METRECC Instrument: sharing and contributing to international K-12 computing curricula and experiences.

Katrina Falkner, Sue Sentance, **Rebecca Vivian**, Sarah Barksdale, Leonard Busuttil, **Elizabeth Cole**, Christine Liebe, Francesco Maiorana, **Monica M. McGill**, and **Keith Quille**

Raspberry Pi Computing education research seminars

Keith Quille @KQuille · Sep 6

"Hello you with the pretty face, welcome to the human race" - ELO. Hello world.... Charlie (Jacob) Quille born on the 4th September at 17.08 weighing 8 lbs. I could not be a prouder dad to Charlie and husband to my amazing wife and hero @faithwhelan.

Recommended pre-reading:

ITICSE WG report

Falkner, K., Sentance, S., Vivian, R., Barksdale, S., Busuttil, L., Cole, E., ... Quille, K. (2019). An International Study Piloting the MEasuring TeacheR Enacted Computing Curriculum (METRECC) Instrument. In ITiCSE-WGR '19: Proceedings of the Working Group Reports on Innovation and Technology in Computer Science Education (pp. 111–142).

https://dl.acm.org/doi/abs/10.1145/3344429.3372505

Introduction

Agenda

- Introduction
 - What and how we gathered and why
- Related Work
- > The METRECC Instrument
- Research Findings
 - What is happening in schools?
 - Teacher computer science self-esteem
- Evidence of Reliability and Validity
- Extensions and Future
 - Limitations & future work
 - Repository & sustainability
 - METRECC South Asia
- Discussion

2019 ITICSE Working Groups

- WG 1: 1.5 Degrees of Separation: Computer Science Education in the Age of the Anthropocene
- WG 2: Fostering Program Comprehension for Novice Programmers Learning Activities and Learning Trajectories
- WG 3: Pass Rates in Computing and in other STEM Disciplines
- WG 4: Data Science Education: Global Perspectives and Convergence
- WG 5: A Periodic Table of CS Education Learning Theories: Is it possible, is it useful, and what forms could it take?
- WG 6: An International Benchmark Study of K-12 Computer Science Education in Schools
- WG 7: Toward Developing a Cloud Computing Model Curriculum
- WG 8: Securing The Human: Attracting More, Diverse Students in the Cybersecurity Field
- WG 9: Towards an Ability to Direct College Students to an Appropriately Paced Introductory Computer Science Course
- WG 10: Compiler Error Messages: Difficulties, Design Guidelines and Effectiveness

Australia, England, Ireland, Italy, Malta, Scotland and the United States

Aberdeen

City in Scotland

2019 ITICSE Working Group

WG6: An international benchmark study for K-12 CS education

Related Work

K-12 CS Education

- A number of country/national reports on K-12 CS curriculum landscapes have emerged from Europe (e.g. Balanskat & Engelhardt, 2014), the UK (The Royal Society, 2012, 2017), US (Hai Hong et al. 2016), Wales (Moller & Crick, 2016) and Poland (Maciej, 2015),
- There have been dedicated special journal issues toward case studies in K-12 CS (Hubwieser et al., 2015).
- 2011 ITiCSE Working Group reviewed secondary CS curricula from different countries and developed a category system, the Darmstadt Model (Hubwieser et al., 2011).
- 2013 Working Group examined trends in K-12 schools by 22 surveying experts across countries about their curriculum (Shulte et al., 2012)

Curriculum Components

- Intended
- Enacted
- Assessed
- Learned

Andrew C. Porter and John L. Smithson. 2001. Defining, Developing and Using Curriculum Indicators. CPRE Research Reports, 12-2001. (2001).

Curriculum components

Intended

Policy tools as curriculum standards,frameworks, or guidelines that outline the curriculum teachers are expected to deliver.

Enacted

Actual curricular content that students engage in the classroom and pedagogical approaches adopted, and - with particular relevance to CS curriculum - their use of technology, physical computing devices and tools.

Research Questions

- What are the similarities and differences across countries in terms of intended CS curriculum topics and programming requirements?
- To what extent are teachers addressing the intended CS curriculum with their enacted curriculum in classrooms?

How can we capture enacted and intended CS curriculum across the world?

