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Foreword

In May 2020, the Raspberry Pi Foundation held 
its first online research seminar on computing 
education. The format was simple: presentation 
from a researcher, breakout groups, then a 
whole-group question and answer session. It 
was a great success! Seventy-six people from 
nine different countries attended. From that point 
onwards, we have continued to host Tuesday 
seminars, first fortnightly and then monthly. By 
the end of 2021, we will have hosted 22 seminars 
on a range of different topics in the broad area of 
computing education. 

To accompany the seminars, we plan to publish 
the proceedings for each set of seminars. This 
first volume covers nine seminars from May to 
December 2020. The variety of topics you will 
find here indicates the wealth of perspectives 
being brought to this research area. 

In the first section, we look at computing 
education in all its breadth. Professor Celia 
Hoyles gives her personal perspective on 
how computing education interfaces with 
mathematics education, drawing on decades of 
experience. Rebecca Vivian and her colleagues 
share their work on the way that computing 
education is emerging throughout the world. 
Katharine Childs draws on the literature to 
summarise factors that have impacted on gender 
balance in our field.

The second section covers some specific 
aspects of the teaching of computing in school. 
Jane Waite describes how we can teach 
concepts better by understanding semantic 
wave theory, unpacking and repacking concepts 
to help learners’ understanding. There are 
two chapters relating to assessment: Shuchi 
Grover argues for more attention to formative 
assessment research and practice in computing 
education. María Zapata Cáceres describes 
work on developing a test instrument for young 

children to measure their computational thinking. 
The last section moves us on to specific 
computing topics, including programming. David 
Weintrop describes his doctoral work looking 
at the relative benefits of block-based and text-
based programming. Juan David Rodríguez 
describes a tool that helps us understand how 
we can teach new developments in machine 
learning artificial intelligence to young people, 
and I am pleased to be able to give an update 
on some recent work relating to the PRIMM 
approach, focusing on the role of classroom talk 
in the programming classroom.  

The volume is an eclectic mix of current research 
and researchers’ positions across the field of 
computing education for young people. One 
thing is clear from all these chapters: there is still 
much more research needed to understand the 
learning of computing more fully. Our ultimate 
goal is to ensure that the next generation has 
the skills they need to confidently participate 
in our increasingly technological society. To do 
this, we need research to support educators to 
teach computing effectively and confidently, 
research around conceptual understanding 
and progression in the broad area of computer 
science and digital literacy, and research to 
understand and address the significant barriers 
that inhibit diversity in computing education. At 
the Raspberry Pi Foundation, we are committed 
both to conducting research in this area and to 
bringing together researchers from around the 
world to form a global community. 

I am very grateful to all those within the 
Raspberry Pi Foundation team who made the 
seminars possible, including Diana Kirby, Jan 
Ander and Jonnie Howard, as well as many 
others! We hope you enjoy reading these 
chapters as much as we enjoyed putting this 
volume together. Do let us know your feedback, 
and we look forward to bringing you Volume 2!

Sue Sentance, Chief Learning Officer
Raspberry Pi Foundation, 
February 2021 
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Section 1: Computing in context

I start this short piece by providing a glimpse of 
the way computing was introduced in schools 
in England, culminating in 2014 with the 
introduction of a new statutory primary national 
computing curriculum for students aged 6 to 
16 years. One key landmark on the way was the 
influential report from the Royal Society, Shut 
Down or Restart (The Royal Society, 2012). Then 
came the second Royal Society report, After 
the Reboot: Computing Education in Schools 
(The Royal Society, 2017), which recognised the 
importance of the teacher for the success of the 
curriculum initiative and led to the setting up of 
the National Centre for Computing Education, 
NCCE, specifically to support the teaching of 
computing.¹

The computing curriculum included, as a key 
aspect, that students should design, build, and 
debug programs. My main personal concern 
was how programming, as well as being part 
of computing, might also fit with the rest 
of the curriculum, with particular reference, 
given my background, for mathematics. Could 
this curriculum innovation of computing be 
harnessed for the benefit of all subjects? 

To address this question, I want to provide 
an outline of the history of programming and 
mathematics, which for me had its roots in 
innovations from MIT in the 1980s, and the 
vision of Seymour Papert for the development 
of Logo, as a language for learning. This is when 
I became personally convinced of the potential 
for programming in mathematics teaching 
and learning; as a teacher I experienced the 

‘buzz’ of a classroom where the learners were 
actively engaged in exploring and discussing 
mathematical ideas through programming them. 
At the same time, Papert proposed his theory 
of constructionism, that proposed that learning 
tended to be effective when making an artefact 
that was personally or socially meaningful, 
could be shared with others, reflected upon, and 
debugged (see for example (Kafai & Resnick, 
1996)).

In this early work, the notions of powerful 
ideas and design were stressed; that is a well-
designed constructionist activity should have 
personal meaning and emotional connection with 
learners and empower them in some way, put 
simply so they could do something that before 
they were unable to do. Such ideas had deep 
resonance for me as so much of mathematics 
is not experienced as personally meaningful, 
just seen as simply a ‘dance of symbols’ without 
underlying structure and linked to little emotion 
except anxiety, feeling stupid and ‘not getting it’.

During this time, a group of us set up the 
LogoMathematics group which met regularly 
with participation from across the world, leading 
directly and indirectly to publications over the 
subsequent 50 or more years (see for example, 
(Papert, 1972; Hoyles & Noss, 1992; Noss & 
Hoyles, 1996; Monaghan, Trouche, & Borwein, 
2016)). 

After setting the scene I will describe the 
ScratchMaths (SM) project, (now called UCL 
ScratchMaths), the latest research project 

Programming and mathematics: 
insights from research in England 
Dame Celia Hoyles (University College London, UK)

¹ http://teachcomputing.org

https://teachcomputing.org/
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in which I have worked that looked at the 
programming/mathematics interface. The 
UCL ScratchMaths designed and implemented 
a longitudinal two-year intervention at the 
intersection of mathematics and computing, 
targeted for 8- to 11-year-old students in English 
schools and involving programming in Scratch 
(Noss, Hoyles, et al., 2020).

The phases of the ScratchMaths research are 
shown in Figure 1. Much of the effort of the 
ScratchMaths team took place in the first phase, 
the Iterative Design Phase, where the we worked 
with a small group of schools to iteratively 
design computer tools and student/teacher 
materials and pilot them in the schools, along 
with a programme of professional development 
for the teachers.

Our team was interdisciplinary² with expertise 
in mathematics education, computing, and 
design, and we worked closely with teachers 
to iteratively develop our original designs. We 

Figure 1. Phases of the ScratchMaths research

aimed to foster mathematical thinking. This can 
be defined as an awareness and appreciation 
of mathematical structure, the articulation of 
coherent explanations for outcomes and the 
reasoning behind them, and being comfortable 
and fluent with the formal expression of 
relationships. 

To pursue this aim, we developed student and 
teacher curriculum support materials organised 
into six modules, three to be taught per year, 
involving about 20 hours teaching. The modules 
can be considered as microworlds, designed 
to provoke engagement with key ideas in 
mathematics and in computing. (For background 
on microworld development, see (Hoyles, 1993), 
and the recent contributions of Chronis Kynigos 
to the Mathematics Knowledge Network lecture 
series.³)

² Professor Dame Celia Hoyles (Mathematics) and Professor Richard Noss (Mathematics) - UCL Knowledge Lab, Professor Ivan Kalas, (Computing) - Comenius 
University, Bratislava, Slovakia Dr Laura Benton (Computing) and Piers Saunders (Mathematics) - UCL Knowledge Lab, Prof Dave Pratt (Mathematics) - UCL Institute of 
Education 
 
³ http://mkn-rcm.ca/online-seminar-series-on-programming-in-mathematics-education

http://mkn-rcm.ca/online-seminar-series-on-programming-in-mathematics-education


14

Raspberry Pi Foundation Research Seminars

Figure 2 shows a summary of the six UCL 
ScratchMaths microworlds produced.

All the materials are freely available, now 
updated to Scratch 3.0, through the UCL 
website.4 

The ScratchMaths team took as the following 
components of computational thinking5 derived 
from a large number of rather similar definitions 
and resources available at that time. (For 
background, see (Benton et al., 2017)) : 
• Abstraction: seeing a problem and its 

solution at many levels of detail 
• Algorithms: thinking about tasks as a series 

of logical steps 
• Decomposition: understanding that solving a 

Year 5 (9-10 yrs) – Computing focs (20+ hours)

Year 6 (10-11 yrs) – Mathematics focs (20+ hours)

large problem can involve breaking it down 
into smaller problems

• Pattern recognition: appreciating that a 
new problem is likely to be related to other 
problems already solved

• Generalisation: realising that a solution to a 
problem can be made in ways that can solve 
a range of related problems

In Phase 1, it also became clear that we 
needed an explicit pedagogic framework for 
ScratchMaths to facilitate our future work, and 
we devised one with the teachers in the four 
design schools referred to as the “five Es”, with 
each E derived from a wealth of prior research 
in mathematics education about effective 
pedagogy: 

4 http://www.ucl.ac.uk/scratchmaths 
 
5 For an up-to-date- summary of definitions and research on Computational Thinking, see Paul Dryvers lecture as par of the Mathematics Knowledge Network lecture 
series, available at http://mkn-rcm.ca/online-seminar-series-on-programming-in-mathematics-education/.

Figure 2. Overview of UCL ScratchMaths 

http://www.ucl.ac.uk/scratchmaths
http://mkn-rcm.ca/online-seminar-series-on-programming-in-mathematics-education/
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Explore: investigate, try things out yourself, 
debug in reaction to feedback.
Envisage: have a goal in mind, predict the 
outcome of the program before trying on the 
computer. 
Explain: explain what you have done, articulate 
reasons behind your approach to yourself and to 
others. 
Exchange: collaborate and share, try to see a 
problem from another’s perspective as well as 
defend your own approach and compare with 
others. 
bridgE: make explicit links to the mathematics 
curriculum. 

In relation to the last E, bridgE, we had learned 
from our earlier research in programming 
and mathematics that often we had assumed 
connections between these two fields would 
be made, only to find that this was not the 
case. All was too implicit and assumed. The 
five Es framed the professional development 
programme we devised (two days per year), 
a programme that was a critical part of the 
SM intervention and the planned classroom 
implementation. 

Alongside the design phase the SM team 
planned for Phase 2. Implementation at scale. 
We signed up to the project over 100 schools 
across England grouped around seven regional 
hubs that would form the focus for professional 
support and formative evaluation. At this point, 
an external independent evaluator was appointed 
by the funders who undertook to assess the 
project in terms of its effect on scores of 
computational thinking and of mathematics. 
The results of the ScratchMaths intervention 
are reported in full in the evaluation report.6 
We note that ScratchMaths had a positive and 
significant impact on student computational 
thinking (CT), as reported by the evaluator using 
a randomised control trial methodology with 

111 schools across England and measured 
by a test of computational thinking designed 
and administered by them at the end of the 
first year of the intervention. We also note 
the important results that this positive effect 
was particularly evident among educationally 
disadvantaged students. There was no evidence 
of any interaction between the impact of SM on 
CT test scores and gender: thus girls and boys 
appeared to engage with SM to a similar extent, 
an outcome that is particularly important in view 
of the finding persistent in the literature that girls 
tend not to be so engaged in computing as boys. 

However, there was no impact of SM on 
mathematics attainment as measured by the 
evaluators on the basis of the student results 
in the statutory national mathematics test, Key 
Stage 2 test taken by all 11-year-old students 
in England. As a way to seek to explain these 
findings, I called on the notion of fidelity of 
implementation (see (O’Donnell, 2008) for 
a review of Defining, Conceptualizing, and 
Measuring Fidelity of Implementation), and 
how in our study fidelity appeared to have been 
negatively influenced by the high-stakes testing 
in mathematics in England leaving little room 
for innovation in classrooms for 11-year-olds. 
These tests involved a formal paper and pencil 
mathematics test and are used to rank schools 
and teachers so much time is spent reviewing 
and revising, so teachers found little resource to 
devote to ScratchMaths. 

Finally, I want to dwell a little on the final and 
still ongoing phase of the ScratchMaths project, 
concerning how it has been disseminated and 
its impact on other projects in England and 
internationally. The materials have been used 
in a great many countries across Europe, and 
beyond. I note in particular that the ScratchMaths 
project has been followed up in New South Wales 
in Australia (see Holmes, Prieto-Rodriguez, et al., 

6 https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/scratch-maths/. 

https://educationendowmentfoundation.org.uk/projects-and-evaluation/projects/scratch-maths/
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2018) where it continues to be widely adopted. 
Also of note is the nationwide project that took 
place in Spain (INTEF, 2020), part of which 
concerned a replication of the ScratchMaths 
project along with assessing its impact. I 
translated one finding from this report that was 
of particular relevance: namely that “the results 
show that it is possible to include programming 
activities in 5th grade in the area of   mathematics, 
so that students not only learn to program and 
engage in computational thinking, but also 
improve the development of their mathematical 
competence greater than their colleagues who 
have worked in this same area using other 
types of activities and resources not related to 
programming.” 

I would like to end by reflecting on how the 
ScratchMaths research might be improved or 
updated in future work, not least as teachers 
are becoming more confident and competent in 
their understanding of computational concepts, 
in teaching them and in using them to explore 
mathematical ideas through programming. So 
I present some personal thoughts about our 
project and its limitations with the wisdom of 
hindsight, and pose some research challenges 
that might be interesting for others in the 
community to address. For example, the need to: 
1.      Develop more nuanced, rigorous,   

     and targeted assessment instruments of 
     student and teacher content knowledge 
     in mathematics, mathematical thinking, 
     and in computing to be administered 
     as post-tests following engagement in 
     each of the ScratchMaths microworlds 
     and as delayed post-tests several months 
     later, rather than use the standard national 
     tests as adopted in the evaluation of UCL 
     ScratchMaths.

2.      Research in more detail the actual 
     practices in classrooms to include 
     documentation of teacher and student 

     interactions and output, in order to 
     provide detail of classroom 
     implementation and how far the 
     pedagogic framework was enacted. In 
     particular, such research might provide 
     some explanation of the outcomes 
     reported for UCLScratchMaths in relation 
     to socially disadvantaged students 
     and girls as mentioned above, taking 
     as a starting point the idea of fidelity 
     while recognising the ‘chaotic’ nature 
     of real classrooms, teacher practices, and 
     policy demands. 

3.      Develop a more detailed description of 
     the nature and content of the professional 
     development that is undoubtedly needed 
     prior to successful implementation of the 
     ScratchMaths intervention.

At the time UCL ScratchMaths was conceived 
and operationalised, computing was very new 
in England. Teaching and learning has been 
transformed in the intervening years, not least as 
much education has moved online as a result of 
the coronavirus pandemic, and the magnificent 
efforts of the NCCE to support the teaching of 
computing across the country. Teachers and 
students have undoubtedly become more fluent 
in working online in general and in programming 
in particular. One might expect that the integrity 
of the SM materials would remain constant, 
given the principles of design on which they were 
based while its implementation would be less 
challenging in these changed circumstances. But 
this is a matter for further research.
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Section 1: Computing in context

Abstract 

The intended curriculum — the curriculum that is 
intended to be taught through policy, curriculum 
documents, or other required mandates — and 
the enacted curriculum — the curriculum that 
is actually taught in classrooms by teachers 
— are ideally aligned. However, often there is 
a chasm between the two. With computing 
education being relatively new to schools and 
teachers across many countries, we wanted 
to learn if a chasm existed and, if it did, how 
wide it is across different countries. Working 
as part of an international team, we created 
a set of templates for measuring intended 
curricula and a survey instrument, MEasuring 
TeacheR Enacted Curriculum (METRECC), to 
measure enacted curricula. The original pilot 
investigated the enacted curriculum in seven 
countries (with 244 teacher participants). Our 
research found that both visual and text-based 
programming languages are being used across 
K-12, warranting further research into potential 
impact on student learning and motivations. 
Unplugged activities are commonly used across 
K-12, extending into later years despite not 
being explicitly defined in intended curricula. 
Further, teachers’ motivations for programming 
language choice are consistent across countries 
and our study revealed that student-driven 
factors motivate selection. This initial study was 
followed by additional analysis with respect to 
teacher self-esteem that was found to differ 

across multiple factors such as experience in 
teaching CS in years and gender. We punctuate 
our work with the adaptation of the instrument 
for use in South Asia and a call to the community 
to consider middle- and low-income nations in 
future research.

Introduction 

While there has been some efforts to collate 
intended curricula, internationally, nationally, 
and regionally (Porter and Smithson, 2001; 
Hubwieser, Armoni, and Giannakos, 2015; Gander 
et al., 2013; Balanskat and Engelhardt, 2014; The 
Royal Society, 2012; The Royal Society, 2017; 
Hong et al., 2016; Moller and Crick, 2016; Sysło 
and Kwiatkowska, 2015), there is a need to 
understand the enacted curriculum and how well 
it aligns with the curriculum as intended to be 
taught. In June 2019, a working group led by Sue 
Sentance, Katrina Falkner, and Rebecca Vivian at 
the Association of Computing Machinery’s (ACM) 
2019 conference on Innovation and Technology 
in Computer Science Education (ITiCSE), 
conducted an international study of K-12 
computer science (CS) implementation across 
Australia, England, Ireland, Italy, Malta, Scotland, 
and the United States. The purpose of the study 
was to develop instrumentation that would 
provide descriptive data about the intended 
and enacted computing education curriculum 
in K-12 schools. The genesis of the work arose 
from the analysis of previous attempts to assess 

Measuring the enacted K-12 
computing curriculum 
Elizabeth Cole (University of Glasgow, UK), Monica McGill (CSEdResearch.
org, USA), Keith Quille (Technological University Dublin, Ireland), and 
Rebecca Vivian (University of Adelaide, Australia)

https://csedresearch.org/tool/?id=185
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and identify K-12 CS implementation efforts 
internationally. 
 
This chapter describes three major efforts 
related to this research:
 
• Results originating from a detailed 

collaborative international process which 
resulted in the design, pilot, and evaluation 
of an international survey instrument for 
Measuring Teacher Enacted Computing 
Curriculum (METRECC) (Falkner, 2019a; 
Falkner, 2019b)

• Results of a deeper analysis of the self-
esteem scale that was included as part of the 
METRECC survey (Vivian et al., 2020) 

• The adaptation of METRECC for usage in 
middle- and lower-income nations, with a 
focus on South Asian classrooms (Anwar et 
al., 2020)

 
While some quantitative and qualitative reports 
existed with respect to measuring the intended 
and enacted curriculum, none succinctly 
provided a tool that could be applied at scale 
and easily provide the descriptive data for 
international comparison. During the initial 
planning phase of our study, it became apparent 
that we needed a formal method for framing the 
intended curriculum as well as instrumentation 
to capture the curriculum as it is taught in the 
K-12 classrooms. Both instruments also needed 
to be framed in a way that took into account the 
various differences in primary and secondary 
structures across seven countries. 
 
