
Physical programming inclusive of young children with
visual disabilities

Presenter
Presentation Notes
Let’s start with a place that we are all familiar with – block coding for teaching primary school children to code. Lot’s of advantages: discoverability of commands, no syntacs errors, live, imaginative visualizationsBut how do you use scratch if you are blind or low vision and you cannot see the screen?

Milne, Lauren R., and Richard E. Ladner. "Blocks4All: overcoming accessibility barriers to blocks programming for children with visual
impairments." Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018.

Hadwen-Bennett, A., Sentance, S., & Morrison, C. (2018). Making programming accessible to learners with visual impairments: A
literature review. International Journal of Computer Science Education in Schools, 2(2), 3-13.

Presenter
Presentation Notes
A first answer might be – let’s make it accessible by adding a screen reader and keyboard shortcuts! Blocks4All // Swift

1. Assistive technology proficiency

2. Significant memory demand

3. Lack conceptual cognitive structures

Challenges

Presenter
Presentation Notes
We also had this idea 7 years ago when we started to look at these challenges, but there are significant blockers for primary aged children Many may not yet be proficient with the assistive technology that they need to access a computer. For example, for blind children to use a computer they must have mastered touch typing, memorized a long list of keyboard shortcuts, and understood the hierarchies of the file system. This is not usually achieved, even with very bright children, until at least age 11. A second challenge is coding with an assistive technology. Imagine if you could only hear one line of code at a time. These young pupils need to be able to quickly relate lines code in their mind – for example, is a play command on its own, in a loop, or in a nested loop. Let’s take a short example of what code might sound like to an 8-year old blind child. How many loops did you hear? How many commands did you hear?I should mention that the experience is similar for children with low vision.

Project Torino

Presenter
Presentation Notes
To address the exclusion of young children from learning to code alongside their sighted peers, we embarked on Project Torino. The aim was to create a physical programming language for teaching computational thinking and basic programming skills to children ages 7 – 11 regardless of their level of vision. What we heard from the community of teachers of the visually impaired is that waiting until a text-based language was accessible was a show stopper. The blind or low vision child was then significantly behind their peers in conceptual understanding making it almost impossible to catch up. Moreover, some – teachers included – started writing off computer as inaccessible. HOWEVER, computing is perhaps one of the MOST accessible careers for a blind or low vision child. Nearly 1% of software engineers are blind or low vision. We thought it really important to bring down the barrier to getting started with coding at the same time as other children. In the UK, this is around age 7.

Presenter
Presentation Notes
So how does it work?Called Code Jumper, this is a physical programming language. Each pod is a statement in the program. Different kids of pods, play pods, rest pods, loops, or selection can be connected together to create the flow of the program with the start being the hub. In this case, we have three threads in our program that will all play at the same time. The dials allow the changing of the Parameter values for each statement. For example, the number of times to loop or the value to play. These can also be changed programmatically through the insertion of plugs into the dials. For example, I can use Random to get a random sound to play.

Presenter
Presentation Notes
In Torino, now commercialized as Code Jumper, children connect pods together to create programs that produce music, stories, or poetry. Each pod is a statement in a program that creates music, stories, or poetry. Novices can focus on program flow creating programs that can play sounds, pause, loop, or select a path. Advanced users can focus on more efficient programs using these flow constructions or a range of constant and variable plugs. What you see here is a multi-thread program with two violin sound threads and a natural sounds thread. Sound sets can be chosen in the software and new sound sets can be created by children. Let me show you a short video of Torino in action.

Torino Design Journey

Presenter
Presentation Notes
Let me step back a bit and talk about our design journey and the key points we learned.

Presenter
Presentation Notes
The Beginnings of TorinoThis journey to a physical programming language all began with an outreach event to encourage blind and low vision children to imagine their technological future through learning about the design process. In this picture, two young children are making a device that turns light into sound, the first step of imagining how this could be the core of a technology that was personally useful to each child. So, whether it is a fashionable hat that controls the lighting conditions or a robot that runs around an imaginary 100-room castle determining which rooms have windows, these kids were imaging technologies of the future, their future. We soon discovered that this workshop was not the end of the story. Soon after this workshop, parents came back to us and told us that their child wanted to build their design. They wanted to code. How could these parents teach their blind and low vision children to code? Well – that stumped us as current block based languages for teaching young children to code are not accessible. Using a screen reader on a conventional programming language requires a substantial understanding of assistive technology and a lot of perseverance.

