
Version 1.0, July 2020

Computational thinking framework

Published in July 2020
by the Raspberry Pi Foundation

www.raspberrypi.org

ISSN 2514-586X

Version 1.0, July 2020

Computational thinking framework

Contents

Introduction

Our mission at the Raspberry Pi Foundation is to put the power of
computing and digital making into the hands of people all over the
world. A large part of our work is supporting people to learn and
develop computing skills, and knowledge of how computers function
and how to harness them to create projects and solve problems. We
promote educational approaches that enable young people to learn
through making and to explore their own interests, because we see
this as the most engaging and relevant way for them to learn. Our
educational resources are underpinned by a rigorous understanding
of computing and computer science, and they include key learning
objectives and progression.

To support all of this work, we have collaborated with experts and
experienced educators to develop a framework of computational
thinking (CT) skills.

What is computational thinking?

Computational thinking comprises a set of ideas and thinking skills that
people can apply to design systems that a computer or computational
agent can enact; part of CT is expressing problems in such a way that
computing can be used to solve them. The term ‘computational thinking’
was originally used by Seymor Papert in the 1980s¹ in his work on
encouraging exploratory learning using computers. The ideas that are
part of CT have been refined over many years, in conjunction with the
development of computing. More recently, they have been made part of
the key principles of the curriculum subjects computing and computer
science. This happened following discussions in the field prompted by
Jeanette Wing². She argued that CT is fundamental and could be widely
used across areas of our everyday lives, rather than only being reserved
for specialists. However, some researchers have reservations about how
widely CT is applicable outside of computer science; notably, Tedre and
Denning point out drawbacks highlighted by historic attempts to apply
computing skills to other domains³.

4 Computational thinking framework

A number of resources for CT are used in various educational initiatives.
For example:

• Computing At School in the UK has created a guide to CT for
teachers, which sets out the areas of CT and tips for developing
them in the classroom. This guide has been used to structure the
widely used Barefoot Computing resources5.

• The Massachusetts Department of Elementary and Secondary
Education’s Digital Literacy and Computer Science Framework sets
out detailed objectives, sorted by age range, covering CT as well as
many other aspects of digital literacy6.

• The Computer Science Teachers’ Association published a set
of examples of what computational thinking could look like in
the classroom7.

How did we develop this framework?

We wanted to assemble the existing documents into a framework that
captures the big picture and powerful ideas of CT, but is also detailed
enough to allow educators to build these ideas into learning activities
and resources, and even use them to assess students.

In order to do this, we brought together a group of experts in computing
and computing education, including academics, educational resource
developers, and experienced and practising teachers. The group
considered many different perspectives on CT, as well as experiences
in the classroom, to come up with a set of themed learning objectives
that represent what we believe learners can work towards as their CT
skills develop.

We think we have reached a practical definition of the term
‘computational thinking’ that is open enough to provide scope for
exploration but specific enough to allow us (and others) to systematically
incorporate learning experiences designed to develop CT skills into
learning resources. The resultant CT framework is now being used in the
development of learning resources at the Raspberry Pi Foundation.

We see this framework as a first iteration, which we will review and revise
in the future based on experience and feedback.

5 Computational thinking framework

Why are we sharing the framework?

We’re sharing our CT framework as part of our work to make visible the
tools we are using to inform learning experiences in our educational
work, and in the hope others will find it useful for their own work on CT
and computing education.

We invite discussion and comments from others working in this area,
whether in academia and research or more practically in education and
supporting young people. If you have feedback for us, please do get in
touch by emailing research@raspberrypi.org.

Acknowledgements

Document authored by Oliver Quinlan with Rik Cross.

We would like to thank the expert academics, educators, and teachers
who spent time working with us to develop this framework, face to face,
online, and by reviewing drafts.

Thank you to the following people for their ideas, input, and critique, all
of which contributed to this work:

Phil Bagge, Miles Berry, Helen Caldwell, Lynda Chinaka, Prof. Paul
Curzon, Prof Quintin Cutts, Catherine Elliot, Dave Gibbs, Sway Grantham,
Amanda Haughs, Dawn Hewitson, Simon Humphreys, Peter Kemp,
William Lau, Chris Roffey, Sue Sentance, Peter Strawn, Christine Swan,
Jane Waite, Sarah Zaman

 1 Papert, S. (1980). Mindstorms: Children, computers and powerful ideas.
2 Wing, J. (2006) ‘Computational Thinking’, in Communications of the ACM, March 2006. Available at:

https://doi.org/10.1145/1118178.1118215
3 Tedre, M. and Denning, P.J. (2016) The Long Quest for Computational Thinking. Proceedings of the 16th