In addition to providing evidence of the validity 
of the survey instrument, the pilot phase reviews 
of the curriculum landscapes from Europe, the 
UK, and the US provide some information on 
international CS K-12 efforts. This work also laid 
the foundation for several follow up studies, one 
of which looks specifically at teacher computer 
science self-esteem (Vivian, 2020) across the 
seven jurisdictions using the pilot data. Teacher 

self-esteem was found to differ across multiple 
factors such as experience in teaching CS in 
years and gender. This work might be useful to 
CS educators who are designing CPD or pre-
service teacher programmes. 
 
Many of the countries examined in the original 
study consisted of high-income nations, while 
little is known about primary and secondary 
computing education efforts in both middle- and 
low-income nations. Another follow-up study, 
therefore, reinterpreted METRECC for use in 
middle- and low-income countries in South Asia 
(Anwar et al., 2020). This pilot of the METRECC 
South Asia instrument is a step towards the 
validation of the instrument across nations with 
varying socio-economic demographics. This 
work sets a solid foundation for the continued 
longitudinal implementation of the METRECC 
instrument to further investigate international 
enacted curricula.

Measuring the intended and enacted 
curriculum

An initial body of work focused on the alignment 
between the intended and enacted curriculum 
in the areas of topics taught and programming 
languages used (Falkner, 2019b). These critical 
areas of CS curricula require further analysis 
and monitoring not only in terms of alignment 
and its ensuing benefits, but also in relation 
to our assumptions as tertiary educators on 
prerequisite knowledge and experience. 
 
Two instruments were developed for the study by 
the 2019 ITICSE working group: a country report 
template to capture the intended curriculum 
and a teacher survey instrument to capture the 
enacted curriculum. The following explanation 
briefly describes the instruments with more 
detail available in the published report (Falkner et 
al., 2019a).
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Capturing the intended curriculum

The country report template is designed to be 
completed by the survey administrator and 
captures the country demographics relating 
to schools and the intended curriculum. For 
analysis and comparison, the broad curriculum 
and information for each country is organised as 
follows: 

1. Demographics (e.g. such as total population, 
number of schools, number of teachers) 

2. CS curriculum state or country plan 
standards and requirements 

3. Year level (with age for comparisons) 
mapped to prescribed curriculum and 
programming requirements

4. General CS topics covered 
 
Although the aim is to analyse intended and 

Figure 1. Country report templates for the METRECC 
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enacted curricula for individual states/countries, 
the templates show similarities and differences 
across states/countries. However, a key 
consideration for high-level country by country 
intended curricula comparison is the CS content 
variations. To overcome the issue of variance 
in the short term, the country report template 
includes a list of broad CS topics based on 
available literature. Future work will refine this list 
based on the pilot study results.

Capturing each country’s enacted curriculum
The Measuring Teacher Enacted Computing 
Curriculum (METRECC) instrument captures 
the enacted curriculum. The survey measures 
what teachers are doing in the classroom, taking 
account of their context. A set of key categories 
of interest internationally in terms of the enacted 
CS education curriculum were curated and, 
where possible, refined from existing surveys 
with evidence of reliability and validity. The 
developed survey includes 11 sections and a 
total of 53 questions, including: 
 
1. Introduction
2. Demographics
3. Current work (position)
4. Qualifications
5. Student composition
6. Support and resourcing
7. Assessment of student learning
8. Classroom practice and motivation
9. Self-efficacy/self-esteem 
10. Professional development
11. Consent for publishing data
 
The intention was that each section can be 
administered independent of each other, with 
survey administrators being able to piece 
together a survey to suit their needs.

Findings

The final dataset includes 244 responses across 
7 countries: USA (n=115), England (n=52), Italy 

(n=20), Ireland (n=19), Scotland (n=18), and 
Malta (n=6). The highlights of the demographic 
data showed that the respondents had these 
characteristics:

• 61% female; 37% male
• 87% ages 30 to 59
• 49.6% teaching for 12 or more years
• 89% from government/public schools
• 36% from disadvantaged schools
• 29% rural/remote areas; majority urban/

metro
• All were teaching computing in school in 

some capacity across age 3 to 19
• The majority of respondents are teaching 

across middle school and secondary (age 13 
to 17) 

The pilot study sample below investigates 
the questions relating to curriculum topics 
and programming languages enacted in the 
classroom for comparison against intended 
curriculum requirements.

Country reports (intended) curriculum broad 
topics covered

Firstly, we examined topics that featured in the 
intended curriculum across the several countries 
as a comparison point for what teachers were 
working with when it comes to their enacted 
curriculum. Table 1 presents the results for 
the intended curriculum — broad topics that 
are explicitly or implicitly defined in country or 
state curriculum documents as identified in the 
country report snapshot. This information was 
used to not only compare countries or states 
but to also map similarities and gaps in enacted 
curriculum.
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In the example above we can easily see 
differences, such as where formal curricula are 
not available for CS topics and that in a number 
of countries topics taught are implicitly defined 
in the curriculum rather than explicitly.

Survey responses (enacted) curriculum broad 
topics covered

In Table 2 data from the country reports is 
mapped against the percentage (%) of teachers 
who indicated “yes, I teach this [topic]” in the 
survey. An asterisk indicates that the topic is 

part of the intended curriculum, providing a 
comparison point in terms of what topics are 
expected to be covered and what teachers are 
explicitly teaching.

Topics mostly being taught across countries 
are algorithms, programming, computational 
thinking, and data representation. Topics taught 
less frequently are machine learning and artificial 
intelligence. We can also see gaps, particularly in 
Malta and some topics within countries.

Table 1. Country report information of topics featured explicitly (✓), implicitly (✥), or not at all (X) in intended 
curriculum across countries

Table 2. Percentage of teachers teaching CS topics across countries (asterisk denotes the topic is part of the 
country’s intended curriculum)
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Programming paradigms

Exploring programming paradigms as 
implemented by classroom teachers provides 
interesting insight as differences might be 
attributed to a range of reasons such as intended 
curriculum, but also the resources they have 
available and student needs. We present results 
from what programming environments teachers 
reported implementing in their classrooms 
according to age groups (see Figure 2). In our 
analysis we see that programming environments 
reflected what would be expected across age 
groups, for example a shift from symbolic 
programming tools (e.g. Scratch JR) toward 
block-based environments (e.g. Scratch) and 

text-based programming environments (e.g. 
Python). We also noted a strong presence of 
‘unplugged’ programming experiences across 
age groups

We were then able to take this information about 
what teachers reported and compare country 
data we acquired in the country reports that 
identified any curriculum requirements around 
programming environments according to age 
groups.
 
An example of country-level programming 
paradigm analysis used England as a test case 
with the greatest representation of teachers 
across grade levels. We present teachers’ 

Figure 2. Percentage of teachers using programming environments according to year level bands
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reported use in Table 3 with what is identified in 
the intended curriculum as yellow highlighted 
cells. Lower percentages of teachers reported 
using symbolic programming (no text — such 
as flowcharting, describing sequences as steps, 
etc.) and visual programming in elementary 
grades. The lack of teaching with symbolic 
and visual coding illustrates a mismatch in 
the intended and enacted curriculum. Higher 
percentages of teachers reported using text-
based programming environments matching 
more closely the intended curriculum.

Self-esteem of CS teachers

The foundational research conducted by 
the working group in 2019 captured a wide 
range of data, thus allowing international 
comparisons on a multitude of factors, such 
as the aforementioned enacted curriculum. In 
2020, the working group further examined one of 
the constructs in detail, the teachers’ computer 
science self-esteem (Vivian et al. 2020). 

Study background

The Bergin programming self-esteem (Bergin, 
2006; Quille & Bergin 2019) construct has shown 
strong prediction capability in previous studies 
using CS1 students at third-level, and reported 
insights when CS1 subcohorts were compared 
such as by gender, performance, or age (Quille, 
Culligan, and Bergin, 2017; Quille & Bergin, 2020). 
The construct was adapted for K-12 teachers 
and included in the MEasuring TeacheR Enacted 
Curriculum (METRECC) pilot study. The study 
consisted of 219 teachers across the seven 
countries who completed this construct in the 
METRECC survey. This scale was designed 
to determine if there were any differences in 
teachers’ computer science self-esteem by 
country, teacher age, teacher computer science 
experience, the age groups that are being taught 
by the teacher, teaching location (rural, metro, 
etc.), and by gender. The goal of this work was 
to identify insights that might inform future 
curriculum developments and teacher PD design 
and implementation.

Table 3. Percentage of teachers in England using programming environments according to age group 
(highlighted cells indicates where the environment is advised in intended curriculum)

https://csedresearch.org/tool/?id=185
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Results

The participants were primarily from the US 
and England and were predominantly 40 to 59 
years old (see Table 4). Though the majority of 
teachers were from the US and the UK (n=67%), 
if student population were considered, the 
US would be significantly underrepresented. 
However, as a pilot study, we were evaluating the 
scale for evidence of reliability and validity.

A comparison was conducted across each of 
the seven countries. No statistically significant 
differences between the teachers’ computer 

science self-esteem were found.

Since previous studies identified programming 
self-esteem differences by student age, this 
led the working group to investigate across 
teachers’ age groups as used in the METRECC 
survey. Figure 3 presents the teachers’ computer 
science self-esteem per age group. There was 
no statistically significant difference between 
the age groups (using a one-way ANOVA test 
where F (4, 214) = 1.5485, p = 0.1893. A Tukey 
HSD post-hoc test was also administered which 
confirmed the findings of the one-way ANOVA 
test) while acknowledging that visually there are 

Figure 3. Teachers’ computer science self-esteem by age group. (The y-axis scale is inverted, as a negative 
value represents a positive computer science self-esteem, and a positive value represents a negative 
computer science self-esteem. This is due to the data reduction algorithm applied, Principal Component 
Analysis -PCA.)

Table 4. Participants per country and age demographics
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differences in Figure 3. An interesting finding is 
that teachers between the age of 30 and 49 have 
the lowest CS self-esteem. Though the sample 
size of teachers in the 18 to 29 age group is 
relatively small, they have the most positive CS 
self-esteem. Teachers 50 years or older also 
present a higher positive CS self-esteem to that 
of the 30 to 49 group. This could suggest a 
need to focus PD towards specific age groups, 
however, further work is required to investigate 
reasons for these age-related variations.

The working group further investigated if the CS 
teaching experience in years reported differences 
as reported in the METRECC study. We found 
a statistically significant difference between 
groups where a deeper analysis reported that 
the difference was between the “no experience 
group” and all other groups. This was expected 
as K-12 teachers who have not taught a formal 
CS class would not be expected to have a high 
CS self-esteem. The results of this comparison 
are presented in Figure 4. In addition, another 
insight from Figure 4, illustrates that teachers 
with four to five years of CS experience or more 
report a positive computer science self-esteem 
(where teachers with less than this experience 
report a negative computer science self-esteem), 

where perhaps this is the minimum time required 
to be confident to teach the subject.

Next the working group examined teachers’ 
computer science self-esteem by the age groups 
being taught (this was binomial with this analysis 
categorising teachers by primary- or second-
level education) and by teaching location (as 
categorised by metro, urban, rural, or remote).
The difference is statistically significant with 
primary teachers reporting lower self-esteem 
than secondary teachers. Future studies could 
compare the level of CS required for primary- 
and second-level teachers (where secondary 
content and depth would be significantly 
more advanced), to unpack this finding. On a 
positive note, teaching location did not report 
significant teachers’ computer science self-
esteem differences, where PD availability was 
hypothesised to be a factor for more remote 
teachers.

Finally, the working group investigated teachers’ 
computer science self-esteem differences based 
on gender. Previous work has reported for CS1 
students significant differences in programming 
self-esteem (Quille & Bergin, 2017), thus this 
work was to identify if the same findings were 

Figure 4. Teachers’ computer science self-esteem by CS teaching experience
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present for K-12 teachers’ computer science self-
esteem. The difference in teachers’ computer 
science self-esteem reported is statistically 
significant. These findings align with the 
aforementioned research (although this study 
had no metric to examine teacher performance) 
and prompts questions for future research, such 
as: “Are male teachers overrating their CS self-
esteem, while female teachers underrate theirs?” 
and “If males and females correctly rate their 
CS self-esteem, why do female teachers have 
significantly lower CS self-esteem than males?”.

Adapting METRECC for the South Asian 
classrooms

The research conducted by our working group 
and highlighted in the previous sections focused 
on high-income nations, as designated by the 
World Bank (Table 5) (World Bank, 2020). But, 
little is known about primary and secondary 
computing education efforts in both middle- 

and low-income nations. When examined in 
aggregate, K-12 computing education research 
in low and lower-middle income countries 
is underrepresented in many international 
publication venues. This can introduce a false 
understanding as well as biases and prejudice 
against these nations and paint a deceptive 
picture that we are achieving more than we 
actually are on an international scale.

To investigate this, we conducted a follow-up 
study focusing on K-12 computing education 
in South Asia, in which limited research on 
computing education exists and with low- and 
middle-income countries (Anwar, et al., 2020)
(Table 6). Rather than covering all eight countries 
in South Asia, we instead chose to focus on four: 
Bangladesh, Nepal, Pakistan, and Sri Lanka. 
These countries were chosen because they 
provide a mix of one low-income country (Nepal), 
two lower-middle income countries (Bangladesh 
and Pakistan), and one upper-middle income 

Table 5. 2018 Education index as specified by 
United Nations Development Programme
for the countries involved in the original METRECC 
study

Table 6. 2018 Education index as specified by 
United Nations
Development Programme for South Asian 
countries
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country (Sri Lanka). Further, it gave us a mix 
of three countries with lower ranked education 
indices (Bangladesh, Nepal, and Pakistan) and 
one from a higher ranked index (Sri Lanka). We 
also note that two authors of this study were 
from Pakistan, one was from Nepal, and three 
had connections with Sri Lanka and Bangladesh.

To gauge what types of enacted curriculum 
are taught in the classrooms, we carefully 
modified METRECC to meet the cultural and 
current educational climate of these countries. 
Before trialing the new METRECC South Asia 
instrument, we modified it based on our cultural 
knowledge of the countries, then acquired 
feedback from professionals in South Asia and 
modified the instrument again based on their 
input. We then tested this instrument across 
Nepal and Pakistan. Based on the results and 
the face validity performed on the instrument, 
we consider METRECC South Asia to be ready 
for larger scale usage with recommendations 
for a broader study. In addition, we consider the 
role and importance of computing education 
research in low-income countries in order to 
support the beliefs and values of the CS for All 
movement.
 
In light of the social justice and economic 
prospects promoted through the CS for All 
initiative across high-income countries, our 
literature fails to step back and understand 
the tens of millions of students in low and 
lower-middle income countries who deserve 
the opportunity to lift their families and their 
countries from their low-income status. 
Exploration of other ways to improve and to 
enable low-income countries to achieve their 
technological aspirations as noted in several 
plans (Ministry of Education Sri Lanka, 2015; 
Government of Pakistan, 2018) could prove 
to be invaluable in enabling these countries 
to address gaps in their education (Coloma 
and Harris, 2009; Wikramanyake, 2014). These 
nations’ leaders understand that CS for All is vital 

to their nation's growth. Therefore, though our 
research into this area is just starting, we hope 
that this study gives readers a chance to reflect 
and consider how we can be more aware of the 
CS for All movement across the full international 
landscape.

Conclusion and future work 

This chapter brings together the original enacted 
curriculum investigation work (the pilot study 
administered during the development of the 
METRECC instrument) with two follow-up bodies 
of work, including expanding to efforts in both 
middle- and low-income nations. This work 
seeks to understand the intended curriculum 
and enacted curriculum to determine if what is 
intended to be taught through policy, curriculum 
documents, or other required mandates are 
being implemented by classroom teachers. We 
identified in our country analysis differences 
between what is expected to be taught across 
countries in terms of CS topics and programming 
environments, as well as differences between 
what is expected to be taught and what teachers 
reported implementing in classroom learning. 

This work provided some early insights on 
teachers’ computer science self-esteem, but 
it was a pilot in its nature based on teacher 
sample size and jurisdiction representation. 
More work is required to conduct a broader 
study and re-validate the findings. In addition, a 
deeper analysis is required (such as qualitative 
data collection, interviews, etc.) to unpack 
the insights presented in this section of work. 
These preliminary findings, however, could be 
valuable to professional learning developers, 
for developing a more differentiated suite of 
professional learning sessions. 

This work has demonstrated the value in 
including both middle- and low-income nations 
in the design and development of instruments 
to capture and monitor intended and enacted 

https://csedresearch.org/tool/?id=209
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Section 1: Computing in context

Abstract

The use of digital technology is pervasive in 
almost every part of our lives, and careers which 
require advanced computing skills are amongst 
the fastest-growing sectors globally. Learning 
computer science and digital skills offers young 
people the opportunity of a career in a flourishing 
sector, yet a lack of gender equity has been 
identified as a consistent and enduring issue 
which prevents girls from fully participating in 
these opportunities. In this short paper, I briefly 
review what we have learned to date from the 
literature on gender balance in computing 
education and outline some of the key barriers 
to full participation across genders: sense of 
belonging, relevance to self, and attitudes to 
technology. The use of collaborative teaching 
approaches to facilitate engagement and 
increase gender balance is also highlighted.

Introduction

A lack of gender equity in the uptake of both 
computing and wider STEM subjects has 
been identified as a consistent and enduring 
issue (Royal Society, 2017). There has been a 
considerable amount of literature published in 
the last twenty years that aims to explain why 
so few girls choose computing and then outline 
theories or interventions that could make a 
change to the current educational landscape. In 
this paper I reviewed the literature in this area to 
identify key factors that influence gender balance 
in computing.

The literature review was conducted with a 
search for terms relating to gender balance in 
computing to inform the implementation of the 
interventions with the most up-to-date evidence. 
In order to use robust and rigorous findings, 
only peer-reviewed journal papers or published 
conference proceedings were included. The 
ACM digital library (dl.acm.org) was selected as 
the primary database for the search. The scope 
of the literature survey was research published 
from January 1995 to June 2020, and included 
studies which showed the potential to transfer 
from STEM subjects to computing. Research 
conducted with university undergraduates as 
well as primary and secondary (K-12) pupils were 
included to identify any emerging findings in 
higher education which had the potential to be 
explored with younger cohorts. 

Throughout this report, the term 'gender' is 
used as in the following definition: “either of the 
two sexes (male and female), especially when 
considered with reference to social and cultural 
differences rather than biological ones. The term 
is also used more broadly to denote a range of 
identities that do not correspond to established 
ideas of male and female” (Lexico, 2021, para 1).

Attitudes

Many studies have identified gender differences 
between learners in their attitudes towards 
computing. These attitudes include beliefs 
about the type of person who achieves well in 
computing, perceptions about the specialist 
nature of the subject content, and opinions about 

Factors that impact gender balance 
in computing 
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the potential for using computing skills in future 
careers. In this review, the connections between 
attitudes and subject choice will be explored 
first, followed by a more detailed consideration 
of the causes and impact of gender differences 
in attitudes towards computing. 