Process

Review prior work

Develop instrument

Conduct pilot study

Curating research papers, reports and education survey instruments (many with evidence of validity/reliability). Systematically developing categories and survey items. Building a survey instrument. Piloting the survey instrument across 7 working group countries.

Process

Analyze Data

Evaluate Survey

Revise instrument

Cleaning and analysis of data. Mapping processes for comparing intended and enacted curricula. Tested for evidence of validity and reliability. Full review of each question by entire group.

Revise survey instrument based on data analysis and evaluation.

METRECC Instrument

Capturing intended versus enacted

Intended - created template for capturing required curriculum/standards and policies in place for country/state

Enacted - development of a survey instrument to measure what happens in classrooms from the perspective of teachers

Capturing the intended Curriculum

Formal curriculum requirements and supporting contextual information.

COUNTRY/USA STATE	ALISTRALIA	COLORADO	ENGLAND	IRELAND	ITALY	LOUISIANA	MALTA	MINNESOTA	SCOTLAND	
COUNTRY/USA STATE	(AUS)	(US-CO)	(ENG)	(IRL)	(ITA)	(US-LA)	(MLT)	(US-MN)	(SCO)	
Population (million)	25.09	5.69	55.62	4.70	60.50	4.66	0.47	5.6	5.44	
No. of schools	9477	1900	29972	3961	8636	1426	170	2066	2400	
No. Primary schools				3246			108		2031	
No. secondary schools				715			62	000071	602251	
No. of students	3893834	911536	8378809	920867	8422419	722666	46247	57262	51050	
No. of teachers (FTE)	288583	59989	498100	66327	872268	49196	2976	57202	51955	
No. of Primary teachers (FTE)				36773						
No. of secondary teachers (FTE)				29554				0	2/	
CS State or country plan	√	8	√	8	Ø	COUNTRY	/USA AUS	. ®	v ,	
CS Curriculum k-6 standards defined	\checkmark	8	√	Ø	Ø	Age*/US G	rade		ENG	IRL ITA
CS Curriculum: Y7+ standards defined	√	√	√	8	Ø	2+	aue IC	PL CC TC PL	CC TC PL	US-LO MLT US MU
CS Standalone subject	√	√	V	Ø	Ø	3-4				CC TC PL CC TC PL CC TC PL CC TC
CS Formal Reporting	v	8	⊗*	8	Ø	4-5 Kindergarte				CC IC PL CC TC PL CC TC PL CC TC PL CC
CS in pre-service training Primary	E	E	/	E	V 	5-6 Grade 1			0 √ VP	√ 1 1 1 1 1 1 1 1 1 1
CS in pre-service training Secondary	E	E	V	E	E	6-7 Grade 2	V a		0 √ VP	V @ @ W
CS training for inservice Primary?	√	√				7-8 Grade 3	√ v	PVV	V VP	
CS training for inservice secondary?	√	√				9-10 Grade 4	√ vi		V VP	
Year endorsed	2015	2018	2013/14	8	⊗ Oten dende	10-11 Grade 6	V VF		V VP	
		1	1	CSTA	Standards					
Computational Thinking	∕	v	٧	v	v	•	<i>a</i>		- v v	
Collaboration	√	Ø	Ø	V	v	8		0	1	
Computing Practice	√	Ø	√	√	v	8	v	0	1	
Computers, Communication Devices	√	√	√	√	v	8	v a	8	1	
Community	Ø	Ø	NA	V	V	8	0	8	2/	
Global & Ethical Impacts	\checkmark	√	√	√	V	8	V	8	v	

Yes $(\sqrt{})$ No (\otimes) Additional information (\emptyset)

Pre-service training - Varies(V) Compulsory (1/2), Elective (E)

CSTA standards covered Explicit ($\sqrt{}$) Implicit (\varnothing) Not covered (\otimes)

Formal reporting on children's attainment in CS.

Capturing the enacted Curriculum

What did we measure?

What teachers are doing and using in the classroom, along with their classroom context.

