important for these different users is 
unclear.

2.3. Project-based learning
Advice to provide opportunities for learner 
autonomy in school is not new (Rose, 2009). 
Autonomy increases intrinsic motivation as 
learners take ownership and pride in their work 
(Deci, 1971). Self-determination theory suggests 
that motivation is elicited and sustained by the 
three basic needs of autonomy, competence, 
and relatedness (Deci & Ryan, 1985, 2000). 
Project-based learning (Thomas, 2000), problem-
based learning (Savery & Duffy, 1995), and 
inquiry-based learning (Edelson, Gordin, & Pea, 
1999) vary in their definitions (Thomas, 2000); 
however, all incorporate the essential features 
of autonomy, ownership, and realism as learners 
are provided with choices of what to investigate 
and how to run their project. 

Construction and constructionism are 
associated with these types of project-, problem-, 
and inquiry-based approaches as learners make 
things (or knowledge) through active exploration 
(Papert, 1980) and where the products made are 
meaningful in some way to the maker (Kafai & 
Resnick, 1996).

Criticism has been levelled at purely autonomous 
learning scenarios as learners left entirely to their 

own devices may develop alternate conceptions, 
ineffective mental models, or learn little, with the 
suggestion that a structured, guided approach 
is preferential (Mayer, 2004; Meerbaum-Salant 
et al., 2013; Clement & Merriman, 1988). Lye and 
Koh, in their review of teaching and learning of 
computational thinking through programming, 
found that construction (creating programs) with 
scaffolding was the most popular approach used 
by teachers (Lye & Koh, 2014). Finding the right 
level of scaffolding is not easy, as evidenced in a 
recent teacher survey where some respondents 
said they wanted to increase student autonomy 
and others wanted to reduce it (Rich et al., 
2018). What seems to be important is to provide 
sufficient scaffolding to ensure that competence 
needs are met, and at the same time to provide 
opportunities for autonomy and relatedness.

2.4. Programming unplugged
Originally developed to raise awareness of, and 
enthusiasm in, computer science, unplugged 
activities teach about computing without a 
computer (Bell, Alexander, Freeman, & Grimley, 
2009). Concepts such as abstraction, data 
representation, binary, and sorting algorithms 
can be introduced or further developed to deepen 
learning in this way (Rodriguez, Kennicutt, Rader, 
& Camp, 2017). Unplugged approaches include 
the use of stories, role play, magic, analogies, and 
metaphors (Curzon & McOwan, 2017; Curzon, 
2013). Despite unplugged activities being named 
as a popular instructional method by teachers 
(Sentance & Csizmadia, 2017) and being claimed 
to be an effective teaching approach (Berry et al., 
2015; Computer Science Teachers Association, 
2011), research evidence on their effectiveness 
on learning outcomes is mixed (Bell et al., 2009; 
Curzon, 2013; Thies & Vahrenhold, 2016). 

Stories, factual or fictional, can be used to 
provide real-world or imaginary contexts to 
introduce new and unfamiliar concepts. For 
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example, algorithm development has been 
introduced using the true story of a person with 
locked-in syndrome who developed a set of rules 
to communicate through blinking (Curzon, 2013). 

Role play can provide a physical enactment of 
a complex concept. For example, acting out 
a bubble-sort breaks down the process into 
individual steps and highlights features that 
might otherwise be difficult to envisage (Katai, 
Toth, & Adorjani, 2014). Role play can also be 
used to help learners design new products, 
as they step through and try out their ideas. 
For example, when learning how to program 
programmable toys, students can ‘play turtle’ 
to help them understand the way the machine 
works, as they embody and execute the steps of 
their solution (Papert, 1980). 

Analogies and metaphors can be used to 
introduce new concepts by using the learner's 
knowledge of other concepts as a springboard 
to make links and build new understanding. 
However, this requires teachers to have a 

depth of understanding of: the concept being 
introduced; the concept being compared against; 
the learners’ understanding of the comparative 
concept; the progression of learners' 
understanding of the analogy or metaphor; and 
potential misconceptions associated with the 
developing mental model. 

A common analogy in computing is the 
explanation that a variable is like a box, for 
which research has uncovered a range of 
misconceptions (Hermans, Swidan, Aivaloglou, 
& Smit, 2018). However, there is limited research 
on the use of other analogies and metaphors 
in classroom settings within current curriculum 
progression. For example, it is not clear what 
impact there is on young children’s mental model 
of a computer if they are informed that a CPU is 
a brain or that some computer files are viruses 
that replicate and damage other computers.