Presenter
Presentation Notes
Torino Young Design TeamWe knew that we needed to make something physical. We first imagined creating blocks on a table that were like the blocks on a screen. Working with a Young Design Team of 4 blind and low vision children, we learned that this was not a good idea. Blocks get lined up and abandoned. Magnets fall apart when the children try to pick up their program for the full 3 dimensional experience.

Presenter
Presentation Notes
The Bead ConceptThe Young Design Team helped us craft shapes that fit the hand. Bringing their tactile experience to bare, we moved from a non-responsive block metaphor to a “live” bead metaphor. An experience that can excite the hands of all children.

Presenter
Presentation Notes

Presenter
Presentation Notes
We went through 3 iterations + a commercialization process

Presenter
Presentation Notes
There were of course many interesting hardware challenges as we went from a few hand-soldered prototypes to something that could be manufactured.

Presenter
Presentation Notes
With the final result being a system that requires 45 PCBs in 15 different configurations and 105 plastic parts.

Design Principals

Presenter
Presentation Notes
So – how did we get to this design? Let me share with you six principals that we explored through out our design process.

1. Persistent Program Overview

Presenter
Presentation Notes
Our

Presenter
Presentation Notes
Students are encouraged to physically follow their program, regardless of whether they are learning that a program is a sequence of commands or debugging a complex program with nested loops. Following along allowed them to connect their programme statement with their programme output. This builds precise understanding of what the code does and is one of the few known skills at the time that promotes progression in coding skills according to research in the area. Teachers commented that following the programming helped the children understand how the program was executing and debug it when it was incorrect.

2. Liveness

Presenter
Presentation Notes

Presenter
Presentation Notes
Creative and FunWhile the teacher’s mind may be on the concepts the student is learning, the programming language also provides a canvas for creating a range of creative audio experiences. Here are two budding musicians making music.

3. Low Floor, High Ceiling

Presenter
Presentation Notes
Low Floor, High CeilingChildren can start with very simple programs that help them understand the a program is a sequence of commands. As students knowledge grows, they can create much more complicated program flows and introduce data flow as well with variables. Students can cover all of the concepts that you would find in a primary or elementary curriculum.

Presenter
Presentation Notes
Computational LearningAlong side learning basic programming tasks, Code Jumper is really well suited to teaching computational thinking because the programs cannot get large and unwieldly. Ellie Example – getting two synchronous loops to finish at the same time Ellie could solve this many ways, but chooses to solve it by increasing the number of times one loop loops.

4. Works across Visual Abilities

Presenter
Presentation Notes
A Vision of InclusionWhile our vision was to address the exclusion of blind and low vision kids from learning to code, Our vision was NOT a vision of separate, but equal. It was a vision of inclusion. A vision of enabling blind children and their sighted peers to code side by side. Currently, if children are offered an accessible experience at all, it is done in a separate room, or at the back of the class. wanted to change that. We wanted something that brought children together regardless of their level of vision. The image that you see here is a young boy programming with his school mate, the first time he has been able to do something with a classmate without teacher intervention to support accessibility. To give one example of how this influenced our design, we ensured that all elements were communicated in both visual and tactual form. So regardless of where I child might be on the spectrum using these two types of information, they would be able to engage.

Presenter
Presentation Notes
Extending the Vision of InclusionIt is also a vision of including children with multiple disabilities or other disabilities in coding education. Having trialed Code Jumper in the UK with over 75 children and 30 teachers, we have been told it can be particularly powerful in enabling children with additional disabilities to participate. Some of those are physical disabilities, but it has also worked well with children with an Autistic Spectrum Condition diagnosis. One of my favorite anecdotes is a child using the debugging process to cope with and solve problems (not programming ones) between Code Jumper lessons.

5. Enables progression

Presenter
Presentation Notes
ProgressingWhile CodeJumper is a great tool to embed programming and computational thinking skills for young learners, our ultimate aim is to open career opportunities in technology. We support the progression of children from a physical language to a textual language, by enabling to listen or read their code as they follow its execution.

Torino Beta Study

Presenter
Presentation Notes
I’d like to spend a bit of time talking about what we learned from a reasonably large study (at least in technology research) with Torino.

Torino Beta
75 Children

30 Teachers

24 Local Authorities

Presenter
Presentation Notes
After a small validation with ten children, we carried out a wide-scale evaluation across the UK. While over 100 children used Torino, … completed the Beta.