Learners’ attitudes are defined as the evaluative 
judgements which they hold about a curriculum 
subject, whether these be positive or negative, 
strong or weak, and formed from thoughts, 
feelings, or prior experiences (Maio & Haddock, 
2009). There are a number of theoretical 
frameworks that can be used to understand 
students’ attitudes towards computing and how 
likely they are to persist in the discipline (Denner 
& Campe, 2018). For example, expectancy-value 
theory (Eccles et al., 1998) suggests that subject 
choice and career goals are affected by the 
perceptions that an individual has of parents’ 
and society’s attitudes towards the subject. If 
a female student does not perceive the subject 
or career to be valued by others, she is less 
likely to value it herself and may focus time and 
energy on other subjects which are more highly 
valued. Both expectancy-value theory and social 
cognitive career theory (Lent et al., 2008) also 
highlight the role of a student’s expectations 
of success or ‘self-efficacy’ (Bandura, 1999) on 
their persistence in computing: students are 
more likely to choose computing if they believe 
they will succeed and if they have a sense of 
support from those around them (Lent et al., 
2008). The theories highlight the importance of 
interventions focusing on a range of individual, 
environmental, and societal factors to improve 
the gender balance in computing. 

Attitudes towards a subject can be seen as a 
precursor to learners’ motivation to succeed 
in them, and this has been notable in the work 
of Cheryan et al. (2009) who showed that 
when students held a positive attitude towards 
computing, they were more likely to be motivated 
to participate in further computing study. Wider 

research in STEM subjects has also shown 
that pupils’ attitudes play an important part in 
shaping educational choices. Else-Quest et al. 
(2013) found significant gender differences 
in attitude towards mathematics which were 
also an accurate predictor of education-related 
choices. They suggested that the lower self-
concept reported by girls in mathematics 
would reduce the chance of them choosing it 
for further study because they did not believe 
that they would achieve well. In the context of 
computing study, Goode et al. (2018) examined 
similar connections with high school computer 
science pupils (aged 14 to 18). Through the use 
of data drawn from qualitative case studies, they 
suggested that female students experienced 
an accumulation of negative experiences in 
computing classes. They cited examples such as 
lack of contextual information to link computing 
to the real world and pedagogy without a higher-
order thinking focus which had affected girls’ 
attitudes towards computing in an unfavourable 
way. 

There is a clear need to examine more closely 
which factors influence female pupils when they 
form opinions about a subject and to identify 
possible interventions which will either augment 
existing positive connotations about computing 
or change attitudes towards the subject by 
illuminating new possibilities.

Do I belong?

Girls’ interest and motivation in STEM subjects 
can be predicted by their sense of belonging in 
the subject. When students attend classes in 
subjects they have chosen to study, they create 
a group, or community, who are working towards 
a common goal to achieve a formal qualification 
in that subject. Evidence suggests that a sense 
of belonging develops from both the extent to 
which girls feel that they fit into the community 
and also how they perceive that they are 
valued and accepted by other members of the 
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community (Good et al., 2012). In the workplace, 
women’s sense of belonging to computing as 
a career is affected by the effort they perceive 
they need to exert in order to succeed. Smith 
et al. (2013) found that women who worked in 
STEM subjects thought that they would have to 
expend more effort than others to do well and 
suggested that this may affect the extent to 
which women feel that they belong in the STEM 
field of careers. Some girls face barriers to taking 
part in computing because they feel that they do 
not belong there and this can be improved. 

Research into increasing girls’ sense of 
belonging often draws on theories from the 
field of psychology. An example of this is self-
determination theory (SDT), which suggests 
that students have three basic needs in order 
to sustain motivation and persistence in any 
given subject: competency, autonomy, and 
relatedness. Mishkin (2019) applied SDT to 
female high school computing students (aged 
14 to 18) and found that of the three needs, the 
feeling of being related to others was the most 
important condition for girls’ motivation to study 
computing, and that a sense of belonging was 
a significant predictor of their motivation. This 
reinforces the idea that although girls typically 
achieve well in computing, they do not choose to 
study it because they see themselves as isolated 
or unwelcome amongst other computing 
students. 

This need for a sense of belonging can be 
problematic for gender balance in computing 
because it creates a repetitive cycle of female 
inequity. Girls and women do not see themselves 
represented in the field and are therefore not 
motivated to pursue it, which then perpetuates 
the lack of representation and means that future 
generations do not feel that they fit into the 
community either. One way of breaking this cycle 
is to explicitly call out existing representations 
of female computing students or women in 
computing careers as role models for the next 

generation. The term ‘role model’ is generally 
used to describe an individual who displays 
behaviour, attitudes, or achievements that can be 
emulated by others. 

The literature survey revealed considerable 
variation amongst studies about the use of 
computing role models. Black et al. (2011) 
distributed a booklet containing the stories of 
successful women in computing to secondary 
school pupils in order to inspire and encourage 
female students to consider computing as a 
career. Role models in this study were presented 
as people with achievements that could be 
admired and followed. This approach contrasts 
markedly with research conducted by Townsend 
(1996), who created videos describing the 
journey of female undergraduates including how 
they had juggled childcare responsibilities and 
overcome fears or adversity to achieve success. 
In this way, the attitudes, behaviours, and 
achievements of the role models were presented 
together as a coherent whole. It is difficult to 
draw any conclusions on whether one approach 
was more effective than the other, as the studies 
lacked any commonality in measuring their 
outcomes. Black et al. (2011) used a mixed-
methods approach based on qualitative access 
figures and quantitative teacher feedback, 
whereas Townsend (1996) used quantitative 
data sampled from undergraduate students 
to compare between a control and treatment 
group. The variety of evaluation methods used 
highlights the importance of careful trial design 
in order to effectively and confidently measure 
the impact of an intervention. 

A variety of places to find role models was 
also highlighted in the literature. A common 
theme was to introduce a gender-balanced 
group of undergraduate students to primary and 
secondary pupils, either to teach computing 
lessons or to speak about their experiences. 
Such an approach was found to help pupils 
perceive computing as a subject that was 
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equally difficult for girls as well as boys (Zaidi 
et al., 2017) and to increase girls’ self-efficacy 
in computing (Lang, et al., 2010). This approach 
was tested on a small scale due to the logistical 
practicalities of matching students with 
classrooms in both studies. It contrasts with the 
larger-scale research conducted by Black et al. 
(2011) which drew on role models from history, 
workplaces, and classrooms, as well as first-
person accounts to create a booklet for mass 
distribution. As mentioned previously, the variety 
of research design, tools, and instruments in 
these studies means it is difficult to draw any 
conclusions about whether any approach was 
more effective than another. Further research 
could provide insight into this through the use of 
a scalable trial design and a reliable, validated 
evaluation instrument. 

Young people choose their own role models; 
teachers cannot choose role models for them. 
There is also a gender difference to take into 
account, wherein female students choose role 
models with a higher number of self-perceived 
likenesses to themselves than male students do 
(Wohlford et al., 2004). It was notable that self-
esteem was also a predictor of female students’ 
chosen role models. This suggests that some 
high-achieving role models may provide the 
opposite effect from that which was intended, 
and deter girls from emulating the individual 
because they feel that the achievements are too 
far out of reach. At the other extreme, if girls 
select role models based on perceived likeness, 
they may focus on the people around them, such 
as friends and family, and this may not provide 
them with any examples of women in computing 
at all. 

There have been investigations in other STEM 
subjects relating to the influence of role models 
on girls’ attitudes towards the subject. One very 
recent study looks at the effects of a role-model 
intervention in maths with girls aged 12 to 16 
years old. It links to Eccles’ (1998) expectancy-

value theory to measure the effect that the 
intervention had on girls’ personal enjoyment 
of maths and the importance they attached to 
maths. The intervention provided a significant 
increase in both enjoyment and importance, and 
the authors concluded that it was important 
to introduce such interventions at a relatively 
young age before pupils begin to make specialist 
academic choices (Gonzalez et al., 2020). 

Children and young people are also influenced 
by parents and other family members when 
they make choices. Eccles’ (1998) expectancy-
value theory also states that young people’s 
attitudes towards a subject are influenced by 
their perceptions of the values their parents have 
about that subject. Where parents are seen to 
support their children’s choices in computing, 
girls are more likely to express interest in 
computing as a career (Creamer et al., 2004; 
Denner, 2011). Some parents may hold less 
traditional attitudes about gender roles and 
have daughters who are more likely to pursue 
nontraditional careers such as computing (Chhin 
et al., 2008). There is room to further explore the 
role that parental encouragement plays based 
on evidence which suggests that interventions 
based on positive messaging from parents show 
a positive influence on their children’s attitudes 
(Kraft & Rogers, 2014). 

There is still some ambiguity in the literature 
around the effects that role-model interventions 
and parental encouragement have on girls’ 
attitudes towards computing. Although studies 
have provided evidence of their effectiveness on 
a small scale with innovative approaches, there 
are still questions to be addressed around both 
intervention design and trial methodology. Future 
research could explore the impact of parental 
encouragement and the impact of introducing 
role models on girls’ sense of belonging in 
computing.
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Relevance to me

The use of technology is pervasive in almost 
every aspect of our daily lives. This provides 
opportunities for educators to show how 
studying computing can be relevant for many 
jobs and careers and, specifically, how learning 
computer science skills can be applied to 
everyday situations. Learning to program then 
moves away from acquiring the skills to write 
code towards the ability to be able to create 
authentic applications such as games, stories, 
and mobile phone apps that can be used outside 
of the classroom in the real world (Kafai & Burke, 
2013).

Computer science can be perceived as a very 
abstract subject, in which there is a great deal 
to learn about programming concepts in order 
to use them to efficiently write code. However, 
Fisher and Margolis (2003) identified that the 
contexts in which computer science skills can be 
used are important for female students. Through 
a series of longitudinal surveys, they observed 
gender differences in students’ motivations for 
studying computer science at university. Female 
undergraduates were much more likely to identify 
links between their learning and other disciplines, 
whereas male students were more invested in 
the value of computer science as a subject in 
itself. Subsequent studies have drawn on this 
finding to explore a variety of different ways to 
introduce real-world contexts into computing 
lessons. 

Four principles were proposed by Guzdial and 
Tew (2006) to contextualise computing so that 
students could connect their learning to their 
prior experiences and future expectations:
1. Learning activities were aligned with real-

world scenarios
2. Topics were aligned with students’ own 

interests
3. Assessments were aligned with the material 

which had been taught

4. The methods of inquiry used in the 
classroom were aligned with professional 
standards in the workplace

The first and second of these principles were 
applied to two introductory programming 
modules for undergraduates which situated 
learning to program in the contexts of media 
manipulation and computer-generated 
animation sequences. Guzdial and Tew (2006) 
hypothesised that students would perceive the 
course to be of value because of the explicit 
links to real-world scenarios. Although they 
did not specifically set out to create a learning 
experience which would appeal to female 
students, it is notable that when averaged out 
over several presentations of the modules, 51% 
of students were female, which reinforces the 
findings from Fisher and Margolis (2003). 

Subsequent studies have explored further 
ways that computing can be made relevant by 
introducing the idea that computing is a tool for 
bringing societal benefits to others. Dewitt et al. 
(2017) built upon the links between programming 
and media generation in a project for boys and 
girls at a summer camp, where they were tasked 
with creating a piece of artwork to address a 
social issue. This led to a positive increase in 
attitudes towards computing amongst both boys 
and girls. This finding seems to contrast with a 
study that compared university student opinions 
about humanitarian contexts, practical contexts, 
and games-based contexts in computer science 
courses (Rader et al., 2011). When asked to rank 
assignments in order of preference, students 
preferred assignments using games-based 
contexts. However, the authors do acknowledge 
the very low number of female students amongst 
the respondents and so greater value may be 
found in Rader et al.’s (2011) finding that 79% 
of students expressed a positive opinion about 
programming assignments which showed how 
computer science could benefit society. 
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Finally, computing is not just relevant in social 
contexts. Franklin et al. (2011) explored how 
learning to program could be made culturally-
relevant for middle school students in the 
US. Using the theme of Animal Tlatoque, they 
successfully recruited a group of students who 
were previously unengaged in computer science, 
and subsequently found that this small group 
(n=34) became more interested in computing as 
a career and were more likely to view computing 
as a subject for girls.  

The variety of approaches taken within the 
literature towards defining relevant computing 
contexts is perhaps indicative of the lack of 
depth in computer science education research to 
date. It is entirely plausible that in order to situate 
learning about computing in a relevant way to 
interest girls, an approach which draws upon the 
deeper insights from research into other STEM 
subjects is needed. Lyons (2006) recommended 
that science curricula were more likely to interest 
girls if they provided opportunities for genuine 
inquiry, involved real-world experience and 
integrated social and scientific issues, as well 
as opportunities for experimentation, practice, 
reflection, and conceptualisation. Thinking 
about computing, the relevance of the subject in 
society and the opportunity to apply computing 
skills to solve real-world problems need to be 
carefully embedded within a curriculum so 
that girls can see that computer science has 
many potential applications in future study and 
careers. 

Learning together

An emerging body of evidence suggests that 
collaborative teaching approaches can engage 
more girls with computing. This is of particular 
interest when learning to write computer 
programs, which can be seen as the most 
difficult section of the computing curriculum for 
learners (Kallia & Sentance, 2018). Introducing 
a shared, group approach requires a shift from 

traditional computing pedagogy. Learning to 
code changes from a series of tasks undertaken 
by individuals, to a sociocultural experience in 
which students work together to create and 
share digital content (Kafai & Burke, 2013). The 
initial inspection of the research and subsequent 
literature survey found evidence to support two 
collaborative teaching approaches in learning to 
program which merited further investigation: pair 
programming and peer instruction. 

Pair programming

The idea of writing computer programs in pairs 
has been directly drawn from industry, where 
colleagues often work in partnership to write 
and review code in order to maximise the quality 
and design of a program (McDowell et al., 
2006). Transferring a workplace practice into a 
classroom teaching approach offers pupils an 
authentic experience of real-world programming. 
The idea of paired work is commonly used in 
many other subjects, where pupils discuss 
ideas or contribute towards a shared piece 
of work. Pair programming differs from other 
paired work as it has a defined structure. In 
pair programming, one student takes the role 
of ‘driver’ and has control of the keyboard and 
mouse to write the code. The other student is 
the ‘navigator’ who reads out the instructions 
and monitors the code for errors (McDowell et 
al., 2006). The teacher’s role includes training 
the students in successful pair interactions and 
ensuring the pairs rotate after a given time so 
that each student experiences both roles. The 
success of pair interactions is actively managed 
by the teacher as well as being evaluated by the 
pairs themselves (Williams et al., 2008). 

Werner et al. (2004) advocated for the use of 
pair programming in introductory university 
programming courses based on their findings 
that collaborative work had a positive impact on 
female students’ perceptions of computing as 
a subject for further study. Pair programming 
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has been shown to improve student confidence 
and have a positive impact on student retention 
in computing and has also demonstrated 
that the quality of programs written in pairs 
is significantly higher than those written 
individually in an introductory undergraduate 
course (McDowell et al., 2006). Similar findings 
in K-12 (primary and secondary) environments 
demonstrated that pair programming generally 
increased pupil attitudes and confidence towards 
computing (Denner et al., 2014). This suggests 
that using pair programming has potential to be 
used as an inclusive pedagogy to benefit girls’ 
perceptions of computing, whilst also supporting 
all learners to develop skills and knowledge of 
programming concepts.  

Further research has explored different 
approaches to pairing pupils along with how 
those pairs might affect the interactions which 
take place between partners. A small-scale study 
from Tsan et al. (2016) suggested that by the 
age of 11, all-female pairings were producing 
significantly lower program quality than mixed 
or all-boy pairs. However, this study was limited 
in focus and only assessed the quality of the 
completed artefact rather than pedagogy 
required to promote high-quality outcomes. 
Ruvalcaba et al. (2016) noted that ethnicity 
of pairs may affect the types of interaction 
between pairs, with Latina/o students more 
likely to use non-verbal communication signals 
to interact with their partner whereas white 
and mixed student pairs relied more on verbal 
communication to check understanding. Both 
studies indicate that pair programming requires 
careful training of teachers to ensure that the 
whole pedagogy is understood and applied, 
without bias. 

The use of pair programming as a teaching 
approach in schools is likely to appeal to girls, 
and make them more likely to both choose a 
subject and achieve well in it. Further research 
can help strengthen the evidence of how to 

effectively pair pupils, provide guidance to 
teachers on the characteristics of successful 
pairings, and demonstrate the value of this 
pedagogy within the specific context of the 
English school system. 

Peer instruction

The idea of working together with peers to build 
knowledge has been explored in the literature 
relating to both computing and wider STEM 
subjects. 

Peer instruction is an approach which was 
developed by Mazur (1997) through a series of 
studies conducted with physics undergraduates. 
In these studies, peer instruction was positioned 
as a pedagogy to help students understand 
difficult concepts through classroom interaction. 
Lessons were structured around a series of 
multiple choice questions (MCQs) which the 
teacher could devise to stimulate discussion 
around physics concepts. These concepts would 
be first of all introduced using an instructor-led 
presentation, followed by a series of MCQs which 
students could answer with electronic clickers or 
flashcards (Vickrey et al., 2015). The instructor 
assessed the understanding of the class through 
the MCQ scores and chose to briefly recap the 
answer if a large proportion of class understood, 
or else to initiate paired or group discussion of 
the question so that students could evaluate the 
options presented and work out which one was 
correct together (Watkins & Mazur, 2013). 

Watkins and Mazur (2013) highlighted that 
the use of peer instruction in introductory 
STEM courses led to increased retention of 
students in STEM disciplines during subsequent 
intermediate and advanced courses. The authors 
proposed several reasons for this improvement. 
First, the pedagogy included inherent formative 
assessment and so instructors were better 
able to adapt their teaching to meet student 
needs. Secondly, students responded well to the 
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opportunity to interact and discuss with their 
peers, and developed their fluency in explaining 
scientific concepts. Finally, an additional 
outcome was to increase student self-efficacy, 
which promoted a positive attitude towards 
further study of STEM courses. A separate study 
conducted in an introductory physics course at 
Harvard University investigated the effect of peer 
instruction on student achievement (Lorenzo 
et al., 2006). An intervention which used peer 
instruction was delivered to 1,048 physics 
students and was evaluated qualitatively using 
pre- and post-tests. A statistically significant 
gender gap in the pre-instruction test scores was 
reported following the intervention, and Lorenzo 
et al. (2006) attributed this to the interactive and 
collaborative nature of the teaching approach 
which helped to create a classroom environment 
that supported both genders. 

Although research on collaborative teaching 
approaches and gender balance is as yet limited, 
the research to date signals this as a worthwhile 
area to explore further.

Discussion

The literature discussed here describes an 
accumulation of historical, social, and cultural 
barriers faced by girls in the computing 
classroom which have developed alongside the 
growth of computing as a subject in schools.
 
The concept of an incredible shrinking pipeline 
(Camp, 2002) has been used to describe the 
decreasing number of girls involved in each 
stage of computing education. However, it has 
been noted that there are too few girls entering 
the pipeline of computing qualifications initially, 
and so it would seem insufficient to direct efforts 
into research that aims to retain female students 
from GCSE through to A level and beyond. This 
report recommends building on research which 
presents computing as an equitable subject 
that is relevant, applicable, and achievable to 

all pupils, regardless of gender. Because pupils 
make subject choices in England at the relatively 
young age of 14, a range of interventions in both 
primary and secondary phases are suggested in 
order to present computing as a subject where 
girls can succeed. 