Semantic waves, a sociological knowledge-
building theory, have been suggested to be 
a useful pedagogical tool for planning and 

Figure 6: Traversing a semantic wave (Waite, Maton, Curzon, & Tuttiett, 2019, p.3).
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evaluating the concept-rich, yet practically 
applied subject of computer science. It has 
been used to study why unplugged approaches 
may be more or less effective (Waite et al., 
2019; Curzon, Waite, Maton, & Donohue, 2020). 
Simply put, in this theory, contexts and concept 
vocabulary are mapped over time as a profile. A 
wave shape to the profile, as shown in Figure 6, 
has been associated with successful knowledge 
building across subject areas from biology 
to dance as abstract concepts and familiar 
contexts and vocabulary are successfully 
connected for prior learning (unpacking) and 
for new learning (repacking) (Maton, 2013; 
Maton, Hood, & Shay, 2016). Figure 7 shows 
the semantic profile of an unplugged learning 
activity, showing how the lesson is taught 
over time, including staged repacking, and 
opportunities to improve the unpacking phase 
(Waite et al., 2019). Further research is needed 

to investigate semantic profiling and unplugged 
activities, and their long-term impact, as well as 
whether the approach is useful more generally in 
computer science education.

2.5. Games
Similarly to physical computing, game creation 
as a context for learning how to program has 
been cited as being motivational for students 
(Repenning et al., 2015). However, as with 
research into physical computing pedagogy, the 
evidence for game creation being beneficial is 
often not robust (Kafai & Burke, 2015). 

One notable example of a games context being 
used to teach programming is the work of 
the Scalable Design Team (Repenning et al., 
2015). This group have developed software 

Figure 7: Semantic profile for the Crazy Characters lesson plan introduction (Waite et al., 2019, p.5).
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(AgentSheets & AgentCubes7), curricula, and a 
framework, which requires learners to design 
and program games as a precursor to designing 
and programming simulations for science and 
other subjects. Rather than basing teaching on 
objectives related to students learning about 
programming constructs such as sequence, 
selection, and repetition, the curricula focus on 
common patterns used in creating simulations. 
Patterns such as ‘generation’, ‘absorption’, 
‘diffusion’, and ‘transportation’ are exemplified 
and used to drive the learning objectives. Also, 
a Use–Modify–Create type approach with much 
group work and a focus on pupil ownership of 
work is used. The team have reported success 
in terms of both pupils’ learning and motivation 
(Repenning et al., 2015).

7 https://agentsheets.com/ accessed 11 November 2021

https://agentsheets.com/
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3. Supporting learners
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Using the strategies outlined in Section 1 and 
contexts in Section 2 will help students learn how 
to program. In this section, we consider what the 
research says about how we can further support 
learners, particularly those who have difficulties 
with programming. We look at: 

• Addressing potential and common 
difficulties and alternative conceptions 
(misconceptions) 

• Cognitive apprenticeship
• Developing metacognition around abstraction
• Include design 
• Focus on vocabulary and language
• Scaffolding and a blended approach
• Developing problem-solving skills 

(computational thinking)

3.1. Addressing potential 
and common difficulties and 
alternative conceptions

Several school-based studies have suggested 
that more difficult programming concepts, such 
as initialisation, variables, loops, and assignment 
need to be explicitly taught (Grover & Basu, 
2017; Meerbaum-Salant et al., 2013). Studies 
of alternative conceptions, sometimes called 
misconceptions8, have mostly been undertaken 
in higher education rather than schools, and 
include what concepts are judged as difficult or 
not and how to approach them (Du Boulay, 1986; 
Veerasamy, D’Souza, & Laakso, 2016), with far 
fewer studies focusing on younger students (Gal-
Ezer & Zur, 2004; Hermans et al., 2018). Sorva, 
in his PhD research, noted over 150 potential 
programming misconceptions (Sorva, 2012). 
A lack of teacher knowledge can contribute 

to development of misconceptions, as well as 
limited dissemination of approaches and tools 
that can reduce misconceptions and difficulties 
(Qian & Lehman, 2017; Sorva, 2018).