Section number & heading	Section topics covered	Question numbers	Questions (n and % of total)
1. Introduction	Study information; Consent to participate	1	1 (1.9%)
2. Demographics	Teacher demographics (e.g. age, location); School demo- graphics (e.g. socioeconomic, remoteness)	2-11	10 (18.9%)
3. Current work	Employment; Teaching role; Subject expertise; Experi- ence teaching CS	12-18	7 (13.2%)
4. Qualifications	Qualifications in teaching, computing and other sub- jects; Participation in classroom research	19-22	4 (7.5%)
5. Student composition	Student cohorts; Classes taught and class size; Demo- graphics of students (reported)	23-25	3 (5.7%)
6. Support and resourcing	Access to infrastructure, facilities and equipment; Avail- able school support (people, PD) and perceived needs; Place of CS classes; Local CS outreach engagement and awareness; CS topics taught and unplugged/plugged; Curriculum document/s used (if any); Access to CS and general teaching materials and technology	26-38	13 (24.5%)
7. Assessment of student learning	Implemented assessment approaches in CS; Reporting required or not	39-40	2 (3.8%)
8. Classroom practice	Learning and teaching strategies (CS specific and gen- eral); Programming environments and motivation for use	41-46	6 (11.3%)
9. Self-efficacy and confidence	Teachers' perceptions of their CS capabilities	47	1 (1.9%)
10. Professional development	Participation in types of PD activities; Structure/benefits of PD activities; Perceived PD needs; Extent PD re- sources used in classroom	48-52	5 (9.4%)
11. Open access data	Consent for anonymous data to be included in open access	53	1 (1.9%)
Total		1-53	53 (100%)

11 Categories

- 1. Introduction
- 2. Demographics
- 3. Current work (position)
- 4. Qualifications
- 5. Student Composition
- 6. Support and Resourcing
- 7. Assessment of Student Learning
- 8. Classroom Practice and Motivation
- 9. Self-Efficacy/Self-Esteem
- 10. Professional Development
- 11. Consent for Data

Sample for Pilot Survey

- 700+ responses to the survey
- Full survey on average took 35-40 minutes
- Removed incomplete responses
- Last question asked whether respondent would allow their responses to be in a public dataset
- Remaining 244 responses

Country	N	%
Australia	14	6
England	52	21
Ireland	19	8
Italy	20	8
Malta	6	2
Scotland	18	7
USA	115	47
Total	244	100

Participant sample

- ▷ 61% female; 37% male
- ▷ 87% ages 30-59
- 49.6% teaching for 12 or more years
- 89% from Government/public schools
- > 36% from disadvantaged schools
- 29% rural/remote areas; majority urban/metro
- All were teaching computing in school in some capacity

Age groups taught

Findings: What is happening in schools?

Intended curriculum (broad) topics

Explicit (✓) Implicit (�) Not covered (×)		0	100			Г		NV	
Concepts	AUS	D-SU	ENG	IRL	ITA	I-SN	NLT	N-SU	SCO
Computational Thinking	1	1	1	1	1	X	1	×	1
Computer Systems	1	*	1	1	1	×	*	×	1
Networks and Internet	1	*	1	1	1	×	1	×	1
Data & Analysis	1	1	1	1	1	×	1	×	1
Algorithms and Programming	*	**	1	1	1	×	***	×	1
Impact of Computing	1	1	1	1	1	×	1	×	1

CS topics taught - Enacted vs Intended

CS Topics	Australia	England	Ireland	Italy	Malta	Scotland	USA
Algorithms	79% *	100%*	68% *	70%*	33%*	100%*	82%*
Artificial Intelligence	7%	<mark>44</mark> %	32%	10%	0%	6%	30% *
Computational Thinking	57%*	96%	68%	45%*	17%	89%*	72%
Cybersecurity	71%	83%	16%	35%	17%	72%*	57%*
Data analysis and visualisation	29%*	44%	26%	25%	0%	11%	43%*
Data representation (e.g. digital data, binary)	57%*	88%*	53%*	45%*	33%*	100%	68%*
Databases	14%	71%	42%	45%*	17%*	89%	*27%
Design process (or Design Thinking)	86%*	54%*	58%*	20%*	17%	56%	72%
Ethics	29%*	88%*	58%	35%	0%	56%*	75%
Hardware	26%*	90%	68%*	55%*	50%*	94%*	61%*
Information Systems	50%*	58%	21%	30%*	33%	72%*	35%
Machine Learning	7%	23%	26%	5%	17%	11%	21%
Networks and Digital Systems	64%*	90%	16%	40%	17%*	39%*	45%*
Privacy	64%*	77%	42%	40%	17%*	61%*	64%*
Programming skills and concepts	79%*	100%*	100%*	80%*	50%*	100%*	87%*
Robotics	79%	33%	42%	40 %	50 %*	11%	47%
Web Systems	36%	62%	37%*	50%*	17%	94%*	38%
Total sample (n)	14	52	19	19	6	18	115