This review has underlined the importance of 
girls’ attitudes towards computing and their 
motivations for studying the subject. As with 
other STEM subjects, computing has acquired 
an image of being a subject which is taken by 
‘geeky’ students to be used in a very specialist 
way in jobs and careers (Creamer et al., 2004). 
Whereas other sciences have had to unpick 
layers of inequity which have built up over 
decades, computing is a relatively young subject 
and this offers the opportunity to identify robust 
changes which can be made rapidly to alter the 
gender imbalance currently seen in the subject. 

It has been highlighted that the sociocultural 
context of learning computing appears to play an 
important role in shaping girls’ attitudes (Denner, 
2011; Kafai & Burke, 2013). Underpinning 
research with learning science theories relating 
to attitudes, beliefs, and motivation can provide 
a rigorous approach to measuring changes in 
attitude. Much of the initial work to explore girls’ 
attitudes towards computing and identify the 
obstacles which prevent them from participating 
in the field has been conducted in the US (e.g. 
Fisher & Margolis, 2003) where girls are similarly 
underrepresented in computing study and 
careers.

What next?

The Gender Balance in Computing project has 
been funded by the Department for Education 
in England from 2019 to 2022 to examine the 
key factors affecting pupil attitudes towards 
computing early in their education, and to 
identify promising approaches which have the 
potential to be delivered at scale in a wide variety 
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Section 2: Teaching and assessing computing 
in the curriculum

Abstract

Irrespective of the subject being taught and 
the pupils who are learning, contexts and 
vocabulary matter. In this article, I will describe a 
knowledge-building framework, which reveals the 
changes, over time, of contexts and vocabulary 
in learning experiences. I report on recent 
research conducted with Paul Curzon and Karl 
Maton, where we used this framework to review 
and improve computing lessons and illustrate 
where teachers and resource creators can use 
semantic wave profiling to do the same.

Introduction

Karl Maton has created a framework which helps 
educators review how knowledge is built during 
learning experiences (Maton, 2014; Maton et 
al., 2016). The framework is called Legitimation 
Code Theory (LCT) and introduces dimensions 
which reveal specific aspects of knowledge 
building. LCT is a sociological framework that 
primarily builds on the work of Basil Bernstein 
and specifically his code theory (Bernstein, 
1971). Within LCT, several dimensions have been 
suggested and one of them is semantics. We can 
use semantics as a basis to review explanations 
as well as general learning activities. Lessons 
are reviewed by profiling them as a drawn 
diagram. Semantic profiling enables us to 
abstract the process of learning and gain a better 
understanding of how knowledge is developed 
over time. This process enables educators to 

reflect on, and improve, learning experiences 
for their students. A vibrant community of 
researchers and practitioners from across the 
world have started to use the framework to 
evaluate and improve teaching and learning in 
subjects as diverse as ballet and law.

Semantic profiling

The semantics dimension of LCT looks at the 
changes in two aspects of knowledge over 
time, the change in context and the change in 
the complexity of the knowledge. Simply put, 
for context, we look at whether learning is more 
abstract and context independent compared to 
learning set in a specific everyday context. For 
complexity, we look at whether the vocabulary 
used is highly abstract, technical, and complex or 
is familiar language. For example, a lesson might 
start by introducing the term algorithm, with no 
context given and no use of everyday language. 
Students then might take part in an activity where 
they follow everyday instructions to make a jam 
sandwich, they then review how precise these 
instructions are and a link is made back to the 
concept of an algorithm.

An example of a semantic profile

To evaluate a lesson using semantics, we draw a 
semantic profile. The profile shows the changes 
in context and vocabulary on a simple graph, 
with the time passing along the x-axis. Different 
shapes of profiles suggest different learning 

Is it a wave? Linking the abstract to 
the everyday and back again 
Jane Waite (Queen Mary University of London, UK)
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experiences, and we can then compare these 
shapes when planning or reviewing learning. 

An example semantic profile is shown in 
Figure 1. This is the profile of the introduction 
of a popular key stage 1 (pupils aged from 
5 to 11 years old) lesson plan. The lesson, 
Crazy Characters, is one of the early Barefoot 
computing activities, written in 2017 to help 
demystify the term algorithm. 

In the profile, we can see how knowledge is 
framed in an abstract context, using more 
technical language at the start of the teaching 
segment. During the practical part of the lesson, 
the knowledge is situated in a specific context: 
drawing a character using everyday familiar 
vocabulary. 

After the practical activity, learners are required 
to repack their experience to a context-
independent view of their newly developed 
knowledge using more technical vocabulary. This 
profile is a wave shape, similar to Figure 2, and is 

called a semantic wave.

Not all teaching experiences follow the same 
pattern, some can be a flat line, such as an 
activity which is only situated in a specific 
practical context, with no technical language, 
called a low flat line, see Figure 3. In creating 
the Crazy Character activity, the activity could 
have been designed where pupils followed 
instructions to draw a made-up persona with 
no reference to algorithms, no building of 
knowledge related to this core concept, in which 
the profile would have been a low flat line.

Another profile type is a high flat line, in which 
the learning is all theory and complex vocabulary, 
see Figure 4. In creating the Crazy Character 
activity, the activity could have been designed 
where the teacher explained what an algorithm 
is with no everyday examples nor any everyday 
words or phrases.

Figure 1. Crazy Characters semantic profile (Waite, Maton, Curzon, & Tuttiett, 2019)
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Figure 2. A semantic wave (Curzon, 2019)

Figure 3. Low flat line (Curzon, 2019)

Figure 4. High flat line (Curzon, 2019)
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How to use semantic profiling

Research on profiles indicates that experiences 
which incorporate waves help learners build 
mastery and a depth of understanding (Maton, 
2020). These moves from context independence 
to context dependence and vice versa or from 
everyday, less dense vocabulary to technical, 
complex, rich vocabulary, are essential to 
knowledge building.

As well as using semantic profiling to see the 
shape of an existing lesson, we can use profiling 
to improve a lesson. To do this, we have trialled 
the use of three key questions that help teachers 
think about the vocabulary and context used and 
change their teaching to improve the wave.

The three key questions are: 
• Is the profile a wave?
• Who unpacks and repacks?
• How high or low does the wave go? (Curzon 

et al., 2020)

The first question of “Is the profile a wave?” leads 
us to think about adding in steps that get the 
learner to use more or less technical language 
or introduce a more or less specific context. 
For example, in an activity that is a flat line, say 
because it is all theory, then add a practical 
everyday context using everyday language to 
explain it. If on the other hand, the activity has no 
theory, then add learning steps in which learners 
pay attention to the overarching concepts, before 
and after the practical work.
The second question, “Who unpacks and 
repacks?”, asks us to think whether learners 
are engaged in linking their learning from the 
abstract to the concrete and vice versa or 
whether we, the teachers, do it for them. It is 
easy to recall lessons when at the end of the 
main teaching activity, we state what the activity 
has taught the students, linking the activity to the 
concepts for our learners. Whether our students, 
at that point, made the connection themselves 

is difficult to say. But if we add a distinct task 
that gets our learners to make their links, we can 
be sure that everyone follows the wave in the 
class. For example, for unpacking, we could ask 
learners to jot down everything they know about 
a concept, such as an algorithm, and to include 
an example that a novice would understand. For 
repacking, we could ask learners to share with a 
partner, in their own words, a general definition of 
a concept. As a point to note, in making student 
knowledge visible, there are opportunities for 
formative assessment during unpacking and 
repacking.
 
The third question of “How high or low does 
the wave go?” draws our attention to the depth 
of learning. To go lower, we could introduce 
role play or tangible objects. To go higher, 
we might request that an abstract view of a 
concept is provided that is context-free, such 
as a generalised definition. For example, 
when explaining variables, we could use an 
analogy such as a variable is like a box with 
a photocopier and shredder and explain this 
verbally. We could take the wave lower, drawing 
pictures of our analogy, or we could take it lower 
still by students acting out the analogy, physically 
with boxes, copying data, ripping up paper. There 
are similarities here with the ideas in maths 
of representing concepts in abstract, iconic 
(drawings) and physical forms.

Conclusion

In our research (Curzon et al., 2020) we have 
found that asking these three questions helps us 
redesign learning activities, and we have initial 
evidence that these new lessons are improved 
for learners. However, we need more evidence 
to be sure and are planning more research on 
the impact of making changes, based on these 
questions, to the profile of lessons.
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Section 2: Teaching and assessing computing 
in the curriculum

Abstract 

Computational thinking (CT) is a cognitive ability 
that is considered one of the core skills to be 
developed in order to successfully adapt to the 
future. Therefore, it is being included in school 
curricula all over the world and, gradually, at an 
earlier age. However, as the incorporation of 
CT learning in schools is recent, there is still no 
consensus on its exact definition or on how it 
should be assessed. Recent research suggests 
that systems of assessments should be used 
for this purpose, using various instruments, 
and thus covering the different CT dimensions. 
However, there is a lack of validated instruments 
for the assessment of CT, particularly for early 
ages. Taking as a reference a three-dimensional 
CT framework, based on a validated CT test, 
and aimed at early ages (five- to ten-year-old 
students), the Beginners Computational Thinking 
Test has been developed as a tool to be used 
within a system of assessments. This instrument 
has been designed, submitted to a content 
validation process through an expert judgement 
procedure, and administered to primary school 
students, obtaining very favourable results in 
terms of its reliability.

Introduction 

In a changing society, where technology and 
programming play a crucial role, students must 
be able to think critically and solve complex 
problems to adapt to the world in which they are 
expected to live in. Therefore, computational 
thinking (CT) is a core skill, necessary to adapt 
to the future and, consequently, it is an important 
area of education in many countries, some of 
them consider CT as a national program (Hsu, 
Chang, & Hung, 2018). In the early stages,” in 
addition to reading, writing, and arithmetic, 
computational thinking should be added to every 
child’s analytical ability” (Wing, 2006, p.33). 
However, there is still not enough research on 
how to teach and assess CT when it comes to 
young children (Rich et al., 2018). 

Although CT is considered an essential skill 
and it should be learned at school, there is a 
lack of consensus in its definition and possible 
breakdown (Shute, Sun, & Asbell-Clarke, 2017). 
Abstraction, decomposition, algorithms, and 
debugging are the four CT components that arise 
most often in the literature and, furthermore, 
Shute et al. (2017) identify iteration and 
generalisation as two more components to 
add to CT skills. Brennan and Resnick (2012), 
developed the three-dimensional (3D) framework 
of CT which divides CT into three computational 
dimensions: (a) computational concepts, (b) 

BCTt: Beginners Computational 
Thinking Test 
María Zapata Cáceres and Estefanía Martín-Barroso (Universidad Rey 
Juan Carlos, Spain), and Marcos Román-González (Universidad Nacional 
de Educación a Distancia, Spain)
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computational practices, and (c) computational 
perspectives (Brennan, Resnick, & MIT Media 
Lab, 2012).

With regard to the assessment of CT, Shuchi 
Grover proposes a system of assessments 
(Grover & Pea, 2015) that combines instruments 
of different types such as portfolio, survey, 
interview, and traditional test, and are thus 
able to cover all the CT dimensions. However, 
although efforts have been made in the last two 
decades in the development of assessment 
instruments, most of them are aimed at middle/
high school students and are based on the 
analysis of programming projects carried out 
by students in specific environments such as 
Dr. Scratch that assess CT skills through the 
analysis of Scratch projects (Moreno-León & 
Robles, 2015). There are hardly any traditional 
tests that are independent of a programming 
environment and that can be used as pre-
test and post-test instruments. Among them, 
the Computational Thinking Test (Román-
González, Pérez-González, & Jiménez-Fernández, 
2017) stands out, as it is designed under a 
psychometric approach and provides evidence 
about its reliability and content validity (Román 

González, 2015), but it is aimed at students 
between 10 and 16 years old. Based on the 
CTt, the Beginners Computational Thinking 
Test (BCTt) has been developed, aimed at 
younger students and, therefore, has required 
a deep adaptation in both form and content. 
Moreover, substantial improvements were 
added. A validation process was then carried 
out, including the administration of the test to 
students from 5 to 12 years of age from three 
different schools in Spain.

Method

A first version of the test was designed, aimed 
at students from primary school stage. Based 
on the CTt, the test was adapted both in form 
and content to younger students, thus, several 
substantial changes were made. Then, the 
BCTt was pilot tested on small subsamples, 
and evaluated by experts in the field. Based on 
these preliminary results, changes were made to 
obtain a second version that was administered to 
students from 5 to 12 years old in three schools 
in Spain. The results obtained were analysed 
statistically. In Figure 1, the validation process is 
shown.

Figure 1. Design and validation steps
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BCTt first version design

The test is aimed at young children who may 
not yet have acquired reading and writing skills, 
so the test was designed to include symbols 
and drawings that were self-explanatory. Aimed 
at older students, minimal helpful texts were 
included that redound to the symbol-based 
explanations. The symbolism is clear and aims 
to connect emotionally with the children so the 
learning process is enhanced (Căprioară, 2017) 
as it is a chick that must reach its mother.

The first version of the BCTt takes approximately 
40 minutes to complete. It is divided into six 
sets of questions, and each set is related to one 
basic computational concept (Table 1). It is 25 
questions long with three alternative responses 
per question.

There are two types of questions: canvas type 
— which is a “follow the line” design — and 
maze type or square matrix — in which there is 

a starting square and the students must reach 
the goal square, avoiding and/or picking up 
objects along the way, for example, another chick 
(Figure 2). The possible answers are sequences 
of movements represented by arrows, symbols, 
and numbers. Visual transitions were added 

Figure 2. BCTt first version question example 
(question number 18)

Table 1. BCTt computational concepts considered in each question
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in the maze layout (Figure 3), as a substantial 
improvement for young students, to help the 
visualisation of the step between one square 
and another, so that the maze becomes a state 
diagram which is a main programming element 
and it is proven to improve understanding 
of problems (Chen & Herbst, 2013; Durak & 
Saritepeci, 2018; Watanabe, 2015)

Expert judgement procedure

The BCTt was submitted to an expert judgement 
procedure in which 45 experts (computer 
science professionals and schoolteachers) were 
consulted.

The experts were asked, via an online form 
consisting of 66 questions, about the adequacy 
of the questions in terms of its relevance to 
measure each of the different computational 

concepts included in the test. In addition, the 
experts were also asked several questions 
regarding length, symbolism used, and other 
issues. A special survey was also conducted 
on the transitions included in the maze-type 
questions. Finally, experts’ comments and 
suggestions were collected.

Most of the experts considered the length of the 
test to be adequate, as well as the order of the 
questions, as their difficulty was perceived to be 
incremental throughout the test. The experts also 
considered that the test questions measured 
the computational concepts addressed and 
considered the nested loops as the most relevant 
concept of all (relevance to measure CT, Likert 
scale from 1 to 5: Sequences=3,66; Simple 
loops=3,82; Nested loops=4,14; If-then=3,95; 
If-then-else=4,15; While=4,05). As to whether 
the test as a whole assesses the computational 

Figure 3. Maze A: no transitions; Maze B: transitions are added between squares turning the maze into a state 
diagram



50

Raspberry Pi Foundation Research Seminars

concepts dimension of computational thinking 
in primary school students, 75.6% of the experts 
considered that completely or almost completely. 

One of the substantial improvements of the BCTt 
was the inclusion of transitions in the maze 
questions. In this sense, the experts were very 
much in agreement with the improvement and 
considered that it would help younger students 
to better understand the answers in the test 
since, for example, the association between the 
arrows in the answers and a possible movement 
is easier, diagonal movements through the maze 
would be avoided or it is reflected more clearly 
when the chick has reached the goal square.

The comments and suggestions of the experts 
were very much considered. For example, some 
of their most frequent comments were about 
the need to first explain orally to the children 
the meaning of each set of questions, to add 
one more possible answer to each question, to 
replace the pickable elements (chicks) with other 
symbol that do not lead to confusion, to refine 
the questions concerning some computational 

concepts to get closer to their exact definition, 
etc.

Many of the experts considered the test too 
hard for such young children. This was refuted 
later when the test was administered to primary 
school students.

BCTt second version design

Taking into account this feedback, the second 
version of the BCTt was designed with several 
modifications and additions. For example, one 
more answer alternative was added to each 
question, the statements of the questions were 
refined, the collectable elements were replaced 
by others, and the questions of some of the 
sets were reformulated to come closer to the 
computational concept formal definition. 
One of the most remarkable changes was the 
reinforcement of the colours in the questions 
with a shapes symbolism, to allow students 
who are colour-blind to be able to take the test. 
This improvement makes the test suitable to be 
printed in black and white format (e.g. Figure 4).

Figure 4. BCTt question number 24



51

Raspberry Pi Foundation Research Seminars

In addition, an administration protocol was 
developed specifying that an oral explanation 
must be given to students prior to taking the 
test, with an explanatory example of each of the 
computational concepts addressed in the test. 
The protocol includes these examples and a 
guide on how to carry out the explanation (e.g. 
Figure 5).

Figure 5. BCTt action protocol, example for set 1: sequences
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BCTt administration

The second version of the BCTt was 
administered to 5- to 12-year-old primary school 
students (n=299 ), following the action protocol, 
from three schools in Spain. 
Two different variations of the second version 
of the BCTt were carried out, one including the 
transitions between the squares (variation 1), 

and the other without them (variation 2), in order 
to be able to compare the performance of the 
students with and without this aid. All tests were 
printed in black and white, so students who are 
colour-blind could take the test under the same 
conditions as the rest. 

The sample of students was divided into several 
subsamples as shown in Table 2, considering the 

Table 2. BCTt administration subsamples (n: number of students)

Table 3. Subsamples statistics and student t-test comparing BCTt variations (1: with transitions and 2: 
without transitions)
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age of the students, the variation of the test they 
would take, and the school group they belonged 
to. One of the subsamples (D1) was retested a 
second time five weeks later.

Results and discussion

The main results of the BCTt validation process 
are presented below. The complete results are 
detailed in the paper presented at the EDUCON 
congress (Zapata-Cáceres, Martín-Barroso, & 
Román-González, 2020).

Transitions between squares in maze questions
The transitions between squares in the maze-
type questions were intended to be a substantial 
improvement in the BCTt. To check this, test 
scores were compared between the BCTt 
variation 1 (with transitions) and BCTt variation 
2 (without transitions). The results indicate 
that there is no significant difference in the test 
scores obtained in the samples of students 
from the fourth grade onwards, but there is a 

very significant difference between the scores 
of children in lower grades (p=0.005<0.01), 
indicating that this help is highly noticeable for 
younger children, but not for older ones.

Descriptive statistics

A statistical analysis of the results obtained by 
all students in the BCTt, considering the total 
score of each student in the test as the sum 
of the correct answers (Table 4), shows in the 
first place that the overall average is high (19.92 
points), which contradicts the opinion of the 
experts that the difficulty of the test is very high 
and, on the contrary, indicates that the test is 
too easy for older students, a ceiling effect is 
observed, and BCTt target could be students in 
the early stages of primary education.
Analysing the scores obtained in each of the 
computational concepts sets separately, in 
the questions dealing with nested loops and 
conditionals, students obtain low scores at all 
grades, while sequences and simple loops seem 

Table 4. BCTt score statistics by grade
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too simple for high grades (Figure 6).