The relationship between difficulties and 
misconceptions has been evidenced by 
several studies. Students who have alternate 
conceptions about the operation of various 
constructs (e.g. in-built functions, parameter 
passing, nested if statements, for loops, using 
lists) have been found to make mistakes in 
related knowledge-based tasks and coding 
activities (Veerasamy, D’Souza, & Laakso, 2016). 
For example, learners may have difficulty using 
variables, because they have the misconception 
that variables hold more than one value, formed 
due to a mental model based on the ‘variable as 
a box’ metaphor (Hermans et al., 2018).

Shared alternate conceptions about vocabulary 
have also been noted. These arise from learners 
thinking that terminology that exists across 
subjects, including mathematics and familiar 
English terms, has a shared meaning (Qian 
& Lehman, 2017; Sorva, 2018). For example, 
learners may believe that the symbol “=” means 
the same thing in maths and programming, or 
that a variable in science is the same in some 
ways as a variable in computer science. 

There is a long history of research around 
misconceptions that relate to the notional 
machine (Du Boulay, 1986). Simply put, 
researchers have claimed that there are 
misconceptions based on learners’ inaccurate 
or incomplete understanding of how a computer 
works and how it executes the code for a 
specific programming language. Another similar, 
commonly held false belief is claimed to be that 

3. Supporting learners

8 Misconceptions is a term that is often used in education literature when discussing a learner's evolving understanding and the points at which this understanding 
(mental model) deviates in some way from what was expected or planned. Misconceptions implies there is a problem, a faulty mental model, and something that needs 
to be addressed and overcome. Alternate or alternative conceptions are terms also used in this field and are interpreted by some as synonyms for misconceptions or 
they can be seen as having less of a negative connotation; this allows them to be used in a way that accepts that learners’ mental models will develop along different 
lines moving towards a planned view. Other terms used in this area include preconceptions, naive beliefs and theories, alternative beliefs and frameworks. We use the 
term misconception where studies have used this term and do not differentiate or analyse the study authors’ view of the term. 
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novices attribute computers with an innate ability 
to sort out errors in students’ code (Pea, 1986). 

Several approaches have been found to counter 
alternate conceptions where students believe 
that longer programs are more inefficient than 
shorter programs, or that more variables mean 
less efficiency. These approaches include 
earlier teaching of related concepts, work on 
underpinning vocabulary, and introduction of 
tasks that directly address the misconception 
(Gal-Ezer & Zur, 2004). Such activities are 
targeted tasks that pre-empt or directly address 
and rectify misconceptions, including asking 
learners to compare programs line by line or 
create new versions (Gal-Ezer & Zur, 2004).

Some approaches for directly tackling difficulties 
may in themselves cause misconceptions. For 
example, using the box analogy to help learners 
understand variables can introduce limited and 
faulty mental models (Qian & Lehman, 2017). 
Research suggests that teachers should carefully 
assess learners’ understanding to reveal the 
details of their current mental models, enabling 
them to work out what approach might be best 
to help their learners overcome difficulties and 
make progress (Qian & Lehman, 2017; Sorva, 
2018).

3.2. Cognitive apprenticeship

Cognitive apprenticeship is a concept introduced 
by Collins, Brown, and Newman back in 1987 
and refers to the way that novices gain expert 
skills by observing and then practising expert 
activity (Collins, Brown, & Newman, 1987). Some 
teaching approaches associated with cognitive 
apprenticeship are modelling, coaching, 
scaffolding, student articulation, reflection, and 
exploration. 

As a form of cognitive apprenticeship, 
collaborative learning through pupil-to-pupil 

support, such as with Digital Leaders, appears 
to provide opportunities for peer apprenticeship. 
However, the effectiveness of this approach 
regarding learner outcomes has not yet been 
formally evaluated. Passey (2014) highlighted 
the benefits of Digital Leaders for teachers and 
pupils, as technological support was provided. 
Still, the author recommended further research 
on the balance of activities undertaken and 
the outcomes and perceptions for all pupils 
engaged in the programme. Similarly, the need 
for research into the impact on pupils who 
are providing support in collaborative learning 
approaches has also been raised (Ching & Kafai, 
2008).

In their review of teaching and learning of 
computational thinking through programming, 
Lye and Koh found that authentic contexts with 
scaffolding and reflection activities appeared 
to be most successful, but the authors advised 
that no one pedagogical solution is appropriate 
for all classes. They suggested using a number 
of approaches that fall under the umbrella 
of cognitive apprenticeship, including much 
scaffolding at the start of projects, modelling, 
and studying, modifying, and extending code 
samples (Lye & Koh, 2014). 