Programming paradigm used - England

Ages	Unplugged	Symbolic (no text)	Visual (text)	Hybrid	Text-Based
3-5	8%	6%	10%	4%	10%
6-7	17%	15%	17%	6%	13%
8-10	21%	17%	21%	6%	13%
11-12	60%	40%	54%	10%	58%
13-15	65%	37%	58%	10%	73%
16-17	63%	31%	52%	8%	67%
18-19	48%	21%	33%	2%	48%

Programming Paradigms

Selection of programming language (all)

Appropriateness for age Cost or availability Devices available Stage in students' learning Scaffolding learners School determined Curriculum determined Supporting resources available My confidence level The activity purpose/goal What students can do

Selection of programming language

Reason for use	Australia	England	Ireland	Italy	Malta	Scotland	US	All
Appropriateness for age	4.1	4.2	4.1	4.2	4.0	4.1	4.2	4.1
Cost or availability	4.1	4.1	4.1	4.1	4.2	4.1	4.1	4.1
Devices available	3.8	3.8	3.8	3.8	3.8	3.8	3. 8	3.8
Stage in students' learning	4.1	4.0	4.0	4.0	4.0	4.0	4.1	4.1
Scaffolding learners	4.1	4.0	4.0	4.0	4.0	4.0	4.1	4.1
School determined	2.8	2.8	2.7	2.7	2.6	2.7	2.7	2.8
Curriculum determined	3.2	3.2	3.1	3.1	3.2	3.2	3.2	3.2
Supporting resources available	3.6	3.6	3.5	3.6	3.6	3.5	3.6	3.6
My confidence level	3.7	3.8	3.7	3.7	3.7	3.7	3.7	3.7
Purpose of the activity (e.g. robotics)	3.8	3.9	3.8	3.9	3.7	3.8	3.9	3.8
What students can do (tutorial/open)	3.9	3.9	3.8	3.9	3.8	3.8	3.9	3.9

Findings: Teacher CS Self-Esteem

Self-Esteem

Self-esteem is more broadly concerned with a person's positive and negative attitudes or perceptions about their self [38].

It is the emotional response in self-evaluation [23] and belief in themselves to be capable, significant, successful and worthy [12].

Self-Efficacy

Self-efficacy is much more task-specific and is concerned with a person's belief in their own capabilities to execute specific tasks [6].

Self-Esteem & Self-Efficacy

- 1. I feel that I have a number of good qualities (global self-esteem)
- 2. I feel that I have a number of good Java programming qualities (domain specific self-esteem).
- 3. <u>I can</u> write syntactically correct programming statements(**self-efficacy**).

Teacher Self-Esteem in CS

Teacher Age

No significant difference in CS self-esteem according to teacher age groups.

CS Teaching Experience

Statistically significant differences found in teachers' reported CS self-esteem and years of teaching experience.

Teacher Gender

Group	CS self-esteem	SD	Ν
Male	-0.7628	3.89	82
Female	+0.5036	2.98	133

NOTE: High CS self-esteem shows as a negative value, while low CS self-esteem is reported as positive.

Male teachers reported significantly higher CS self-esteem than female teachers.

Teaching Age Groups

Group	CS self-esteem	SD	N
Primary Level	+1.0917	4.20	56
Second Level	-0.3550	3.30	163

NOTE: High CS self-esteem shows as a negative value, while low CS self-esteem is reported as positive.