The difficulty index of each question confirms 
the increasing difficulty of the test anticipated 

by the experts, with the average index being very 
high (0.81) for the overall sample (Figure 7) and 
medium (0.70) for the first educational stage, in 
which also is balanced in terms of difficulty as 

Figure 6. Abscissa axis: computational concept by grade. Ordinate axes: BCTt question score, normalised 
from 0 to 5: 5 maximum score.

Figure 7. Question difficulty index (ordinate axis) for each BCTt question (abscissas axis).
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its histogram is symmetric and fits the normal 
curve.

The histogram showing the distribution of 
the BCTt score along 1st and 2nd grades 
subsamples fits the normal curve and it is 
fairly symmetric, which suggests that the BCTt 
is balanced in terms of the difficulty of its 
questions for primary school 1st educational 
stage (Mean=16,59; Std. Dev.=3,104; N=70).

Reliability

The BCTt showed a very good reliability 
considering all grades (Cronbach’s Alpha: 
α=0.824), but when considering each educational 
stage separately, Cronbach’s Alpha is lower the 
higher the grade (1st grade: α=0.833; 2nd grade: 
α=0.793; 4th grade: α=0.771; 5th grade: α=0.660; 
6th grade: α=0.657). Therefore, the BCTt is more 
reliable in the early stages of primary education.
In addition, Spearman’s non-parametric test was 
used in a task and re-task method on the D1 
sample (the BCTt test was administered twice 
under identical conditions with five weeks lapse) 
and showed a very strong positive correlation 
(rs=0.93; p<0.01). Therefore, the reliability as 
stability was very high.

Conclusions

The expert judgement procedure showed that 
the BCTt was adequate, both in design and 
content, being a balanced and incremental test 
in terms of difficulty. Furthermore, the concepts 
to be assessed seemed relevant in terms of 
the evaluation of computational thinking in its 
computational concepts dimension. The results 
of the administration of the test to primary 
education students confirm this, although it can 
be concluded that the test is aimed at students 
in the first grades (five to ten years old), as the 
first part of the test might be too easy for older 
students.

The test is balanced in difficulty, and in terms of 
reliability has proved to be very high, especially, 
again, for the early stages of primary education. 
The transitions added in the maze-type questions 
proved to be very significant as a positive aid for 
students in the first grades and had no effect 
(either positive or negative) on older students. 
Therefore, it is recommended to include 
transitions in this type of test questions in the 
future.

The BCTt has proven to be an instrument aimed 
at the early stages of primary education (five to 
ten years old), as an extension of the CTt (10 to 
16 years old), independent of any environment, 
it focuses on 3D framework computational 
concepts, partially on computational practices, 
and ignores computational perspectives. It is 
recommended as a pre-test and post-test tool 
to be used within a “system of assessments” 
together with other instruments that assess 
other dimensions of CT (Román-González, 
Moreno-León, & Robles, 2019). 

The BCTt in its second version is considered 
a good start for successive versions and 
improvements. As the first questions have 
proved to be too easy for high grades, and 
a ceiling effect has been observed, further 
adaptations of the test are currently being made 
for these groups and more difficult questions are 
being included. On the other hand, the lower age 
limit for taking the test has not been described 
and efforts are also currently being made in 
this regard. In addition, several translations and 
administrations of the BCTt are being carried out 
with other populations and countries.
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Section 2: Teaching and assessing computing 
in the curriculum

Abstract

This is a conceptual paper that makes a case 
for making formative assessment an integral 
part of computing in classrooms and formative 
assessment literacy a key part of computer 
science (CS) teacher training and preparation. 
The paper distils key ideas of formative 
assessment from education research that are 
key to understanding the what and why of this 
crucial classroom practice that can help improve 
teaching and learning in computer science 
classrooms. Drawing on prior research in CS 
education on assessment (albeit summative 
assessment, mainly) and programming 
comprehension, as well as ongoing research 
led by the author, the paper also presents 
dimensions of a preliminary framework that can 
help guide the adoption of formative assessment 
in K-12 CS and progress on three key aspects 
of formative assessment in K-12 CS: formative 
assessment design, formative assessment 
literacy in teacher professional development 
(PD), and leveraging community and community-
developed resources for formative assessment.

Introduction

Over the last half decade, teaching of computer 
science has become widespread in school 
settings with curriculum, tools, teacher 
preparation, and classroom implementation 

concurrently making steady progress. 
Programming is central to K-12 CS experiences. 
Research literature on student difficulties in 
learning programming, even in easy-to-use block-
based environments, continues to grow, as is 
the large body of literature on addressing novice 
programmer misconceptions that transcend age, 
context, and even programming environments. 
Formative (or classroom) assessment — aimed 
at assessment for learning, and often targeting 
student misconceptions — is a critical omission 
from K-12 CS education discourse and practice, 
especially in the US. Several studies have 
identified huge gaps in formative assessment 
and assessment literacy for K-12 CS teachers 
(e.g. Vivian & Faulkner, 2018; Vivian et al., 2020; 
Yadav et al., 2015), even when evidence in 
research asserts that attention to classroom 
formative "assessment can produce greater 
gains in student achievement than any other 
change in what teachers do" (Wiliam & Leahy, 
2012).

Even though formative assessment has been 
a topic of scholarship for a long time since the 
1960s (see Bloom, 1969), it was Paul Black 
and Dylan Wiliam’s seminal research in 1998 
that crystallised the importance of formative 
assessment to improve learning and launched a 
very active field of educational research. Black & 
Wiliam (1998) defined formative assessment as 
“all those activities undertaken by teachers, and/

A framework for formative 
assessment and feedback to support 
student learning in CS classrooms 
Shuchi Grover (Looking Glass Ventures, USA)
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or by their students, which provide information 
to be used as feedback to modify the teaching 
and learning activities in which they are 
engaged.” About ten years later, they established 
formative assessment as an explicit domain of 
assessment practice and defined it as follows, 
“Practice in a classroom is formative to the 
extent that evidence about student achievement 
is elicited, interpreted, and used by teachers, 
learners, or their peers, to make decisions about 
the next steps in instruction that are likely to be 
better, or better founded, than the decisions they 
would have taken in the absence of the evidence 
that was elicited” (Black & Wiliam, 2009, p. 9).

This paper addresses the need and rationale to 
push for more deliberate use of well-designed 
formative assessment in CS classrooms as 
well as formative assessment literacy for 
CS teachers. It first offers ten principles of 
formative assessment distilled from education 
research. These principles clarify what formative 
assessment is, and more importantly, is not, 
and serve to provide the rationale for why we 
need formative assessment. It then presents 
a preliminary framework to guide the K-12 CS 
education community. The framework highlights 
three key aspects or dimensions that need 
attention to bring formative assessments to 
classrooms — design of assessments, teacher 
preparation and formative assessment literacy, 
and community participation and resource 
repositories.

Ten principles of formative assessment

Seminal papers and groundbreaking research in 
education around three decades ago argued for 
and demonstrated that formative assessment 
improves student learning (Black & Wiliam, 
1998; Crooks, 1988; Sadler, 1989). Since then, 
disciplinary-based education research in all 
core subjects has paid much attention to 
understanding and implementing formative 
assessment in classroom teaching to improve 

student learning. Google Scholar search results 
on formative assessment in school education 
run into hundreds of thousands of articles. 
Only a handful of these are situated in K-12 CS 
contexts. This section helps build a foundational 
understanding of formative assessment 
based on decades of education research 
through presenting ten principles of formative 
assessment distilled from education research. 
These ten principles essentially also describe 
what formative assessment is, and why it is 
important. 

1. Formative assessment is assessment for, 
rather than of, learning. Assessment of 
learning is often referred to as summative 
assessment. Assessment for learning 
privileges the learning aspect, whereas 
assessment of learning privileges the 
assessment aspect. 

2. Formative assessment is all about feedback. 
The raison d'être of formative assessment 
is to provide evidence and feedback to 
improve learning. Feedback is a key element 
in assisting the learning process for both 
instructors and students (Hattie & Timperley, 
2007). In educational research, formative 
assessment is often not considered 
complete until it has resulted in feedback 
and action on the part of the teacher (or 
teaching agent) and/or the learner. However, 
feedback in formative assessment is mainly 
targeted at the student and is most valuable 
when students have the opportunity to use 
it to revise their thinking as they are working 
(Bransford, Brown, & Cocking, 2000). The 
feedback provided to the learner must 
impact: 
       a. Learner’s perception that there may 
       be a gap between goal and where they 
       are at currently, and 
       b. What learners do to close the gap 

3. Formative assessment is not a “test”. It 
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is NOT aimed to give a student a grade 
regardless of what pedagogy is being used 
in the classroom. W.J. Popham famously 
said “For some teachers, test is a four-letter 
word, both literally and figuratively” (Popham, 
2009, p.5). However, the word assessment 
has often mistakenly led teachers to 
assume that formative assessment is 
about evaluating a student’s performance 
rather than view it as a part of the ongoing 
teaching and learning process. Teachers also 
harbor misperceptions around assessment 
in project-based classrooms. Barron & 
Darling-Hammond (2008) asserted that “The 
most effective inquiry-based approaches 
use a combination of informal ongoing 
formative assessment and project rubrics 
that communicate high standards and 
help teachers make judgments about the 
multiple dimensions of project work” (p.6). 
This widespread misperception of formative 
assessment as ‘tests of student learning’ 
is troubling. Heritage (2010) rues that the 
education community is at the risk of losing 
the promise of formative assessment for 
teaching and learning because of the false, 
but widespread, assumption that formative 
assessment is a kind of measurement 
instrument rather than a process that is 
integral to the practice of teaching and 
learning. 

4. Formative assessment is a process. For the 
teacher, this process involves monitoring (Is 
learning taking place?) to diagnosis (What 
is learned / not learned?) to action (What to 
do about it?). For the learner, the formative 
assessment process helps them understand 
— Where am I going? Where am I now? What 
are my next steps? 

5. Formative assessment is a form of regulation 
— at the classroom level, it helps a teacher 
regulate the learning process (Hudesman et 
al., 2013). At the student level, it serves as a 

way of self-regulation. Many scholars have 
written about how the external feedback 
of formative assessment triggers internal 
processing for the student. Monitoring 
and external feedback generates internal 
feedback at a variety of levels such as 
cognitive, motivational, and behavioral (Nicol 
& Macfarlane-Dick, 2006). The seminal work 
on How People Learn (Bransford, Brown, 
& Cocking, 2002) asserts that a formative 
interaction is one in which an interactive 
situation influences cognition, i.e. it is an 
interaction between external stimulus and 
feedback, and internal production by the 
individual learner. Crooks (1998) perhaps 
articulates it best — classroom assessment 
guides students’ judgment of what is 
important to learn, affects their motivation 
and self-perceptions of competence, 
structures their approaches to personal 
study, and affects the development of 
enduring learning strategies and skills. 

6. Formative assessment is critical for sharing 
learning goals with students and what 
constitutes “good” work. A key part of 
formative assessment is to share day-to-day 
learning goals with students. If improvement 
in learning is to take place, students need to 
come to hold a concept of quality in line with 
that held by the teacher and the community 
(via standards, for example). This growing 
concept of what “good work” is forms part 
of the learning itself (Brookhart, 2003). As 
students begin to understand their intended 
learning goals, they develop the skills to 
make judgments about their learning in 
relation to a learning standard or instructional 
outcome and implement a variety of 
strategies to regulate their learning. 

7. Formative assessment is closely related 
to teacher pedagogical content knowledge 
(PCK; Shulman, 1987). According to Heritage 
& Wylie (2018), who have done extensive 
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work on formative assessment in school 
mathematics teaching, teachers’ formative 
assessment practices are closely intertwined 
with their disciplinary knowledge and 
classroom habits of practice (Figure 1). 

8. Formative assessment can and should 
take many forms. Formative assessment 
can range from informal moves such as 
observation or a show of hands or even 
informal questions and conversations, to 
formal assessments that are administered 
to probe student understanding. Formal 
assessments can take many forms, including 
quick “quizzes” (including Entry/Exit Tickets), 
multiple choice (MC) and fixed answer 

probes, other innovative question types 
(such as Parson’s Puzzles), open-response 
types questions (that would need manual 
grading), programming assignments (with 
rubrics to guide student work), peer and 
self-assessment, project showcase, self-
explanation and reflection (written or audio-
video recorded), and portfolios as well as 
artifact-based interviews. Examples of each 
of these are provided in Grover, Powers, & 
Sedgwick (2020). Ideally, teachers should 
employ “systems of assessment” that include 
various forms, target various cognitive, 
interpersonal, and intrapersonal learning 
goals of teaching CS, and provide a holistic 
multi-faceted view of student development 

Figure 1. Teacher PCK is intertwined with classroom assessment and habits of practice (Image source: 
Heritage, 2018)
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(Grover, 2017). These varied forms of 
assessment are key for equity and inclusion 
as well, since different forms of assessment 
privilege different learners. 

9. Formative assessment needs to be speedy 
and timely. This aspect of formative 
assessment is key. Given that formative 
assessment is proximal to the learning 
process, it is key that a teacher and student 
receive feedback in time to remedy any lack 
of understanding. Research suggests that 
teachers’ day-to-day classroom practices 
with an explicit focus on short-cycle 
assessment have been found to be most 
impactful (Wiliam, 2006). When teachers 
want to quickly survey student thinking, 
multiple choice items are efficient and 
have utility in terms of taking little time to 
ask, collect responses and process them. 
William & Black (2009) suggest attending to 
“Moments of Contingency”, which are critical 
points where learning changes direction, 
depending on the information gleaned from 
the assessment. 

10. Formative assessment should target 
known misconceptions. Research in 
computer science education over the last 
four decades has documented several 
difficulties that novice learners face when 
they first encounter programming. Several 
of these difficulties and misconceptions 
are “sticky” and have been observed in 
learners of various ages and across various 
programming languages and environments. 
“Diagnostic items” that target known 
misconceptions are ideal candidates for 
formative assessment to probe whether or 
not students have understood key concepts 
(Ciofalo & Wylie, 2006; Wylie & Ciofalo, 2008). 

Toward a framework of formative assessment 
for computing in schools

This section outlines a preliminary framework for 
successful integration of formative assessment 
in computer science teaching and learning. This 
framework has been developed as part of an 
ongoing research project funded by the National 
Science Foundation (DRL-1943530) aimed 
at examining formative assessment design, 
aggregating and creating a community resource 
or “assessments hub” (leveraging an online 
platform and homework system, Edfinity.com7), 
and building teacher awareness and formative 
assessment literacy. This framework also draws 
on prior research in formative assessment in 
broader education research such as work on 
diagnostic assessments by Ciofalo & Wylie (in 
the context of mathematics). It also draws on 
prior research in CS education on assessments, 
albeit mostly summative assessment (e.g. Clear 
et al., 2008; González, 2015; Grover, 2017, 2020; 
Lister, 2005; Lister et al., 2006; Schulte et al., 
2010; Tang et al., 2020; Wiebe et al., 2019, among 
others), formative assessments (Grover, 2017; 
Grover, Sedgwick, & Powers, 2020); programming 
comprehension and learning trajectories of 
programming (e.g. Armoni, 2014; Izu et al., 2019; 
Schulte et al., 2010); and teacher preparation 
literature in CS (Vivian & Faulkner, 2018; Vivian 
et al., 2020) and more broadly (deLuca et al., 
2018). It should be noted that research in 
formative assessment specifically in the context 
of CS and in K-12 settings is very thin. Among 
the few that exist, many are in the context of 
automated tools for assessing student programs 
(e.g. Basawapatna et al., 2015; Moreno-León et 
al., 2015; Von Wangenheim et al., 2018). These 
studies are (a) not generalisable as they are 
restricted to a specific programming language or 
environment or programming tasks, (b) provide 
little guidance on identifying specific areas of 
difficulty or misconceptions, and (c) may not be 
completely accurate in truly assessing student 
understanding (Salac & Franklin, 2020). 

How successful formative assessment is in 
impacting student learning in K-12 computer 

7 http://edfinity.com

https://edfinity.com/


62

Raspberry Pi Foundation Research Seminars

science depends on three pillars or dimensions – 
the design of assessments, teacher assessment 
literacy and their classroom practice, and the 
broader community (Figure 2). These dimensions 
are interconnected but work at different levels 
of the ‘computing at schools’ enterprise. The 
remainder of this section describes each of 
these briefly. Grover (2021) provides more details 
on each.

Design of assessments for formative feedback

Formative assessments for K-12 CS classrooms 
could be formal or informal and target 
conceptual and/or affective learning goals. 
This effort recognises that programming 
assignments (in a programming language or 
environment) are popular as formative tasks, 

they are time-consuming to score especially 
on good rubrics that also shed light on exactly 
what specific concepts a student may or may 
not have understood (Grover, et al., 2018). 
This paper currently focuses mainly on formal, 
designed formative quiz-like check-ins for 
speedy feedback on conceptual understanding. 
These are strategic, targeted, autogradable, 
frequent, low-stakes, and provide quick feedback 
and explanation. Such items are suitable for 
probing understanding of key programming 
concepts (such a sequence, loops, conditionals, 
functions, expressions, variables, and other data 
structures) and CT practices (such as debugging, 
problem decomposition, algorithmic thinking, 
pattern recognition, and abstraction). These need 
not, however, always involve a code snippet or 
programming language. Well-designed multiple 

Figure 2. Dimensions of a framework for formative assessment in CS school classrooms
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choice questions and easily gradable fixed 
answer types can probe and shine a light on 
conceptual understanding, and surface student 
difficulties and gaps in understanding. Past 
research in CS education has identified various 
kinds of good question types (Schulte et al., 
2010). These, along with additional ones added 
by the author, are presented in Table 1.

Formative assessments, and specifically 
diagnostic items, should target the several 
known misconceptions and difficulties 
highlighted in CS education research (e.g. 
Soloway & Spohrer, 2013; Sorva, 2020). 
According to Ciofalo & Wylie (2006) and Wylie 
& Ciofalo (2008), what makes a diagnostic 

item particularly formative is that an incorrect 
response not only provides information about 
gaps in student understanding; it also provides 
insight into what it is that the student does not 
understand — in other words, the nature of their 
misconceptions. 

Given the nature of formative assessment 
and its role in providing feedback on ongoing 
learning, formative assessments should also 
target learning progressions and the building 
blocks of programs that contribute to building 
program comprehension skills. Formative 
assessments can query student understanding 
of single concepts especially when a concept 
is first introduced. Given that learning of 
programming is intertwined with program 
syntax and semantics, it is also important that 
formative assessments target learning goals 
that encompass both structure and function 
as defined in Schulte’s Block Model (Schulte, 
2008, 2010) rather than only learning goals-
oriented trajectories and progressions (such 
as those articulated by Rich et al., 2017). 
Examples of such items are shown in Figure 4. 
Bloom’s taxonomy and SOLO taxonomy (Biggs 
& Collins, 1982; Clear et al., 2008; Lister et al., 
2006; Thompson et al., 2008) have been used 
extensively in tertiary CS education assessment 
research and could similarly provide guidance 
on design of formative assessment items target 
varying levels of program comprehension and 
CT practices such as debugging, algorithmic 
thinking, and abstraction.