3.3. Developing metacognition 
around abstraction

Abstraction has been cited as the cornerstone 
of computer science (Wing, 2008) and although 
it has been argued that it is not a skill that is 
unique to computer science (Ubiquity staff, 
2007), there appears to be a consensus that 
being able to use and understand abstractions 
is a fundamental aspect of learning to program 
(Barr & Stephenson, 2011; Tedre & Denning, 
2016).

Several frameworks have been suggested that 
support teachers, and their students, to build 
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mental models about abstractions related to 
programming, which will help them to teach and 
learn how to program.

Established through research with university 
students, the Abstraction Transition Taxonomy 
(AT) divides student knowledge and practices 
in learning to program into three levels: Code, 
Computer Science (CS) Speak, and English; AT 
also describes the transitions between these 
levels. An example transition goal given by 
the study is “Given a technical description (CS 
Speak) of how to achieve a goal, choose code 
that will accomplish that goal” (Cutts, Esper, 
Fecho, Foster, & Simon, 2012).

For the understanding of algorithms by university 
students, researchers have defined Levels of 
Abstraction (LOA), a framework similar to AT but 
with four levels: execution of code, code, object, 

and goals (Perrenet & Kaasenbrood, 2006). 
Armoni (2013) further developed this framework 
for high-school students, in which the ‘object’ 
level was renamed ‘algorithm’ level to support 
teacher and pupil understanding, and transitions 
across the levels were also defined. 

Armoni and Statter successfully used this 
adapted LOA framework in high schools (Statter 
& Armoni, 2016), and reported that learners 
using the framework showed improvements in 
attendance, algorithm development, algorithm 
creation, ability to explain solutions, and 
understanding of initialisation, with more 
improvement by girls than boys (Statter & 
Armoni, 2017). To support primary classrooms, 
the LOA levels have been further renamed as 
running the code, code, design, and task (Waite, 
Curzon, Marsh, Sentance, & Hawden-Bennett, 
2018).

The importance of students being able to move 
from the ‘task’ level to the ‘code’ level and vice 
versa is linked with advice that learners would 
benefit from being able to draw on existing 
templates or plans that solve a certain type of 
problem. This ability to abstract a task into such 
templates was noted in expert programmers 
and a recommendation was made that novice 
programmers would benefit from being taught 
‘learning templates’ as well as a process for 
problem solving (Lokkila et al., 2016).

3.4. Include design
Teaching the process of problem solving is 
not a new requirement in computing (Soloway, 
1986; Robins, Rountree, & Rountree, 2003) and 
yet it appears to be rarely addressed as a goal 
in curricula (Rich, Strickland, & Franklin, 2017) 
or included in resources for teachers to use 
(Falkner & Vivian, 2015). 

For younger learners, a simplified engineering 
design process, see Figure 8, has been 

Figure 8: An illustration of the simplified 
engineering design process (Bers et al., 2014, 
p.155).
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suggested to support program development; 
this process includes phases of ask, imagine, 
plan, create, test and improve, and share (Bers et 
al., 2014). However, difficulties of implementing 
design in primary classrooms have been found 
to include student resistance to design, a lack 
of time to do design, a lack of teacher and 
pupil expertise in design, conflicting pedagogy 
choices, a lack of teaching resources, and 
confusion over what an algorithm is (Waite, 
Curzon, Marsh, & Sentance, 2020).

In industry, the classic approach to software 
development is a waterfall: the software 
requirements are gathered; these are then 
analysed; then a design is created; the design 
is implemented as code; the code is tested and 

finally delivered. Other development approaches 
are now popular, including test-driven design and 
iterative methods. Simply put, iterative methods 
run through a similar cycle to the waterfall for 
parts of the solution instead of the whole, and 
these parts are combined as the development 
moves along. Another professional software 
development approach is agile methodology. 
Several studies have reported on the use of 
agile methodologies in high schools, including 
development of an agile process for school use 
(see Figure 9) (Romeike & Göttel, 2012) and with 
indications of increased code quality, student 
motivation (Missiroli, Russo, & Ciancarini, 2016), 
and student self-sufficiency (Kastl, Kiesmüller, & 
Romeike, 2016).