Deployment

Morrison, C., Villar, N., Hadwen-Bennett, A., Regan, T., Cletheroe, D., Thieme, A., & Sentance, S. (2019).
Physical Programming for Blind and Low Vision Children at Scale. Human–Computer Interaction, 1-35.

Presenter
Presentation Notes
Each participant teacher received: a Torino set and laptop and a scheme of work. I will not dive into the details of the study, but please do have a look at them in the published paper. I’m also afraid to say that the lovely images in this deck are now finished, as we are not able to publicy share our research data in order to maintain the anonymity of the students.

Measuring Computational Learning

Method Approach

1) Validated questionnaire to
measure engagement;

2) Measurement of
motivational construct;

3) Teacher reported learning
outcomes.

Method Considerations

1) Students are diverse in their
abilities;

2) Teachers are non-specialists;

3) Data collection by researchers
is restricted due to logistics.

What do teacher’s think?
Statement

I think Torino is a good tool for teaching
coding to visually impaired children. 4.9(5)

I found some of the computing
concepts hard to understand. 2.4(1)

Teaching with Torino helped me to
improve my own computing subject
knowledge.

4.2(5)

The teachers’ guide was hard to
follow. 1.7(1)

I would like to use Torino to teach
coding in the future. 4.8(5)

1 = disagree strongly; 5 = agree strongly

100% of teachers strongly
agreed or agreed that they
would like to use Torino to
teach coding in future.

Presenter
Presentation Notes
We gave teachers a short 5 point questionnaire to get a quantitative snapshot of their experience with the project. You can see in this table that questions 1/3/5 were very close to strongly agree and questions 2/4 close to strongly disagree.

Engagement

How excited do you get
before a Torino session?

4.32/5

Motivation
How many stars would you like to give yourself now
for your coding / programming ability?

Pre

Post

R = -.73

Presenter
Presentation Notes
Self-efficacy in coding ability (See Table 2) grew substantially after exposure to Torino with a change in the Median score from 2 to 4 (of 5), with large effect size, r = -0.730. Opening up the question of what we should be measuring.

1. Persistent Program Overview

“I should mention that we made good use of the tip relating to
‘tracing’ the programme. For some students this is really important
and aids their understanding. The students felt it and described it.
(T18)”

2. Liveness

“Currently entry level environments such as Scratch are either
inaccessible to my students or provide very dry feedback i.e. text
based output that is then read using a screen reader. The same output
could easily be achieved by writing in a text editor. The perceived
relevance of programming can be lost because of this. One of the
advantages of a product such as Torino is that it provides immediate
feedback to students from the very first plugging in of a ‘play pod’.
The physical nature of the device removes some of the abstraction of
creating and running a programme using an IDE. (T17)

3. Low Floor, High Ceiling

“In the last Torino session, the two higher-ability learners were
creating their own tunes using the piano sounds and making use of
loops, nested loops, pauses and variables. They enjoyed having the
freedom to try out what they had learned previously.” (T4)

4. Works across Visual Abilities

“The pupils have worked extremely well together and
have helped each other to rapidly pick up many of the
concepts and vocabulary used. Here is a video of
successful joint working and happy collaboration!”

Presenter
Presentation Notes

Teacher Reported Learning
Use of Correct Vocabulary
When completing activities, the children now often use correct key terms – ‘sequence’,
‘thread’, ‘parameter’ etc. (T10)

Problem-Solving
The most noticeable impact on progress has been the development of problem solving
skills. During the first handful of Torino sessions, the children struggled to identify where to
start when repeating an example task. Now, they are quick in identifying roles for each
other, tracing and building the sequence of code. (T1)

Inclusive Education
The students, all with a visual impairment from different schools, learned how to work
together as a team.

Presenter
Presentation Notes
All teachers reported ability appropriate learning. That was done in a number of ways

Questions for Discussion
1. How might a physical programming language help young

children without a visual impairment who are struggling to
learn using a block-based language?

2. What can we learn from the success of students physically
following their code?

3. How should we measure success of a new programming
language?

4. Physical programming can be exciting, but its more expensive
than software. How can we enable such opportunities?

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	1. Persistent Program Overview
	Slide Number 18
	2. Liveness
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Torino Beta
	Slide Number 28
	Slide Number 29
	What do teacher’s think?
	Engagement
	Motivation
	1. Persistent Program Overview
	2. Liveness
	3. Low Floor, High Ceiling
	4. Works across Visual Abilities
	Teacher Reported Learning
	Slide Number 38
	Slide Number 39
	Questions for Discussion