Teacher practice and formative assessment 
literacy

K-12 CS teachers’ lack of confidence or 
knowledge and skills has impacted the 
implementation of assessments and the depth 
of feedback they provide (Vivian et al., 2020). It 
is therefore crucial to develop teachers’ capacity 
and influence their habits of practice to make 
formative assessment integral to their teaching. 

Table 1. Item types for programming (Grover, 2021; 
Schulte et al., 2010)
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Teachers need to incorporate the formative 
assessment process as part of their routine 
classroom practice (Figure 3).

As part of the development of teacher PCK, 
teacher preparation needs to also help build 
in teachers an awareness of common targets 
of, and check students’ understanding of, 
known targets of difficulty and misconceptions 
from CS education research. Teachers should 
have an understanding of how programming 
learning develops in novices and use items that 
target granular learning goals and elements 
of programming as guided by the Block Model 
(Schulte, 2008). Formative assessment literacy 
also provides teachers with the understanding of 
how to enact the formative assessment cycle of 
assessment, diagnosis, and formative action. 
Figure 4 provides examples of items targeting 
known misconceptions or granular learning goals 
along with the next moves teachers can make as 
part of the formative cycle.

Community resources: assessment 
repositories, feature-rich platforms, and 
collaboration

Teacher learning communities are a powerful 
mechanism to improve teachers’ capabilities 
in using assessment in the service of learning. 
Teacher communities of practice (CoP) have 
been shown to sustain themselves around a 
shared need, and the give and take of shared 
resources for the benefit of all (Hoadley, 
2012). Assessment item repositories are a 
useful mechanism, but only when they are 
well-designed to support a CoP of CS teachers 
(Fincher et al., 2010).   

Extant and ongoing efforts for CS assessment 
item banks and repositories include Edfinity 
(edfinity.com), Project Quantum  
(https://diagnosticquestions.com/Quantum), 
Viva (Giordano et al., 2015), and the Canterbury 
Question Bank focused on introductory college-

Figure 3. Classroom practice for supporting formative assessment (Source: Linquanti, 2014)
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level CS (Sanders et al., 2013), with the author’s 
current research contributing to the development 
of formative assessments on Edfinity.
In order to support formative assessment 
practice by teachers, assessment platforms 
and homework systems must be feature rich 
to support aggregation, creation, curation, and 
cataloging or taxonomising of assessments 
based on multiple and multi-level taxonomies 

relevant to CS teachers. This section uses 
Edfinity.com as an exemplar to describe such 
a platform. Taxonomies on Edfinity include 
CS/CT topics, learning standards (such as 
those from CSTA, 2017) or learning goals by 
curricula (such as AP CS Principles), grade, 
difficulty level, and ad hoc metadata (such 
as programming language) to support easy 
search and discovery. Edfinity also aids with 

Figure 4. Examples based on research on misconceptions, learning trajectories, and levels of program 
comprehension, along with teacher diagnosis and formative action (Grover, 2021).
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assessment delivery, administration, auto-
grading, and teacher dashboards. Backend 
data and analytics on student performance 
provide teachers crucial insights into students’ 
learning and understanding at individual and 
aggregate levels (Grover et al., 2014). Edfinity 
also provides for multiple attempts of a question, 
hints, and feedback (or explanation) for correct 
and incorrect options. Solution explanations 
accompany the item and serve as (a form of) 
feedback. These explanations, as also the 
question stem, support rich text, graphics, and 
video for better learner engagement and multiple 
modes (and languages) of presentation to 
equitably support diverse learners. Edfinity item 
types include technology-enhanced assessments 
that push the boundaries to include interactivity 
(such as hotspot and point-and-click items), 
drag-drop (for items types such as Parson’s 
Problems), microworlds, and in-browser code 
entry and testing. Such items are not only 
engaging but also help reduce cognitive load 
(Figure 5). Assessment creation and aggregation 
functions on Edfinity also support features 
for teacher collaboration (à la Google Docs), 
contribution, attribution, and sharing, as well 
as interfaces for creation of both simple and 
technology-enhanced items. Furthermore, 
technology platforms could innovate with 
randomised variants of items, solution validation, 
and customised feedback to students. Such 
technology platforms should be affordable. 
However, tools such as Google Forms, while 
free and popular for formative assessment, 
do not auto-grade or afford many of the 
features important for formative assessment. 
Similarly, paper formative assessments cannot 
be autograded or leverage aforementioned 
affordances of technology.

In Closing

This position paper makes a persuasive 
argument for formative assessment and teacher 
formative assessment literacy in K-12 CS, 

Figure 5a. An MCQ item from CTt () adapted 
into a point- and-click item (more intuitive and 
lower cognitive barriers) on Edfinity.com. (5b) A 
Parson’s Puzzle Problem for AP CS Principles.
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keeping the goal of robust student learning in 
mind. The framework presents several key ideas 
that can serve to provide guidance on taking 
important first steps to make both CS classroom 
teaching and learning as well as CS teacher 
preparation more robust through attention 
to formative assessments and formative 
assessment literacy, respectively. More work is 
needed, however, especially around classroom 
research on the use of formative assessments 
in different contexts and for various concepts. 
The framework as presented and explicated is 
focused on conceptual learning of programming. 
Although CS is certainly more than conceptual 
learning of programming, through focusing the 
framework and its dimensions on conceptual 
learning and examples of formative assessment 
forms, along with designs, tools, and guidance 
for providing convenient and powerful formative 
feedback, this paper makes a start in addressing 
a crucial lacuna.
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Abstract

Block-based programming environments are 
increasingly becoming the way that young 
learners are being introduced to the practice of 
programming and the field of computer science 
more broadly. Environments such as Scratch, 
MIT AppInventor, Code.org’s AppLab, and block-
based interfaces for physical devices provide 
inviting and accessible pathways into the world 
of programming. In this article, I share findings 
from a series of studies investigating the use of 
block-based programming in K-12 classrooms. 
In particular, this research compares block-
based programming to conventional text-based 
programming languages and explores the 
transition from introductory block-based tools 
to professional programming languages. The 
results of the study found that high school 
students score better on tests after learning 
to program in a block-based tool compared to 
peers who learned with a text-based language. 
The study also found that after transitioning to a 
professional text-based programming language 
(Java), there was no difference in programming 
performance in terms of scores on a content 
assessment or differences in programming 
practices employed. The implications of these 
findings suggest that block-based programming 
is an effective way to introduce learners to 
programming but open questions remain about 
how to best integrate it into formal classroom 
instruction.

Introduction

Led by the popularity of environments like 
Scratch, MIT AppInventor, and the growing 
ecosystem of programming environments 
built with the Blockly library, block-based 
programming is increasingly becoming the 
way that learners are being introduced to 
the practice of programming and the field of 
computer science more broadly (Bau et al., 2017; 
Resnick et al., 2009; Weintrop, 2019). Along with 
virtual programming environments, a growing 
number of physical devices support block-based 
programming, including Sphero, BBC micro:bit, 
Lego Mindstorms, and several block-based 
programming environments for the Raspberry 
Pi family of microprocessors. While not a recent 
innovation (block-based environment first 
emerged in the mid-1990s), the last decade has 
seen a blossoming of block-based programming 
environments and computing curricula that 
rely upon block-based tools. A recent review 
of the academic literature identified 99 unique 
block-based programming environments 
(Lin & Weintrop, 2021). This has, in turn, lead 
to a growing body of research seeking to 
understand the affordance of block-based tools 
and articulate their role in computer science 
education (Franklin et al., 2017; Grover & Basu, 
2017; Price & Barnes, 2015; Weintrop, Hansen, 
et al., 2018). As block-based tools become more 
widespread, it is important that we as educators 
understand the affordances and drawbacks 
of these environments so we are best able to 

The role of block-based 
programming in computer science 
education 
David Weintrop (University of Maryland, USA)
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support learners early in their computer science 
careers. 

The goal of this article is to present findings 
from a series of research studies seeking to 
understand the impact of using block-based 
programming environments in classrooms. 
In particular, we pursue questions seeking 
to understand how block-based instruction 
compares to text-based instruction and to 
understand if and how the experience of learning 
to program in a block-based environment 
better prepares learners for future text-based 
programming. In doing so, this work seeks 
to elucidate the potential role of block-based 
programming in formal education and equip 
educators to effectively use block-based 
programming as part of their instruction.

What is block-based programming?

Block-based programming is a graphical 
approach to programming that uses a 

programming-command-as-puzzle-piece 
metaphor to visually convey information about 
the programming commands available to the 
user and how they can be used (Figure 1). 
Through the inclusion of visual, organisational, 
and audio cues, block-based programming 
environments can help novices write functioning 
programs from the start. The defining feature of 
block-based programming environments, and 
the source of their name, is that programming 
commands are presented as blocks where the 
shape of the block defines how and where it can 
be used (Maloney et al., 2010). To assemble a 
program, the user drags blocks onto the canvas 
(the area where the program is written) and 
snaps the blocks together, often accompanied 
by an audible click. Only valid combinations of 
blocks can be snapped together, in this way, 
block-based programming environments can 
prevent syntax errors by not allowing for invalid 
programs to be written. 

Along with the visual layout of the blocks, there 

Figure 1. The Scratch programming environment (left) and a block-based program written in Scratch (right)
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are a number of other features that make block-
based programming easy for novices with little 
prior programming experience. For example, 
as part of a study of high school students 
learning to program, students talked about how 
the arrangement of available blocks (left side 
of Figure 1) made it easy to figure out what 
was possible in the programming language 
(Weintrop & Wilensky, 2015a). Students also 
talked about how the drag-and-drop approach 
to assembling programs was easier than typing 
in programming commands one character at a 
time. This is especially true considering many 
programming languages require the user to type 
in uncommon and often mysterious punctuation 
as part of writing a functioning program. Another 
feature of block-based language students 
cited as contributing to their ease-of-use is 
how the blocks themselves are easier to read 
when compared to a conventional text-based 
language. As one student said, “Java is not in 
English it’s in Java language, the blocks are in 
English, it’s easier to understand”. Collectively, 
these various affordances lead learners to 
perceive block-based programming to be easier 
for novices.

The case for block-based programming

A central and important question about the 
potential role of block-based programming 
environments in formal education is whether or 
not students learn computer science concepts 
when programming in block-based environments. 
A related question is how students learn 
with block-based environments compared to 
comparable text-based programming languages? 
In other words, do students learn more in blocks 
or text? To answer this question, I conducted 
a quasi-experimental study in two high-school 
computer science classrooms. Students in 
one classroom learned using a block-based 
programming environment (Figure 2) while 
students in the other classroom used a text-
based programming environment (Figure). 
Importantly, everything about the environments 
was identical aside from the way programs 
were presented and authored, including the 
programming language itself, which was the 
exact same character-by-character between the 
two environments. The study began on the first 
day of school and lasted for five weeks with both 
classes going through the same curriculum and 
being taught by the same teacher. As much as 

Figure 2. The block-based version of the Pencil.cc programming environment.
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possible, everything was kept constant between 
the two classrooms aside from the programming 
environment.

After learning to program in either the block-
based or text-based environments, students 
took a programming assessment where the 
questions were asked in both block-based 
and text-based forms (Weintrop & Wilensky, 
2015b). At the conclusion of the five-weeks of 
instruction, students who learned with the block-
based environment scored higher on the content 
assessment than their peers who learned 
with the text-based environment (Weintrop 
& Wilensky, 2017a). This finding is important 
evidence showing block-based programming 
to be an effective way to introduce novices to 
programming.

As part of this study, students also took an 
attitudinal survey to explore their interest in 
computer science, their confidence with the 
discipline, and get an overall sense of their 
feelings about computer science. After working 
in a block-based environment for five weeks, 
learners were significantly more confident in 
their computer science abilities and their interest 

in the field had grown (Weintrop & Wilensky, 
2017a).

This study was particularly focused on one 
block-based programming environment (Figures 
2 and 3), however, the finding that students 
perform better in block-based environments 
has been replicated in other work. For 
example, through a partnership with code.
org, I investigated how students performed on 
a computer science content assessment that 
asked questions using pseudocode presented in 
both block-based and text-based forms (Figure 
4). This pseudocode was developed for the 
Advanced Placement (AP) Computer Science 
Principles (CSP) exam that is administered to 
high school students across the United States. 
The challenge with this assessment is that the 
organisation that designs and administers the 
test does not know what programming language 
students have learned with or if they learned in 
a block-based or text-based environment. As 
such, the test must be appropriate for learners 
who learned to program with block-based 
environments and learners who learned with text-
based languages. The solution to this problem 
was for the AP CSP test to use a pseudocode 

Figure 3. The text-based version of the Pencil.cc programming environment.
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with both a block-based form (Figure 4a) and a 
text-based form (Figure 4b).

An analysis of over 5,000 students from across 
the United States who took a 20-question 
content assessment comprised both block-
based and text-based questions using AP 
CSP’s pseudocode found that students scored 
significantly higher on questions asked in the 
block-based form than questions asked in the 
text-based form (Weintrop et al., 2019). Further, 
in breaking down results by race and gender, 
we found that women and students from racial 
backgrounds that have been historically excluded 
in computing saw greater benefits to questions 
asked in the block-based form (Weintrop & Killen 
et al., 2018). This finding provides additional 
evidence for the importance of including 
block-based programming in formal education, 
especially as it relates to goals of equity and 
broadening participation in the field.

Drawbacks and challenges

While the evidence presented above shows 

the value of block-based instruction in K-12 
classrooms, this work also identified some 
drawbacks and challenges related to the use 
of block-based environments in classrooms. 
In analysing student feedback to identify what 
students found to be useful about block-based 
programming, we also found that students 
identified a series of drawbacks (Weintrop & 
Wilensky, 2015a). For example, some students 
expressed concerns related to the authenticity 
of block-based programming, as one student 
put it, “if we actually want to program something, 
we wouldn’t have blocks.” Other drawbacks 
mentioned by students included concerns 
that block-based programming environments 
were inherently less powerful than text-based 
programming languages and that writing 
programs in block-based environments was 
slower than authoring programs in text-based 
languages. 

A second drawback, or at least an open question, 
related to block-based programming is if 
and how block-based programming prepares 
learners for future computer science instruction 

(a) (b)

Figure 4. The (a) block-based and (b) text-based pseudocode from the AP Computer Science Principles exam.
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using text-based programming languages. In 
a continuation of the study discussed above, 
after five weeks of learning in either a block-
based or text-based introductory programming 
environment, we followed students as they 
transitioned to instruction in Java. After ten 
weeks of learning Java, students in both 
conditions took another content assessment. 
The result of that assessment showed that 
there was no difference in performance on 
the assessment based on their introductory 
experiences (Weintrop & Wilensky, 2019). That 
is to say, students scored the same on the 
assessment after ten weeks of Java instruction 
regardless of which introductory environment 
they used, so the gains found after five weeks 
for students learning in the block-based 
environment were no longer present. We also 
found there to be no significant difference in 
terms of the programming practices employed 
while authoring programs and that students from 
both introductory experiences showed similar 
patterns in the types and frequency of syntax 
errors encountered (Weintrop & Wilensky, 2018). 
One important thing to note about this study was 
that the teacher who taught these classes did 
not employ any specific pedagogical strategies 
to help bridge the transition from block-based to 
text-based programming. In other studies where 
successful transfer has been documented, there 
are usually explicit bridging strategies employed 
by the instructor(s) to help learners make the 
transition (Dann et al., 2012). Questions related 
to pedagogy and how best to prepare instructors 
to teach computer science remains an active 
area of research (Franklin et al., 2020; Yadav & 
Berges, 2019).

Implications and recommendations

Implications

The primary implication of this research is 
that block-based programming has a home in 
computer science classrooms. However, there 

are still open questions that need to be answered 
in terms of how best to use block-based 
programming to help support learning, both in 
the classroom and beyond (Brown et al., 2016). 
While much work remains to be done to figure 
out exactly how best to utilise this programming 
approach, the findings cited above and reported 
elsewhere show block-based programming 
to be an effective way to introduce novices to 
the practice of programming and the field of 
computer science more broadly.
 
A second implication from this work stems from 
the finding that students who learned using 
a block-based programming environment did 
not see any significant advantage from that 
experience compared to their text-based peers 
after transitioning to a text-based language. 
The important takeaway from this finding is 
the idea that transfer does not come for free. 
That is to say, while there are clear conceptual 
links between programming in a block-based 
environment and programming in a text-based 
language, learners do not necessarily see 
those links and make the connections on their 
own. This is a place where pedagogy and the 
teacher play an essential role. Providing explicit 
instruction to help learners make the connection 
between blocks and specific programming 
keywords can help scaffold that transition 
and help learners build upon conceptual gains 
made in block-based tools. While there is some 
work showing this to be effective (Dann et al., 
2012), more work needs to be done to more 
fully understand how best to support learners in 
making this transition.

Recommendations

So, at the end of the day, where does that 
leave us in terms of what is the best way 
to teach students to program? When I am 
asked by teachers if they should use a block-
based environment or start with a text-based 
programming language, my response is: why not 
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both? Up to this point, block-based environments 
and text-based languages have been presented 
as mutually exclusive options. However, this 
need not be the case. There are a growing 
number of programming environments that 
blend block-based and text-based features like 
BlueJ’s Frame-based editor (Kölling et al., 2015) 
and others that support both block-based and 
text-based programming like Pencil code (Bau 
et al., 2015). I am increasingly excited about 
programming environments that support both 
block-based and text-based programming, 
where the learners can decide which interface 
they want to see and can move back and forth 
between the two forms. I call these dual-modality 
environments (Weintrop & Wilensky, 2017b) and 
a growing body of research is showing them to 
be an effective approach to support novices early 
in their learning while also providing scaffolds for 
them to transition from block-based composition 
to more conventional text-based programming 
(Blanchard et al., 2020; Matsuzawa et al., 2015; 
Weintrop & Holbert, 2017).
 
A second important question to ask when 
thinking about the role of block-based 
programming in computer science education, 
especially as it relates to the transition to 
text-based instruction, is whether or not that 
transition is even necessary. Do all students need 
to learn to program in professional text-based 
languages? If the goal is to prepare students for 
a career in computer science, then the answer 
is probably yes, students would need to learn to 
program with professional text-based languages. 
However, it is worth re-examining whether the 
goal of computer science instruction should 
be to prepare learners for careers in the field. 
While that certainly is one desirable endpoint of 
computer science instruction, it is important to 
consider alternative endpoints, such as preparing 
learners for careers outside of computer 
science, equipping students to be informed 
technologically-savvy citizens, and empowering 
learners to pursue their own goals and interests 

through computing (Tissenbaum et al., In Press). 
The idea that block-based programming may 
be a sufficient endpoint for computer science 
instruction is also bolstered by the growing 
number of block-based environments designed 
for real-world applications such as data sciences 
(Bart et al., 2017) and industrial robotics 
programming (Weintrop, Afzal, et al., 2018).