Figure 9: Agile model for projects in computing education (AMoPCE) (Romeike & Göttel, 2012, p.55).
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However, the design process used by students 
learning to program is considered to be 
different to the process used by professional 
programmers, because students are likely to 
explore more than experts do, and they don’t 
have to consider issues such as how a software 
system might change in the longer term or how 
it might be reused. Researchers have suggested 
the use of two consecutive cycles for teaching 
students problem solving in programming: an 
exploration process cycle in which students 
analyse and understand programs, and a design 
process cycle in which students design and 
construct programs (Schulte, Magenheim, 
Müller, & Budde, 2017). Teachers employing this 
approach need to consider which cycle learners 
are moving through and how to nimbly move 
students from one cycle to the other and back 
again. This design–exploration cycle has not yet 
been used in practice and further work is needed 
to explore it in action.

Besides using industry methodologies, other 
approaches for teaching how to design have 
been suggested that are included in overall 
structured problem-, process-, or project-based 
approaches to running projects in which students 
learn how to program.

In higher education research into Problem-Based 
Learning (PBL), improved student motivation 
and increased generic design skills have been 
reported (Nuutila, Törmä, & Malmi, 2005). Middle 
school education researchers have claimed 
Process-Oriented Guided Inquiry Learning 
(PoGiL) to be effective in teaching computing 
including design (Griffin, Pirmann, & Gray, 2016). 
The authors of a study comparing a Project-
Based Learning (PjBL) strategy, a traditional 
learning strategy, and a game-development 
strategy reported that the PjBL students 
completed their activity with fewer mistakes, 
while the traditional group experimented 
with more complex concepts, although not 
always successfully (Garneli, Giannakos, & 

Chorianopoulos, 2015). 

Design and software life cycle teaching is 
incorporated explicitly, to different degrees, 
in models and frameworks for teaching 
programming, but further research is needed 
to evaluate what design objectives should be 
included and which approach is best to improve 
design expertise for pupils in classroom settings.

3.5. Focus on vocabulary and 
language
Research connecting concept development to 
speech has a long history. Sapir remarked in 
1921: “The birth of a new concept is invariably 
foreshadowed by a more or less strained or 
extended use of old linguistic material; the 
concept does not attain to individual and 
independent life until it has found a distinctive 
linguistic embodiment” (Sapir, 1921, para. 15). 
Student performance has a clear association 
with an understanding of subject-related 
vocabulary (Espin & Foegen, 1996), and explicit 
instruction including integration, repetition, and 
meaningful use is cited as being essential for 
vocabulary development (Beck, McKeown, & 
Kucan, 2013; Nagy, 1988). Incidental, or topical, 
experiences from general listening and reading 
in other contexts have improved learner progress 
in developing conceptual understanding (Carlisle, 
Fleming, & Gudbrandsen, 2000). 

In maths, a subject where conceptual 
understanding is bound to vocabulary (Capraro, 
Capraro, & Rupley, 2010), topical word learning 
can be problematical as the colloquial meaning 
of terms can be different to the mathematical 
meaning, and some terms are unique to maths 
(Dunston & Tyminski, 2013). Computing poses 
similar problems, as the terminology can be 
unfamiliar or have different meanings to more 
general use. For example, the words bit, bug, 
memory, and cloud have different meanings in 
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computing to their general use. More technical 
words such as algorithm may have subtly 
different meanings across school subjects and a 
range of definitions within computing (Diethelm 
& Goshler, 2015).

Not all educators may be aware of the confusion 
that these ‘reused’, or differing definition terms 
pose for those new to computing. Conversely, 
teachers may be unaware of the nuanced 
differences and misconceptions that may arise 
from exploiting apparent analogies of common 
terms. Therefore, although key vocabulary is 
essential to develop understanding, it must be 
introduced with an awareness of the potential 
mental models and alternate conceptions 
that may emerge. Further research is needed 
to explore learners' understanding of terms, 
teachers' use of terms, and the impact of 
inconsistent use of terms (Diethelm & Goshler, 
2015).

International studies and curricula have been 
developed that focus on the importance of 
pupil talk and vocabulary. In the US, Grover and 
Pea (2013) developed a discourse-intensive 
curriculum, whereby the significance of 
terminology was emphasised, and activities 
developed that required learners to rehearse 
and use key terms, verifying and constructing 
personal understanding through social 
interactions. Working on Israeli secondary 
computing materials, Armoni has developed a 
framework with carefully constructed levels. 
The importance of using different vocabulary 
to distinguish between the development of 
the algorithm and its implementation as code 
was suggested as essential for developing 
conceptual understanding (Armoni, 2013; 
Statter & Armoni, 2016). Work with university 
learners in Scotland on the language used in 
solving computing tasks paints a similar picture, 
with the importance of talk and the use of 
English–computer science talk being key for 
the development of understanding (Cutts et al., 
2012).