Primary teachers reported significantly lower self-esteem than secondary teachers

Teacher Location

Country	CS self-esteem	SD
Australia	+0.3186	4.1305
England	-0.4981	3.2869
Ireland	+0.9295	3.2897
Italy	-0.5448	2.4688
Malta	+1.2059	2.3013
Scotland	-1.2752	3.0671
USA	+0.2954	3.9872

Group	CS self-esteem	SD	Ν
Metro	-0.6028	3.36	41
Urban	+0.0367	3.48	106
Rural	+0.2698	3.82	60
Remote	+1.5121	2.59	3

NOTE: High CS self-esteem shows as a negative value, while low CS self-esteem is reported as positive.

No statistical significant differences identified in reported self-esteem between countries or by region.

Key findings

- Females, primary teachers and those with no CS teaching experience reported significantly lower CS self-esteem than counterparts.
- Although not significant, teachers further from a city centre and those aged 30-49 reported lower CS self-esteem.
- More Questions!
 - What interventions or PD can improve teacher CS self-esteem and particularly for cohorts with significantly lower CS self-esteem?
 - How long does it take teachers to build CS self-esteem and what impact does low teacher CS self-esteem have on student learning in CS?

Testing for Reliability & Validity

Evidence of Reliability

- Instrument was primarily descriptives (discrete) to collect data on classroom practices
 - Two constructs (Motivation and Self-Esteem) had Cronbach alpha values of 0.78 and 0.89, respectively.
- Test-retest reliability not conducted this time, but could be in the future.

Evidence of Validity

- Validity
 - Construct validity
 - Face validity
 - Concurrent validity
 - Population validity
 - Number of teachers per country
 - Testing for goodness-of-fit for
 - Number of teachers
 - Socio-economic status
 - School location
 - CS teaching experience
 - Sampling validity (sampling of questions to cover our goals)

Face Validity (Internal)

- 10 researchers involved in the construction of the instrument, with a minimum of one per country
- Reviewed each question more than once, with additional discussions of questions
- Pilot survey went through a number of revisions
- After launch and data analyzed, we went through each question again (approx 4 hr process with all researchers) -> METRECC version 1.2

Construct Validity

- Two constructs (Self-esteem and Motivation)
 - Self-esteem compared to results of a similar scale in another instrument with similar reliability
 - The other instrument was used for undergraduates
 - Months later, we compared the results and found somewhat similar results
 - Motivation scale was unique to the METRECC Survey. Nothing to compare it to, but it did pass internal face validity.

Population Validity: Country Representation

Country	# of Teachers	% of Teachers	# in Study	% in Study
US	3,600,000	70.52%	115	47.1%
England	453,411	8.88%	52	21.3%
Italy	649,495	12.72%	20	8.2%
Ireland	66,327	1.30%	19	7.8%
Scotland	51,138	0.81%	18	1.00%
Australia	288,583	5.65%	14	5.7%
Malta	5,923	0.12%	6	2.5%

Goodness-of-fit test using Cramer's V, χ2(6,N=196)=385.45, p< .0001, V=0.51

Sampling Validity

Refer you to the paper for the items that were changed and removed for the final survey.

For example, we removed items testing:

- General confidence
- Anxiety
- Motivation (intrinsic and extrinsic)
- Growth Mindset
- Stress in the teaching profession

Extensions & Future Work

Limitations and Future Work

- \triangleright This is a pilot study with a small sample size (n=244).
 - Future work may include administering the survey across more countries and with larger cohorts
- Consider separating and analyzing primary and secondary years due to their differences in topics and programming language requirements
- Further research to monitor changes over time in terms of enacted topics and languages, and teacher motivations.
- Extension of this work in South Asia

Special Content: COVID-19 Related Evaluation Instruments

Evaluation Instruments	Article Summaries	Conducting Research	RPPforCS
MEasuring TeacheR Enacted	Computing Curric	ulum (METRECC)	