Conclusion

The goal of this article was to share findings 
from research investigating the role of block-
based programming in computer science 
education. While block-based environments 
such as Scratch have had a significant impact 
on youth learning to program in informal 
environments, the role of block-based 
programming in formal classroom contexts 
was less clear. In this article, I presented results 
that show block-based programming to be an 
effective way to welcome learners to the field of 
computer science. At the same time, there are 
still open questions related to how best to utilize 
block-based environments as part of formal 
computer science instruction. In particular, 
how to address student concerns around 
questions of authenticity and how to effectively 
scaffold learners in the transition to text-based 
languages. In discussing these challenges, I put 
forward the idea of dual-modality programming 
environments that support both block-based and 
text-based forms of authorship as one potential 
way to address this concern. The work reviewed 
here, along with the growing body of research 
around the design of introductory programming 
environments, curricula, and pedagogy, 
collectively are poised to lay the groundwork for 
the infrastructure needed to prepare all learners 
to succeed in an increasingly computational 
world.
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Section 3: Computing topics

Introduction

Digital technologies are changing so quickly that 
people can become overwhelmed when dealing 
with new artifacts, both physical (hardware) 
and logical (software). However, in spite of this 
fast development, every new digital technology 
is based upon and can be explained by a set 
of well-established computer science (CS) 
principles. 

For this reason, learning and teaching CS 
fundamentals to young people is crucial in 
order to help them become critical citizens 
able to understand and live comfortably in our 
increasingly digital society. Indeed, countries 
around the world have included in their 
educational curricula programming, robotic, 
and CS related content, intended to develop 
computational thinking (CT) skills (Wing, 2006) 
and achieve digital literacy.

Thanks to the creation of educational tools such 
as block-based programming platforms and 
the development of the CT concept, learning 
and teaching CS fundamentals is possible 
even at a very early age. A key feature of these 
tools is that they “engage and excite students 
in the first place” (Malan & Leitner, 2007, p. 6) 
and also allow students to solve problems that 
are important to them and their communities. 
This connection with young people’s ideas 
and interests is a powerful incentive to learn, 
providing an engaging and enjoyable way for 

them to learn CS principles.

A top-down strategy is often taught when 
children are introduced to programming. 
First, the problem to be solved must be well 
understood; that is, it must be carefully analysed. 
Second, a set of rules able to solve the problem 
must be deduced, which is roughly speaking 
the algorithm. And finally, this set of rules must 
be turned into a computer program, by using 
a programming language to write the program 
code.

A broad range of problems can be solved by 
following this strategy. However, there are some 
kinds of problem which, while very easy to 
solve for a human, are very difficult to code as a 
computer program when a top-down strategy is 
followed. Recognising, in a set of pictures of cats 
and dogs, which are cats and which are dogs, 
is a clear example: any human can perform this 
recognition naturally, but obtaining by deduction 
a set of rules that enable you to build a computer 
program which solves this recognition problem is 
practically impossible.

Image recognition and classification, natural 
language understanding, sound recognition, and 
many other problems involving some kind of 
pattern extraction resist being solved using the 
traditional top-down strategy. Instead, a bottom-
up strategy — inducing the rules that govern 
the problem from automatic data analysis — is 
followed when dealing with such tasks. And this 
way of attacking the problem takes us into the 

Learning artificial intelligence at 
school with Scratch and LearningML 
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field of artificial intelligence (AI) techniques.

Children are used to using computer applications 
capable of performing these kinds of tasks. They 
talk to their mobile phones to ask questions 
or search for information, use translation 
applications to translate into foreign languages, 
unlock their devices by showing their faces to 
the camera, and so on. Therefore, educational 
tools that allow children to design AI-based 
applications capable of dealing with these 
problems will help them to have a complete 
perspective about what can be done with a 
computer, and at the same time will allow 
students to solve problems that are of interest to 
them.

Furthermore, data is a prevalent concept 
in today’s technological and economic 
development. Having an awareness of the central 
role that data plays in our lives and knowing 
how it is used to extract useful knowledge is a 
key factor in understanding digital society and, 
hence, achieving the digital literacy needed to 
understand the world we live in.

So, how are these problems solved? Can we 
teach children to solve them? At what age? 
These are questions we tried to ask with the 
development of LearningML, a tool intended to 
teach the fundamentals of machine learning 
(ML), the most widely used technique today for 
solving problems from data.

Artificial intelligence and machine learning

ML is considered a subfield of AI, and the latter 
is a subfield of CS and almost as old as CS 
itself. In 1950, Alan Turing wrote a seminal paper 
entitled “Computing Machinery and Intelligence”. 
Although the term AI does not appear in the 
paper, it is considered the birth of the field, since 
the big question it posed was: “Can machines 
think?” (p. 1)
A few years later, in 1956, McCarthy, Minsky, 

Rochester, and Shannon led a workshop at 
Dartmouth College which aimed to gather a 
selected group of scientists to work “on the basis 
of conjecture that every aspect of learning or any 
other feature of intelligence can in principle be so 
precisely described that a machine can be made 
to simulate it” (McCarthy, Minsky, Rochester, & 
Shannon, 2006, p. 1). Their proposal where the 
goal of the workshop was described was titled 
“A Proposal for the Dartmouth Summer Research 
Project on Artificial Intelligence”, which was the 
first use of the term AI. 

Since then, the field of AI has grown and its 
development has alternated between optimistic 
and pessimistic periods. After more than sixty 
years of research, many related subfields have 
emerged. Planning and problem solving, natural 
language processing, knowledge representation, 
expert systems, neural networks, machine 
learning, robotics and computer vision are some 
of the most successful and broadly used in 
current applications. 

ML has existed as long as AI, although it has only 
been in recent years that it has flourished as the 
most successful subfield of AI. All ML algorithms 
need as much data as possible to produce useful 
outcomes. Data is the key. Therefore, greater 
computer power, together with the availability of 
very big storage systems, able to process and 
store large amounts of data, and fast and reliable 
network connections, have given rise to ML’s 
recent success. The relevance of ML in AI today 
is so great that frequently when people say AI, 
they really mean ML, confusing the part with the 
whole.

So, what is ML in a nutshell? ML is the process 
of programming computers to optimise a 
performance criterion using example data or 
past experience. ML is used to create useful 
approximations for processes to solve tasks 
that we do not have algorithms for, but that we 
do have relevant data to learn patterns from 
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(Alpaydin, 2020). The term learning is a metaphor 
which expresses the fact that the more data is 
fed in as an input to the algorithms, the more 
accurate their outcomes are. 

Each of the numerous algorithms that make up 
the ML family belong to one of the following 
categories: supervised learning, unsupervised 
learning, and reinforcement learning. In all cases, 
the goal of ML is to build a model capable of 
classifying, predicting, or recognising things 
from a collection of data. In supervised learning, 
a dataset of known examples is manually 
labeled to build a model with which unlabeled 
data, similar to but different from those used 
in the training data set, can be recognised. In 
unsupervised learning, the built models are able 
to extract some patterns from a set of unlabeled 
data. Finally, in reinforcement learning, models 
are built by testing possible solutions; those that 
maximise some reward function are maintained 
while those that score badly according to that 
function are eliminated.

As an example, Figure 1 shows the steps 
needed to build a model aimed at recognising 
handwritten numbers by means of supervised 

ML. The model, represented by a machine, is 
being built by a ML algorithm, represented by 
a genie, which analyses the training dataset 
to iteratively improve the model. When the ML 
algorithm is finished, an independent model 
capable of recognising new handwritten 
numbers is ready to be used in a software 
application.

Artificial intelligence education in K12

AI education in K12 is not new. The first efforts 
to make AI programming tools accessible to 
children took place in the early 1970s, with 
the Logo programming language (Solomon et 
al., 2020), and continued through the 1980s. 
However, AI education suffered a cold period 
from the 1990s until 2012, when educators, AI 
researchers, and the general public changed their 
view about AI due to the big success achieved 
by ML in solving problems such as image 
recognition, language translation, transcription 
of speech, game playing, and natural language 
processing (Kahn & Winters, 2020). 

This vigorous rebirth of AI education becomes 
pertinent in Moreno-Guerrero et al. (2020), where 

Figure 1. Supervised machine learning steps to build a ML model
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a scientific mapping of 379 publications, dated 
from the birth of AI in 1956 to the present was 
carried out to analyse the importance and the 
high profile that AI has acquired in the scientific 
literature in the Web of Science categories 
related to the field of education. 

Why this growing interest in teaching AI at 
school? AI has erupted in society, creating 
new applications and possibilities while also 
introducing some ethical problems. Whether they 
are conscious of it or not, children use software 
applications based on AI on a daily basis: 
product recommendation systems, predictive 
writing, face recognition, and many more. 
However, few people understand how these 
technologies work, yet as argued earlier, this is 
a must if we want to educate conscientious and 
critical citizens of the future. 

Therefore, governments around the world, 
worried about the benefits and risks AI poses, 
are developing policies, strategic plans, and 
other initiatives around this subject. Some policy 
foresight reports suggest that in the coming 
years AI will change learning, teaching, and 
education. The speed of technological change 
will be very fast, and it will create pressure to 
transform educational practices, institutions, 
and policies (Pedro, Subosa, Rivas, & Valverde, 
2019; Tuomi, 2018). These reports also suggest 
that AI-related jobs are growing dramatically and 
hence, there is a rising demand for AI-literate 
workers. 

Although programming and CT content has 
been incorporated into primary and secondary 
curricula in most developed countries, AI 
content is often not included, or is treated very 
superficially. CT is a cognitive ability while 
programming is an instrumental competence 
(Moreno-León, Robles, Román-Gonzalez, & 
Rodríguez-García, 2019). Indeed, programming, 
together with unplugged activities, is the activity 
widely used to develop CT. We propose that 

hands-on AI projects can also contribute to CT 
development (Rodríguez-García, León, González, 
& Robles, 2019). In fact, AI could add some new 
dimensions to the existing CT framework, as 
proposed in Van Brummelen, Shen, & Patton, 
(2019). 

For instance, when gathering and labelling a 
dataset intended to build a model by means of 
supervised ML, students should strive to find 
a representative set of examples from which a 
good model is obtained when the ML algorithm 
is applied. This activity helps them to get a 
deeper insight into the problem being solved. 
For example, when a text recognition model on a 
given topic is to be built, a set of sentences with 
the necessary vocabulary for that topic
must be chosen to build a sufficiently precise ML 
model. Furthermore, a classification task and 
an evaluation of the model has to be performed 
and, if the resulting model does not perform well 
enough, the training dataset must be improved 
by adding or removing some data. Therefore, the 
solution is found through iteration, which is a 
way to gain a progressive understanding of the 
problem that is being solved.

The LearningML platform

LearningML is an educational platform intended 
to teach ML fundamentals in an easy and 
enjoyable way (Rodríguez-García, Moreno-León, 
Román-González & Robles, 2020). It has been 
developed taking “low floor, high ceiling and wide 
walls” as the main design principle (Resnick et 
al, 2009, p. 63). That is, we have tried to build a 
tool which is very easy to get started with and 
allows users to get some results from the very 
beginning (low floor), but also allows students 
to build more complex projects over time (high 
ceiling), and is able to support different kinds of 
projects (wide walls). 
Among these principles, the first — developing 
a tool that is very easy to use and get started 
with — was the most relevant for us. Hence, 
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only a standard web browser is needed to run 
LearningML. In addition, the use of any cloud AI 
service (such as Google AI or IBM Watson) has 
been avoided, since they require users to create 
an account and deal with API keys, which can 
be a very easy task for a software developer, but 
can be an obstacle for children and teachers. 
In addition, although there are free usage plans 
available for these cloud services, they are 
exposed to possible changes in their terms and 
conditions and that availability may change in the 
future. Therefore, all the complex ML algorithms 
have been built into the code of LearningML to 
run locally in the web browser. There is no need 
to register in order to start building ML models 
and coding applications, although some extra 
functionality, such as the option to save projects 
in the cloud and to share or reinvent shared 
works, can be accessed when you create a 
LearningML account. 

Although our research has shown (Rodríguez-
García, Moreno-León, Román-González & Robles, 
2021) that the tool is very suitable for children 
between 10 and 16 years old, LearningML can 
also be helpful for undergraduate students 
and professionals who need to learn ML 
fundamentals because of the expansion of ML-
based tools in their fields.

LearningML is composed of three elements: the 
website, the ML editor, and the programming 
editor.

The website

The website8 is devoted to hosting the platform 
and offering content designed to help users 
learn how to use the tool, as well as learn about 
ML and AI. Guided activities, video tutorials, a 
manual, a curated list of resources about ML/AI, 
and a blog with ML/AI related news can be found 
on the website.

The ML editor

The ML editor9 is the tool where the user can 
build ML models for image or text recognition. 
This tool demonstrates clearly how supervised 
ML works. The main screen is divided into three 
sections, one for each phase of supervised ML. 

In the first section the user creates some 
buckets corresponding to the different classes 
of data that have to be recognised. Then a set of 
example images or text must be added to these 
buckets depending on the class they belong to. 
This process, where the user gathers and labels 
a dataset, is known as training. 

Once the dataset has enough samples, the 
learning phase can be run. Since it is an 
educational application, a few examples in each 
bucket (>10) are sufficient to obtain a working 
model. In the learning phase a simple neural 
network is used as the ML algorithm for text 
recognition, while a pre-trained neural network, 
known as mobilenet (Howard et al., 2017), is 
used together with a simple neural network as 
ML algorithms for image recognition.

Finally, when the learning phase has finished, 
a ML model, able to recognise new text or 
images similar but different to those used in the 
training dataset, is available for evaluation. In 
the evaluation phase we can test if the model 
works and is able to recognise almost all the test 
data. If the model does not perform well enough, 
more data examples can be added to the training 
dataset and a new model can be built by running 
the learning phase once again. This iterative 
process can be repeated until a good model is 
obtained.

This software is released under the GNU Affero 
General Public License¹0, a free software license 
allowing anyone to study, modify, or contribute to 
the project. An instance of the application is also 
accessible at no cost.

8 https://learningml.org 
 
9 https://learningml.org/editor 
 
¹0 https://www.gnu.org/licenses/agpl-3.0.en.html

https://web.learningml.org/en/home-spanish-en-translation/
https://learningml.org/editor/
https://www.gnu.org/licenses/agpl-3.0.en.html
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The programming editor

The programming editor¹¹ is a Scratch (Resnick 
et al., 2009) modification in which new blocks 
have been created which use the model built 
with the ML editor. Therefore, text and image 
recognition features can be added to Scratch 
programs. To achieve this, the following 
new blocks are available: a reporter able to 
classify text/images, a reporter that returns the 
confidence level of the classification given by 
the ML model, a stack block intended to add new 
image or text examples to the training dataset, 
and a stack block which allows the user to run 
the learning phase in order to build a new model.

We have been able to develop our ML extension 

of Scratch thanks to the free Apache license 
2.0¹² under which this software is released, 
since it allows modification of the code under 
the conditions imposed by the license. Our ML 
Scratch fork has also been released under the 
same license.

Conclusion

LearningML is an educational platform aimed 
at teaching and learning AI fundamentals by 
doing. It is being developed to be as user-
friendly as possible but, at the same time, 
to allow the creation of a wide range of AI-
based applications, from the simplest to the 
most complete and complex applications. We 
aim to provide teachers and students with a 

Figure 2. LearningML. The ML editor.

¹¹ https://learningml.org/scratch 
 
¹² https://www.apache.org/licenses/LICENSE-2.0

https://www.apache.org/licenses/LICENSE-2.0
https://learningml.org/scratch/
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powerful and engaging tool that helps them 
to develop CT skills by combining traditional 
programming activities with ML model building, 
to encourage the development of some new 
concepts, practices, and perspectives such as 
classification, training, and evaluating.

Figure 3. LearningML. ML Blocks added to Scratch in the programming editor.
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Section 3: Computing topics

Abstract

PRIMM is an approach to structuring 
programming lessons with a focus on working 
with extracts of code in depth to understand 
both structure and function and doing so in 
collaboration with peers, through dialogue. 
Previous research has shown that teaching 
using a PRIMM approach can improve learner 
outcomes. In this paper I introduce the PRIMM 
approach to structuring lessons and how it 
can impact on productive classroom talk. 
A qualitative study was conducted with 20 
programming teachers in primary and secondary 
schools. Early findings indicated that in PRIMM 
lessons teachers’ talk differs in quality and 
content at different stages of the lesson, and 
highlights the importance of students’ use of 
programming vocabulary. A focus on language 
and talk could be a productive area of research 
in our quest to improve our understanding of 
effective teaching strategies for young novice 
programmers. 

Introduction

PRIMM is an approach to teaching programming 
that came about because teachers who 
were new to teaching, or new to teaching 
programming, were expressing frustration 
that they could not effectively support young 
students who had difficulty with programming. 
Computing teachers benefit from access to 
proven teaching strategies and pedagogies 
relating to programming. Much research has 

been carried out in programming education, 
and only recently in schools, and this has not 
been widely translated into usable structures 
for teachers. Consequently, computing teachers 
are being called to deliver a challenging subject 
with insufficient knowledge of effective teaching 
strategies and on how to develop and enhance 
vital competencies to accomplish this task. To 
address these issues, I and my colleagues have 
developed and are evaluating a new pedagogical 
model for teaching and learning programming 
(PRIMM) (Sentance & Waite, 2017, Sentance, 
Waite and Kallia, 2019).

PRIMM stands for Predict, Run, Investigate, 
Modify, and Make. Using PRIMM, classroom 
activities can be designed that involve predicting 
the output of code, code comprehension, and 
gradually making new programs. It is a method of 
teaching programming that counters the known 
problem of novices trying to write programs 
before they are able to read them (Lister et al., 
2004). It provides a staged and gradual approach 
to building an understanding of programming 
concepts alongside the development 
of confidence, with a focus on program 
comprehension over completed artefacts. It is an 
appropriate approach for young students where 
we need to minimise excessive cognitive load 
and helps teachers to engage each student when 
teaching large mixed-ability classes. 

This paper focuses on one aspect that is a 
key feature of every PRIMM lesson: productive 
classroom talk. Despite a surge of interest in 
programming education in school in recent 

Teaching programming with PRIMM: 
the importance of classroom talk 
Sue Sentance (Raspberry Pi Foundation, UK)



88

Raspberry Pi Foundation Research Seminars

years, the use of talk and language has not 
been a particular focus, with little literature in 
computing education on this topic. Research 
in mathematics and science education around 
dialogue has increased our understanding of 
both the nature of productive classroom talk, and 
how teachers can encourage this in their classes. 
What is of interest here is how this work relates 
to the programming classroom, and whether 
talking together about programs can really 
support learning. In this paper I outline what 
PRIMM is, why language and talk is important to 
the learning of programming, and report on some 
of the findings from a recent study.