Sentance and Waite (2021) synthesised 
discourse frameworks associated with the 
study of talk in general teaching and learning 
to analyse talk in high-school programming 
classrooms where the PRIMM pedagogy was 
being used. The authors developed a generic 
theoretical model for planning and evaluating 
talk in the programming classroom (see Figure 
10) and found several key factors that enhanced 
discourse. Key factors included encouraging talk 
through classroom routines, using questions and 
explanations, including goals on vocabulary, and 
careful design of learning contexts, including 
using example code, activity structure, and the 
student’s own code to stimulate talk (Sentance & 
Waite, 2021). 

Applying theories related to classroom talk, 
Zakaria et al. have designed and investigated a 
structured feedback intervention for teachers 
to use to support students doing shared 
programming tasks. Comparing the dialogue 
and activity of six pairs of students, aged 10 to 
11 years old, from classes with and without the 
intervention, the authors reported promising 
results in productive collaboration and discourse 
such as increased exploratory talk including 
more justification and an increase in shared 
alternative ideas. The authors reported that 
further work is needed to refine the feedback 
framework and larger and more diverse sample 
sizes are needed to validate the approach 
(Zakaria et al., 2021). The impact on learning 
outcomes also needs to be investigated.

3.6. Supporting learning and a 
blended approach
Three broad theories, or approaches to learning, 
have been noted as prevalent in research studies 
on teaching programming in classrooms (Waite, 
2017):
• Exploration 
• Problem solving and making (Papert, 1980)
• Direct instruction (Dreyfus & Dreyfus, 1980)
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Figure 10: Talk in the programming classroom (Sentance & Waite, 2021, p.13).

Within these approaches, the degree of control 
pupils have over what they are learning about 
can vary. Generally speaking, direct instruction 
gives the teachers more control of the learning 
objectives, whereas with the exploration and 
making activities the students have more control. 
However, even in problem solving and making 
and exploration activities, a teacher can give 
pupils more or less freedom with the task at 
hand and can constrain the learning, for example, 
by limiting resources available or by framing the 
task.

Associated with providing support is the idea 
of scaffolding, which is used in education to 
describe both the micro-level scaffolding of 
teachers interacting with students in lessons 
and also the macro-level scaffolding of planning 
lesson goals and the organisation of learning 
tasks (Hammond & Gibbons, 2001). A simple 
example of a continuum of scaffolding has 
been suggested to provide initial guidance for 
teachers to understand their choices better; the 
Computer Science Student-Centred Instructional 

Continuum (CS-SCIC) includes broad categories 
of instructional approaches such as copying 
code, targeted tasks, shared coding, project-
based, inquiry-based, and tinkering. This has 
been successfully used in England and the USA 
to support teacher professional development 
(Waite & Liebe, 2021). CS-SCIC reflects the 
tension between exploration, making, and direct 
teaching, but does not advocate any approach 
or order of use of approaches over any others. 
It simply gives teachers a way to talk about their 
choices with the expectation that teachers will 
create a sequence of learning experiences (Waite 
& Liebe, 2021). 

In creating learning experiences, rather than just 
using one approach to teach programming, some 
advocate a blended approach encompassing 
a range of approaches (Grover, Pea, & Cooper, 
2015). Which approaches should be included, 
and in what order, is suggested by studies, 
and sometimes the advice provided can be 
combined, but sometimes there are conflicting 
views. Some research suggests a controlled 
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progression of more direct teaching approaches 
should be planned for teaching programming, 
particularly for more difficult concepts 
(Hubwieser et al., 2014).

Curricula often include exploration activities at 
different points in a sequence and progression of 
learning (Grover, Pea, & Cooper, 2015; Meerbaum-
Salant et al., 2013; Repenning et al., 2015). 
Exploration might be used to: introduce new 
concepts; revise or consolidate ideas; pre-empt, 
address or challenge misconceptions; or provide 
opportunities for extension and creativity.

Hansen, Hansen, Dwyer, Harlow, & Franklin 
(2016) used the Universal Design for Learning 
(UDL) framework to underpin their US grades 
4 to 6 computing curriculum, which focuses 
on differentiation to support all learners. By 
incorporating a carefully constructed learning 
progression and tasks moving from simple 
to complex (Franklin et al., 2016), a range of 
instructional strategies are included, such as 
unplugged activities, modelling, small group 
work, a sandbox to try out new skills, as well as 
more targeted tasks to teach specific concepts. 