A A **A**

Description	Designed to measure enacted curriculum across K-12 classrooms internationally.		
Target Demographic	Teachers		
Non-Cognitive Constructs	Social-Contextual - School Climate - Teacher Variables - Self-Esteem Social-Contextual - School Climate - Teacher Variables - Motivation Social-Contextual - School Climate - Other School Variables - Support for teaching CS Social-Contextual - School Climate - Other School Variables - Curriculum/Program		
Туре	Computing		
Author	Katrina Falkner, Sue Sentance, Rebecca Vivian, Sarah Barksdale, Leonard Busuttil, Elizabeth Cole, Christine Liebe, Francesco Maiorana, Monica M. McGill, and Keith Quille		
Verified	Author(s) have verified this entry.		
Survey	METRECC_v1.2.pdf METRECC Survey version 1.2.docx		
Additional Material	METRECC Country State K-12CSED Template.xlsx METRECC Pilot Study Data.xlsx		
Year Published	2019		
Research Methods	Quantitative		
Number of Questions	53		
Type of Questions	Multiple Choice, Likert style (scale upspecified)		

Available at https://csedresearch.org/tool/?id=185

Or:

- 1. Visit csedresearch.org
- 2. Select "Evaluation Instruments"
- 3. Type METRECC in the search bar.

METRECC South Asia

Anwar, T., Jimenez, A., Bin Najeeb, A., Upadhyaya, B., & McGill, M. M. (2020, August). Exploring the Enacted Computing Curriculum in K-12 Schools in South Asia: Bangladesh, Nepal, Pakistan, and Sri Lanka. In Proceedings of the 2020 ACM Conference on International Computing Education Research (pp. 79-90).

- Reinterpreted the METRECC instrument as an instrument for collecting information about enacted curriculum in South Asia.
- ▷ What we learned:
 - "Gifted" in South Asia means those students with special needs, not top 10%
 - Adding options for curriculum that requires students to write programs by hand (due to limited access to computers for executing them)
 - Restating "computational thinking" which is not commonly used
 - Reframing computer science/programming within ICT, as it is often taught under ICT
 - \circ We added a "bot detection" question
 - Reducing the survey to 10-15 minutes maximum time to take

csedresearch.org

Special Content: COVID-19 Related Evaluation Instruments

	Evaluation Instruments	Article Summaries	Conducting Research	Research News
METREC	CC South Asia			

Available at https://csedresearch.org/tool/?id=209

Or:

- 1. Visit csedresearch.org
- 2. Select "Evaluation Instruments"
- 3. Type METRECC in the search bar.

Description	Measures the enacted curriculum across K-12 classrooms in South Asia (Nepal, Pakistan, Bangladesh, Sri Lanka). Based on the original METRECC survey.
Target Demographic	Teachers
Non-Cognitive Constructs	Social-Contextual - School Climate - Teacher Variables - Professional Development Social-Contextual - School Climate - Other School Variables - Support for teaching CS Social-Contextual - School Climate - Other School Variables - Curriculum/Program
Туре	Computing
Author	Tehreem Anwar, Arturo Jiminez, Arsalan Najeeb, Bishakha Upadhyaya, Monica M. McGill
Verified	Author(s) have verified this entry.
Survey	METRECC South Asia.pdf METRECC South Asia.docx METRECC South Asia.qsf
Year Published	2020
Research Methods	Quantitative
Number of Questions	38
Type of Questions	Multiple Choice
Cost	Free

Note: Evidence of reliability and/or validity have been checked for the specified particular demographic in a particular setting. Using an instrument with evidence of reliability and validity does not mean that the instrument is reliable and valid in your setting. It can provide,

Discussion prompts

What are your experiences/observations about enacted CS curriculum in classrooms and how does it compare to what is 'intended'?

What variables/questions do you think would be interesting or valuable to explore within the METRECC dataset?

Thank you!

Rebecca Vivian | @RebeccaVivian | rebecca.vivian@adelaide.edu.au Monica McGill | @virtuallyFine | monica@csedresearch.org Elizabeth Cole | @ECM2016 | e.cole.2@research.gla.ac.uk

raspberrypi.org/computing-education-research-online-seminars

Key Takeaways

- Consistent, international instruments and templates can help us capture, compare and track CS education around the world.
- Developing a universal instrument is challenging with differences in language, curriculum and requirements.
- Focusing on intended and enacted curriculum allow us to compare what is expected and what is happening in classrooms.
- Early pilot results help us to identify needs and targeted areas for professional development & resource support.
- Having more countries trialing the instruments can help us collectively improve it and grow our understanding of the landscape.