Teaching programming

Novices can find programming difficult; research 
abounds on this topic. For example, it has been 
asserted that, beyond the syntax and semantics 
of particular programming concepts, novices 
may struggle to put these together to construct 
a program (Robins, Rountree, & Rountree, 2003); 
additionally, students have a surface knowledge 
of programming which is context specific and, 
thus, it is difficult to be applied in different 
contexts (Lahtinen, Ala-Mutka, & Järvinen, 2005). 
Actually writing code (as opposed to reading) 
is particularly hard for novice programmers 
(Denny et al., 2008; Qian & Lehman, 2017), and it 
is commonly believed that code tracing is easier 
than code writing (Denny et al., 2008). However, 
many students find code tracing challenging 
(Vainio & Sajaniemi, 2007) with particular 
difficulties being around single value tracing, 
confusion of function and structure, external 
representations, and levels of abstraction.
The mental effort needed by learners as they 
embark on this complex journey of learning to 
program can also be viewed through cognitive 
load theory (van Merriënboer & Sweller, 2005). 
Cognitive load theory is a theory of instructional 
design that suggests that some instructional 
techniques assume a processing capacity 
greater than our limits and so are likely to be 

defective, and that students should instead 
engage in activities that are directed at schema 
acquisition and automation (Sweller, 1994). 
Working independently on programming has 
been suggested to have higher cognitive load 
than working collaboratively through pair 
programming (Tsai, Yang, & Chang, 2015).
However, we may inadvertently use teaching 
methods which don’t help this situation at all. A 
reliance on programming textbooks and “show 
me” approaches to teaching coding means that 
novices may end up being asked to copy in a 
section of code that has no meaning to them 
at all. Add this to the fact that younger learners 
will be developing their literacy and keyboard 
skills, the process of copying in can be incredibly 
frustrating and dispiriting. Another practice might 
be to model writing a program from the front 
while learners watch, and then ask learners to go 
ahead and write a similar program themselves: 
this leaves a huge chasm for the novice 
programmer to fill in themselves which many 
simply cannot manage.

What is PRIMM?

PRIMM stands for, Predict, Run, Investigate, 
Modify, and Make. It is based on the following 
five principles;

Principle 1: Read code before you write code. 
The excitement of writing a new program and 
creating something that works can mean we 
don’t spend enough time at the beginning 
reading and learning from simple, well-written 
programs. PRIMM draws on tracing and reading 
code as an important principle for teaching 
programming (Lister et al., 2009). The predict 
phase of PRIMM encourages students to 
practise reading code and working out what it 
will do when executed.

Principle 2: Work collaboratively to talk about 
programs. Dialogue and classroom talk are 
an important aspect of teaching and learning. 
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PRIMM particularly focuses on classroom 
discussion, specific questioning about code, use 
of vocabulary, and asking students to talk to each 
other about code. PRIMM draws on sociocultural 
theory which helps us to understand how 
language can support learning. Language can be 
seen as a central form of mediation that enables 
thinking and internalisation of concepts to take 
place (Vygotsky, 1962). In PRIMM lessons, 
students are encouraged to discuss with each 
other; a social construction of knowledge formed 
through collaborative, program-focused tasks.

Principle 3: Focus on code comprehension. 
Languages like Python (commonly used in 
schools in England) are often celebrated because 
you can write a program in a short number of 
lines. However, that usually means there are 
lots of concepts in one line. One way to unpack 
what the code is doing is to align comprehension 
exercises to the Block Model (Schulte et al., 
2010; Cruz et al., 2019). The Block Model 
distinguishes between a novice programmer’s 
understanding of the structural atomic detail of 
a program, the code, the functional goals of the 
program, and the problem (Schulte et al., 2010). 
Unpacking and focusing on understanding the 
code also reduces cognitive load on the learner 
(Sweller, 1994).

Principle 4: Use existing starter programs. Again 
drawing on sociocultural theory, learning can be 
seen as a transition from the social plane to the 
cognitive plane (Walqui, 2006; Sentance et al., 
2019), through the use of ‘starter’ programs that 
students can work with before taking ownership 
themselves. A PRIMM lesson starts with an 
activity whereby learners examine some existing 
code and predict what it might do.The learner 
does not have responsibility for the code and 
does not suffer emotionally if the code has errors 
in. Learners can test their predictions by running 
the code.

Principle 5: Gradually take ownership of 
programs. Learners should move along a 
continuum from where they first use programs 
made by someone else to finally create their own 
programs. In this way, PRIMM has partly built on 
Use-Modify-Create (UMC) (Lee et al., 2011) to 
gradually transfer ownership of the program to 
the student. It supports the student’s confidence 
as they are not burdened by the prospect of 
failure until they understand how the program 
works.

PRIMM provides a structure for one of a series 
of lessons, with the intention that teachers can 
develop their own PRIMM-like materials at an 
appropriate level for their students (Figure 1).

Figure 1. The five stages of PRIMM
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In terms of planning a PRIMM lesson, teachers 
will consider not only the structure of the 
lesson (as described in Figure 1), but also the 
opportunity for language and talk, the content 
and level of questioning, and the shared 
artefacts that are used in the lesson. These 
elements of planning are shown in Figure 2. This 
paper focuses on the language and talk that 
takes place in a PRIMM lesson.

PRIMM and learning outcomes

A number of studies have been employed to 
investigate the impact of PRIMM (see Figure 
3). To date the largest of these was a mixed 
methods study conducted in 2018 involving 
around 500 students aged 11 to 14.

In this study, a type of quasi-experimental design 
known as the non-equivalent control group 
post-test design (Campbell & Stanley, 1963) was 

Figure 2. Planning a PRIMM lesson

Figure 3. Research on the effectiveness of PRIMM approach
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used to investigate the impact of a series of 
PRIMM-structured lessons on learner outcomes. 
Following this methodology, the treatment, 
or experimental, group were classes being 
taught using PRIMM materials provided by the 
researchers, with the control group consisting of 
students who were to take the same number of 
programming lessons, covering the same topics, 
but using the teaching method normally used in 
the school. To ensure that students did not differ 
significantly in their computer programming 
attainment, both groups were baseline tested 
before the start of the intervention.
Teachers were given full sets of materials, 
including starter tasks, presentations, 
worksheets, starter programs, and answers, 
for ten lessons (including extension material) 
covering the basic programming constructs of 
sequence, selection, and iteration in Python. 
Teachers then delivered programming lessons 
using the PRIMM approach for 8 to 12 weeks. 
Data was collected via a combination of a 
baseline test, a post test to compare control and 
experimental groups, and teacher interviews. 

The post-test score of the experimental 
group was compared with that of the control 
group. Differences between the control and 
experimental groups after the programming 
lessons were examined to see if the PRIMM 
lessons had had an impact on programming 
attainment. The results showed a statistically 
significant difference in the score between 
the control and experimental groups for all 
students in favour of the experimental group (see 
Sentance et al. (2019) for further details).

The quantitative results were further supported 
by the qualitative data. From interviews with 
nine participating teachers the research found 
that teachers particularly value the collaborative 
approach taken in PRIMM, the structure given 
to lessons, and the way that resources can be 
differentiated. This led to the assertion that 
PRIMM is an approach in school classrooms 

to improve learner outcomes in programming 
(Sentance et al., 2019).

PRIMM and classroom talk

In this paper I am focusing on a specific aspect 
of PRIMM, the role of language. According to 
Vygotsky, social interaction plays a critical role 
in children’s learning (Vygotsky, 1978). Mediated 
activity promotes higher mental processes in 
three major forms of mediation: material tools, 
psychological tools (including language), and 
interaction with other human beings.

Classroom talk

Classrooms are full of talk — instructions, 
questions, explanations, as well as student–
student and student–teacher dialogue. Teachers 
have an impact on the quality of the dialogue in 
their classroom and are an important model for 
pupils’ use of language for reasoning (Mercer & 
Sams, 2006).

A range of models have been proposed to 
describe effective dialogue in the classroom. 
Dialogically organised instruction (Nystrand et 
al., 2003) sets out three ways the teacher can 
promote effective dialogue: through uptake 
(incorporating student ideas into subsequent 
questions of other students), through authentic 
questioning (used to explore views not test 
knowledge), and through high-level evaluation 
(where the teacher incorporates the response 
into elaborative comments). 

This demonstrates that questioning is a key part 
of establishing effective dialogue, but teachers 
may limit their questions to the Initiation-
Response-Feedback (IRF) style (Sinclair & 
Coulthard, 1975) to elicit answers from students 
where the answers to the questions are already 
known. Although a valid component of some 
lessons, these types of questions have been 
criticised for inhibiting classroom talk and the 
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development of ideas (Dawes, 2004; Wilkinson, 
2013). A more dialogic approach focuses on 
open, exploratory questions. 

Mercer and colleagues developed the idea 
of exploratory talk (Mercer, 1995), in which 
partners engage critically but constructively with 
each other’s ideas. To measure the impact of 
exploratory talk, a series of research projects 
were conducted under the banner of Thinking 
Together. The research involved interventions 
that gave both teachers and students new skills 
in using language for reasoning. In the context 
of mathematics, this was shown to enable them 
to use language more effectively as a tool for 
working on maths problems together. 

A recent study found that improving the 
quality of children’s use of language for 
reasoning together improves their learning 
and understanding of mathematics (Mercer & 
Sams, 2006). Another study found that three 
aspects of teacher–student dialogue strongly 
predicted the performance of pupils aged 10 to 
11 in standardised assessments: elaboration 
(building on contributions), querying (challenging 
a contribution) , and student participation (Howe 
et al., 2019). 

In computing education, most of the literature 
relating to language and communication as a 
vehicle for learning centres on pair programming 
and peer instruction (Vahrenhold et al., 2019), 
both privileging classroom talk and purposeful 
dialogue. Research has shown that peer 
instruction positively impacts learning outcomes 
(Porter et al., 2011; Zingaro et al., 2014). Pair 
programming has been shown to improve 
program quality and confidence (Braught et 
al., 2008; McDowell et al., 2006), but in the 
school context it may depend on the way that 
the collaborative work is instantiated (Lewis, 
2011.) An in-depth study of six pairs of 5th grade 
students in the context of pair programming 
revealed specific dialogue strategies used by 
students such as ‘Let me help you’ or ‘Make 

suggestion’ (Tsan et al., 2018). Another study 
which looked at interaction mechanisms in 
computing students’ talk identified collaborative 
problem solving, conversations expressing 
excitement, and more social conversations 
(Israel et al., 2017). I am not aware of studies 
in programming education in school that 
specifically focus on dialogue and programming 
vocabulary.

Diethelm and Goschler (2015) highlight the lack 
of attention to computing-specific vocabulary 
and consider that specific items of computing 
vocabulary may be ambiguous or have different 
meanings in everyday life from their scientific 
meaning. They suggest a need for a meta-
discourse around language such that pupils 
in school can learn to distinguish between 
everyday and scientific meanings of terms and 
that teachers should be more deliberate about 
vocabulary (Diethelm et al., 2018). There is 
clearly scope for more detailed investigation 
into how young learners acquire and use the 
technical vocabulary in programming.

The current study

In a PRIMM lesson, the intention is that a 
teacher facilitates productive classroom talk — 
encouraging discussion, modelling vocabulary 
use, asking in-depth questions. Having a 
common language to talk about programming 
constructs is important. Talking about a 
program and how it works helps learners to find 
the right vocabulary to use to articulate their 
understanding. Actually verbalising out loud the 
steps of a program that is difficult to understand 
can help learners to focus on atomic or smaller 
elements at a time. The analysis of data in the 
2018 study inspired a new phase in research 
around PRIMM specifically focusing on the 
use of talk in the classroom and how it could 
support a deep understanding of programming 
constructs. 

In the current study I am focusing specifically 
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on classroom talk in programming lessons in 
the context of PRIMM, seeking to investigate the 
quantity, quality, and content of classroom talk in 
programming lessons and teachers’ perceptions 
of the impact of PRIMM on classroom talk. This 
work is in progress.

In the first phase of the study, I conducted 
interviews with 20 teachers who have been 
using PRIMM for different amounts of time in 
their classrooms. The findings are obviously 
impacted by the fact that much of the teaching 
in the last six months has been either remote or 
under varying degrees of social distancing in the 
classroom. Teachers were asked a number of 
questions around the following topics:
• The types of talk that take place in 

programming lessons 
• The impact, if any, of PRIMM on the quantity 

and quality of talk in programming lessons
• Teachers’ experience of students’ use of 

programming terminology and vocabulary
• Approaches teachers use to foster 

discussion amongst students

To ensure that the study aligned to ethical 
guidelines (BERA, 2018) participants gave 
consent to the use of their data for specific 
purposes and full information was given. After 
transcription, participants were able to check 
their interview transcripts.

Early findings

The data was transcribed and analysed using 
thematic analysis (Braun & Clarke, 2006). The 
interviews were coded through an iterative 
and inductive process of coding, merging, and 
refining codes and re-coding (Nowell et al., 2016; 
Braun & Clarke, 2006). 

There were some initial findings relating to the 
impact of PRIMM on classroom talk. Many 
teachers referred to the difference between 
‘pre-PRIMM’ teaching and using the PRIMM 
approach. They commented that in PRIMM 

lessons there was less whole-class talk by the 
teacher, enhanced student-student dialogue, 
and that there was an increased focus on 
programming vocabulary.

Less talk by the teacher

One teacher, Teacher O¹³, had found that when 
he initially taught programming he found that the 
approaches he was using were ineffective for 
his lower secondary school students, who were 
struggling. Since using PRIMM, he talks less now 
from the front of the class at the beginning of the 
lesson and gives students tasks to do that focus 
on the content of the code:

“In non-PRIMM lessons, I’m more talking about 
fundamentals and just talking through some real 
basics, like how to use a particular statement, 
and I’m talking to a whole group and then I find 
myself repeating myself going around the whole 
group. With PRIMM lessons, I’m getting kids to 
get onto the work and then I’m able to talk at a 
much higher level about what’s going on in those 
particular programs.” (Teacher O, secondary)

Both secondary and primary teachers noted the 
difference in the amount and nature of the whole-
class talk:

“So I guess it lessens the me standing and talking 
at the front of the classroom because traditionally 
before this approach I probably would have put 
the code up on the board and then talked through 
it block by block and said, this is going to do this 
and this is going to do that, and so on and so 
forth, whereas it throws it out [and] it gets them 
in the driving seat straightaway…” (Teacher N, 
primary)

Student-student dialogue

Other teachers could specifically see the impact 
of the PRIMM approach in facilitating a more 

¹³ The 20 teachers in the study are referred to as Teacher A through to Teacher T.
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questioning approach amongst students:

“And they’ll go and say, but how did that work, why 
does that work, why is mine not doing that? And I 
think that PRIMM scaffolds that and allows them 
to have those discussions. Whereas, before, even 
with differentiation, they just could either do it or 
they couldn’t do it.” (Teacher C, secondary)

Several teachers highlighted the impact of 
verbalising on pupils’ understanding. This aligns 
with research indicating that peer interaction 
improves learning:

“They are more engaged in the code itself and 
talking more about the code itself and what it 
does and that use of language definitely does aid 
their understanding.” (Teacher L, primary)

Students’ use of programming vocabulary

In the way that teachers discussed the use 
of programming-specific terms there was an 
indication that the use of PRIMM facilitated a 
more confident use of programming vocabulary:

“But what I have found is moving to PRIMM is the 
language the students are using is more improved 
because they know… Well, what’s the variable? 
There’s the variable… That is embedded over a 
period of time as well. “ (Teacher G, secondary)

Other teachers were able to articulate why they 
thought it was important to use talk to verbalise 
how a program works, in that it gives learners 
a language with which they can express their 
understanding and supports the creation of a 
mental model. Finally, a teacher reflects on the 
fact that the focus on function and structure of 
code was enabling them to ask more advanced 
questions of the class or of individuals:
“I’m talking at a more advanced level to the 
whole group, but for less time. When I’m asking 
questions, they’re usually much more useful and 
probing questions… “ (Teacher O, secondary)

This study is in its early stages and I plan to 
report on it more in full in future publications. 
There are also plans to corroborate indicative 
findings with more research into actual 
classroom dialogue. However at this stage 
it appears that teachers believe that the 
use of PRIMM to structure lessons, with the 
collaborative, investigative exercises, gives 
an opportunity for more, and potentially more 
productive, dialogue. Teachers across the data 
set reflected that they have found this way of 
working enhances vocabulary use and a higher 
level of conceptual understanding. 

Conclusion

Ad hoc reports indicate that the use of PRIMM 
to structure programming lessons has been 
widely adopted across schools in England, 
and also further afield in Australia, USA, and 
Malaysia. Teachers are able to create their own 
PRIMM materials by reworking their existing 
programming lessons around the PRIMM 
structure, or they can use or adapt resources 
that are being developed and shared by resource 
creators, including through the free, government-
funded Teach Computing Curriculum¹4 in 
England, which uses PRIMM in many of the 
programming units of work. 

PRIMM is certainly a popular approach but 
further research is needed to examine what 
specific elements of it make a difference to 
learner outcomes. Variations of PRIMM are 
emerging which adapt the structure in different 
ways, some with more emphasis on keywords 
at the beginning (KPRIDE¹5), and others with a 
stage for evaluation at the end (TIME¹6).

What PRIMM has achieved for many teachers 
is an opportunity to reflect on, and examine, the 
value of the different activities that they use in 
the programming classroom. As all teachers 
know, it is being a reflective practitioner, and 
trying out different strategies, that improves 
teaching over time. To this extent it doesn’t 

¹4 http://teachcomputing.org/curriculum 
 
¹5 https://blog.withcode.uk/2019/06/k-pride-tips-for-teaching-programming-so-everyone-can-make-progress/ 
 
¹6 https://craigndave.org/programming-with-time/
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really matter if every programming teacher 
uses a different acronym or variation on the 
theme, if they are able to reflect on the process 
of teaching and the impact on the individual 
students with whom they are working. Where 
PRIMM really comes into its own is to support 
new computing teachers, either new to teaching 
or new to computing, who are struggling with a 
class of young novice programmers, with varying 
levels of interest and engagement, where there 
is the potential for all the children to be “stuck” 
at exactly the same time and all be in need of 
teacher attention. The staged, gradual approach 
of PRIMM builds confidence and ownership 
of code one step at a time and focuses on 
understanding not completed artefacts.

In this paper, the particular focus has been on 
language due to the way that PRIMM promotes 
the practice, both by teachers and students, of 
talking out loud about what a program might do 
(function) and how it might do it (structure). The 
social and psychological functions of language 
are both drawn on to promote confidence as well 
as understanding, through talk and dialogue. 
An initial study into this aspect of PRIMM has 
shown some particular aspects of classroom 
talk that are facilitated by the PRIMM structure:

• Specific questioning about code leads to 
productive dialogue between students about 
programming code 

• Teachers use whole class teaching differently 
at different stages of the PRIMM cycle

• Learning to use vocabulary to explain how a 
program works is challenging for students

• Teachers using PRIMM see part of their 
role as facilitating and focusing productive 
classroom talk 

More research is needed on the way that 
classroom talk can support young novices 
learning programming, and beyond the context 
of PRIMM. It would be interesting to investigate 
whether an intervention based on exploratory talk 
(Mercer, 1995) would improve learning outcomes 

in computing as it has done in other subjects.
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