Koli Calling Conference on Computing Education Research, November 24-27, 2016, Koli, Finland: pp. 120-
129. Available at: http://denninginstitute.com/pjd/PUBS/long-quest-ct.pdf

4 Csizmadia, A., Curzon, C., Dorling, M., Humphreys, S., Ng, T., Selby, S., Woolard J. (2015). Computational
thinking: A guide for teachers. Available at:
https://community.computingatschool.org.uk/resources/2324/single

5 Barefoot: Building Skills for Tomorrow. https://www.barefootcomputing.org
6 Massachusetts Department of Elementary and Secondary Education (2016). Digital Literacy

and Computer Science: Grades Kindergarten to 12. Available at:
http://www.doe.mass.edu/stem/dlcs/?section=resources#standards

7 Computer Science Teachers Association (CSTA), CT examples from across the curriculum. This document
is no longer available online. Reach out to CSTA if you’re interested in accessing it.

6 Computational thinking framework

Logical reasoning

Underpinning all aspects of computational thinking is the
logical analysis of problems and solutions.

Computational thinking comprises a set
of ideas and thinking skills that people can
apply to design solutions or systems that a
computer or computational agent can enact.

7 Computational thinking framework

1: Decomposition

Theme Learning objective

a. Know what decomposition is and/or
understand when it can be useful

Breaking a problem into smaller parts b. Identify when a problem needs to be broken down

c. Break down instructions or systems into
parts to make them easier to work with

d. Break down a problem into simpler versions of the same problem
that can be solved in the same way (recursive and divide and
conquer strategies)

Recombining solutions
e. Understand how individual components of systems

are combined, and how data flows between them
(e.g. sensors, output devices, etc.)

8 Computational thinking framework

2. Algorithms

Theme Learning objective

a. Know what decomposition is and/or
understand when it can be useful

Breaking a problem into smaller parts b. Identify when a problem needs to be broken down

c. Break down instructions or systems into
parts to make them easier to work with

Identifying steps and
designing algorithms

d. Break down a problem into simpler versions of the same problem
that can be solved in the same way (recursive and divide and
conquer strategies)

e. Understand how individual components of systems
are combined, and how data flows between them
(e.g. sensors, output devices, etc.)

f. Design steps to be followed in a given order
(a simple sequence) or in parallel

g. Design instructions that use arithmetic
and logical operators

h. Design sequences of instructions that store, move,
and manipulate data (variables and assignment)

i. Design instructions that choose between different instructions
(selection)

j. Design instructions that repeat groups of instructions
(loops/iteration)

k. Group and name a collection of instructions that do a well-
defined task to make a new instruction (subroutines, procedures,
functions, methods)

9 Computational thinking framework

2. Algorithms cont.

l. Design instructions that involve subroutines that use copies
of themselves (recursion)

m. Design sets of instructions that can be followed at the same
time by different agents (computers/people, parallel thinking
and processing, concurrency)

n. Design a set of declarative rules (such as coding
in a database query language)

o. Use notation to represent algorithms (e.g. flow charts,
informal diagrams, or pseudocode)

Boolean logic p. Understand Boolean operators

q. Apply laws of Boolean logic to simplify statements

r. Appreciate that Boolean logic can be used to control the flow
of a program

s. Understand the relevance and applications of Boolean logic
in computer system

t. Recognise that boundaries need to be taken into account for
an algorithm to produce correct results

u. Describe that there are ways to characterise how well algorithms
perform and that two algorithms can perform differently for the
same task

v. Understand that algorithms can be expressed as sets of rules as
well as sequences of steps

Data
w. Identify a range of test data for an algorithm i.e. valid, invalid,

erroneous, boundary, and extreme, and predict what the program
will do when it receives invalid, erroneous, or extreme data

x. Identify the flow and control of data in an algorithm

10 Computational thinking framework

3. Patterns and generalisation

Theme Learning objective

Identifying, adapting,
and reusing solutions

a. Identify patterns and commonalities

b. Recognise that one problem can have multiple or different
possible solutions

c. Adapt solutions, or parts of solutions, so they apply to a whole
class of similar problems

d. Identify common problems and the related common solutions

e. Identify differences in problems and understand which solutions
are not appropriate for applying/reusing