In their review of the teaching and learning of 
computational thinking through programming, 
Lye and Koh emphasise constructionism. Still, 
they advise that no one pedagogical solution 
is appropriate for all classes. They suggest 
scaffolding at the start of projects, studying, 
modifying, and extending code samples, as well 
as recommending that demonstrations, tutorials, 
and debugging tools be used (Lye & Koh, 2014). 
They also suggest the use of Use–Modify–
Create (Lee et al., 2011) as well as problem and 
project-based learning, using authentic contexts, 
with a 'just-in-time’ approach to present new 
concepts as and when needed, and scaffolding 
and reflection activities emphasising that 
students ought to be 'thinking-doing and not just 
doing' (Lye & Koh, 2014). 
In suggesting their concepts, practices, and 

perspectives, Brennan and Resnick (2012) have 
proposed a framework for learning block-based 
programming. However, this framework does 
not prescribe in detail a classroom pedagogy for 
teaching programming. Insight from a blended 
approach that may reflect the framework is 
offered by the Creative Curriculum authored 
by Brennan, Balch, and Chung (2014), where 
concepts are introduced through a series of 
projects. Instructional techniques, including 
minimally guided exploration, guided exploration 
with suggested blocks, debugging activities, 
reusing and remixing example code snippets, 
and learners creating their own work with 
support from examples of code (Scratch cards 
and example Scratch projects), are included 
as well as design journals to record ideas and 
provide a means to share and reflect on learning.

It seems likely that a blended approach is 
most effective. However, further research is 
needed to investigate the effectiveness of each 
instructional approach in different contexts, 
in particular orders, for different learners at 
different points in their progression (Webb, 
Repenning, & Koh, 2012).

3.7. Develop generic problem-
solving skills (computational 
thinking)
Definitions of computational thinking vary. Some 
definitions include programming concepts 
(such as sequence, repetition, and events), 
others a range of problem-solving practices 
(such as logical reasoning, algorithmic thinking, 
abstraction, decomposition, and evaluation), 
and some include generic skills (such as 
collaboration and questioning). Complicating 
this, popular views and definitions of the topic 
seem to change over time. 
The link between aspects of computational 
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thinking ability and aspects of general problem-
solving ability have been correlated through 
recent research comparing the results of 
a computational thinking test to standard 
psychometric tests (Román-González, Pérez-
González, & Jiménez-Fernández, 2017). However, 
this research focused on only one narrow view 
of computational thinking. Which components 
of computational thinking are most useful for 
learners and what instructional approaches to 
teach computational thinking are most effective 
is still unproven.

Despite this uncertainty of the impact of 
computational thinking or its components 
(Tedre & Denning, 2016; Curzon, Bell, Waite, 
& Dorling, 2019), there are a wide range of 
resources and approaches for inclusion of 
computational thinking in teaching and learning 
of programming (Falkner & Vivian, 2015). Based 
on a knowledge of computational thinking, 
educators are advised by some that they can 
draw out points of learning in existing lesson 
activities or incorporate specific computational 
thinking activities in schemes of work teaching 
programming (Curzon et al., 2019).

Any ongoing research on computing pedagogy 
requires a review of what computational thinking 
is viewed as at the considered point in time, how 
it impacts teaching and learning, and its role 
within programming pedagogy.
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4. Conclusion
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In this report, we have described research that 
teachers can use to support their teaching of 
programming in schools. We have covered a 
range of classroom strategies such as reading 
code and pair programming, contexts in which 
programming may be taught, and how to support 
students. This is a substantial research area, so 
there may be some omissions. We have focused 
on topics and strategies that are particularly 
applicable to teachers in the classroom, based 
on our experience.

If you’re a teacher, you will probably already use 
a toolkit of approaches to support your teaching; 
programming is no different and this review 
may help you with your choice of instructional 
strategy, and selecting different techniques 
according to the needs of your learners to ensure 
all students make progress.

Robust pedagogical content knowledge for 
programming in schools is only just starting to 
emerge, unlike other subjects where "how to 
teach it" has been more widely researched. Over 
time, we hope to see more evidence emerge 
for the approaches outlined here as we move 
towards an even more informed and evidence-
based view of "what works in computing".

4. Conclusion
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