Predicting f. Predict the outcome of an algorithm or process drawing on prior
knowledge of similar programs and blocks of code

g. Predict the outcome of an algorithm or process using clues
and tracing code

h. Understand the limits and drawbacks of prediction strategies
and use to inform use of them

Explaining i. Explain the generalisations or patterns used in a program/solution

j. Transfer ideas and solutions from one problem area to another

11 Computational thinking framework

4. Abstraction

Theme Learning objective

Abstracting problems a. Recognise what is important in a solution and focus on only that

b. Reduce complexity by removing unnecessary detail

c. Hide the full complexity of instructions or systems (hiding
functional complexity)

d. Choose a way to represent an artefact, to allow it to be
manipulated in useful ways

e. Hide complexity in data, e.g. by using data structures

f. Identify relationships between abstractions

g. Filter information when developing solutions

h. Use decomposition to define and apply a hierarchical
classification scheme to a complex system

Modelling
i. Discuss and give an example of the value of generalising

and decomposing aspects of a problem in order to solve
it more effectively

j. Modelling the behaviour of a system (the rules)

k. Create a notation or model of a scenario

l. Know that how things are represented is often not how they
really are

12 Computational thinking framework

5. Evaluation

Theme Learning objective

Abstracting problems a. Find and define problems

b. Assess that a solution or system is fit for the purpose and the
needs of the user

c. Assess whether a solution or system does the right thing
(functional correctness)

d. Assess whether a product meets general performance
criteria (heuristics)

e. Design plans to test a range of data and interpret the
results (testing)

f. Assess whether the performance of a solution or system is good
enough (utility: effectiveness and efficiency)

g. Compare the performance of solutions or systems that do the
same thing

h. Step through processes or algorithms/code step by step to work
out what they do (dry run/tracing), and recognise when they don’t
do as intended

Modelling i. Use validation to decide the appropriateness of algorithms
or processes

j. Use rigorous argument to justify that an algorithm works (proof)

k. Use rigorous argument to check the usability or performance
of an artefact (analytical evaluation)

l. Use methods involving observing an artefact in use to assess its
usability (empirical evaluation)

13 Computational thinking framework

5. Evaluation cont.

Exploring alternatives m. Recognise that a program may be written in different ways but
achieve the same outcome

n. Regularly look for a ‘better way’ to solve the same problem

o. Compare two programs that solve the same problem, in terms of:

• Efficiency
• User experience
• Use of computer resources

Social and ethical norms,
user experience

p. Know the social and ethical issues around the creation/use of
computational products

q. Consider the specific needs and limitations of a range
of potential and actual users of systems and software

r. Assess whether a solution or system is easy for people
to use (usability)

s. Assess whether a solution or system gives an appropriately
positive experience when used (user experience)

t. Make trade-offs between conflicting demands

u. Understand how systems impact privacy and other human
rights, through intended or unintended consequences

14 Computational thinking framework

6. Data

Theme Learning objective

Organising data a. Find and define problems

b. Assess that a solution or system is fit for the purpose and the
needs of the user

c. Assess whether a solution or system does the right thing
(functional correctness)

d. Assess whether a product meets general performance
criteria (heuristics)

e. Design plans to test a range of data and interpret the
results (testing)

f. Assess whether the performance of a solution or system is good
enough (utility: effectiveness and efficiency)

g. Compare the performance of solutions or systems that do the
same thing

h. Step through processes or algorithms/code step by step to work
out what they do (dry run/tracing), and recognise when they don’t
do as intended

Modelling i. Use validation to decide the appropriateness of algorithms
or processes

j. Use rigorous argument to justify that an algorithm works (proof)

k. Use rigorous argument to check the usability or performance
of an artefact (analytical evaluation)

l. Use methods involving observing an artefact in use to assess its
usability (empirical evaluation)

15 Computational thinking framework

© 2020 Raspberry Pi Foundation

ISSN 2514-586X
www.raspberrypi.org

	3 - Contents
	4 - Executive summary
	Decomposition
	Algorithims
	Patterns and Generalisation
	Abstraction
	Evaluation
	Data

	Button 194:
	Button 195:
	Button 196:
	Button 197:
	Button 198:
	Button 199:
	Button 200:
	Button 2010:
	Button 19:
	Button 217:
	Button 218:
	Button 240:
	Button 241:
	Button 242:
	Button 243:
	Button 244:
	Button 245:
	Button 246:
	Button 29:
	Button 219:
	Button 220:
	Button 221:
	Button 222:
	Button 223:
	Button 224:
	Button 225:

