Learning graphs: A strategic approach to computing curriculum planning

George Boukeas, Andy Bush, Rebecca Franks, Ben Garside, Sway Grantham, Ben Hall, Allen Heard Raspberry Pi Foundation, National Centre for Computing Education

Background	
• The National Centre for Computing Education (NCCE) is developing a comprehensive curriculum package of more than 500 hours worth of teaching resources, to support the delivery of the English Computing Curriculum.	
 The scale and complexity of planning the resources is tackled by organising the content into learning graphs. 	
Learning graphs	
 The nodes in a learning graph are <i>learning</i> waypoints that relate to concepts, knowledge, skills or learning objectives. 	
 Two nodes are connected if they represent adjacent waypoints in the learning process, i.e. if one is a prerequisite for the other. 	
 Nodes will often form clusters, corresponding to specific themes. 	
Related work	
 Approaches exist for describing learner journeys through knowledge, concepts or skills: e.g. <i>learning</i> <i>trajectories, learning progressions</i> and <i>learning</i> <i>maps</i> [1, 2, 3, 4, 5, 6]. 	
 Significant variation in how these approaches are defined and to what purpose they are used. 	
 There is recent work on learning trajectories for Computational Thinking concepts [8, 9]. 	
In relation to similar approaches:	
 Learning graphs directly inform lesson planning decisions. 	
 decisions. Learning graphs are (currently) empirical, instead of research- or evidence- based, since little is 	
 decisions. Learning graphs are (currently) empirical, instead of research- or evidence- based, since little is 	

References

[1] D. Clements et. al, Learning Trajectories in Mathematics Education (2004). Mathematical Thinking and Learning 6, pp. 81-89.

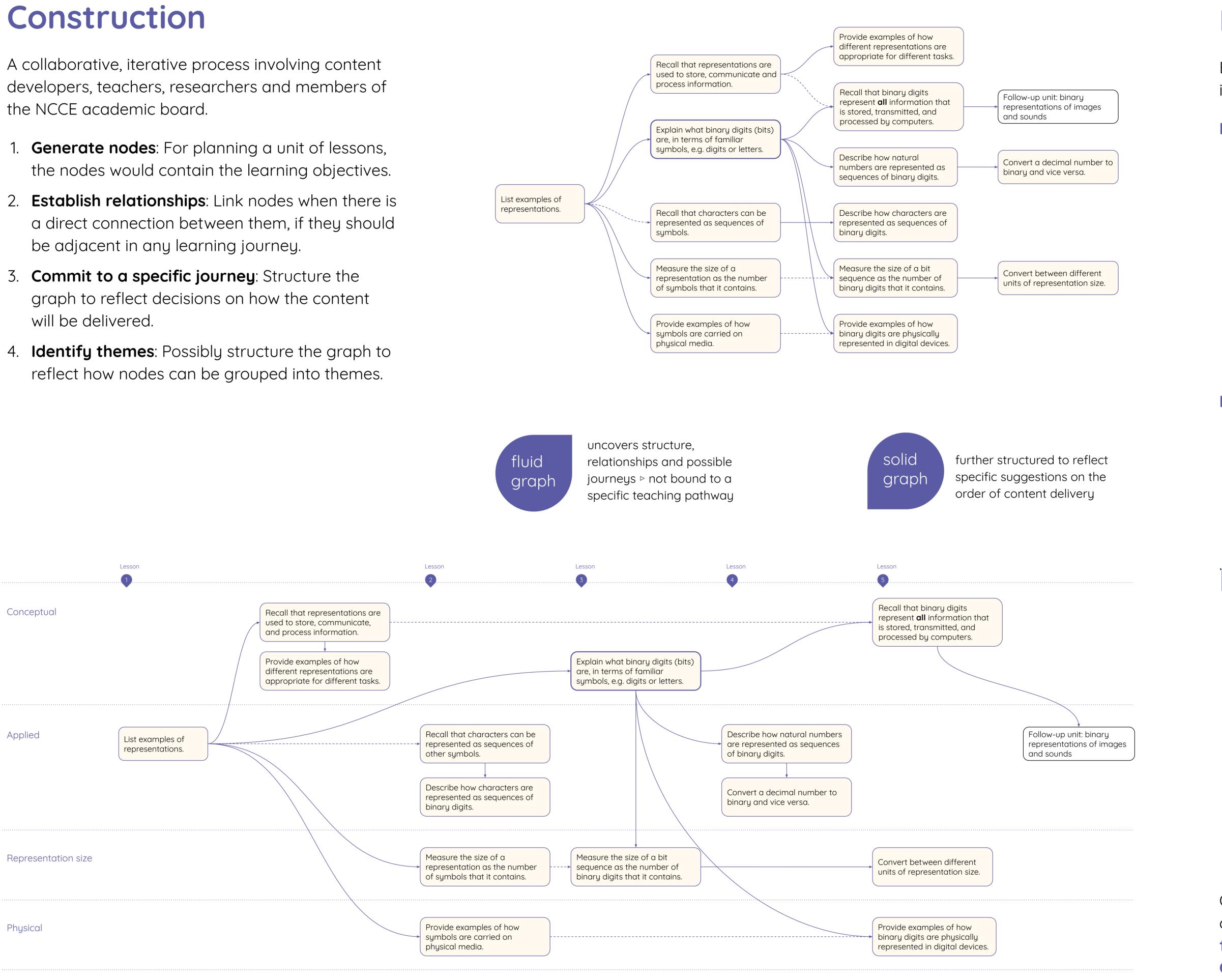
[2] P. Daro et. al, Learning Trajectories in Mathematics: A Foundation for Standards, Curriculum, Assessment, and Instruction (2011). CPRE Report #RR-68.

[3] P. Sztajn et. al, Learning Trajectory Based Instruction: Toward a Theory of Teaching (2012). Educational Researcher 41(5), pp. 147-56.

[4] Achieve, The Role of Learning Progressions in Competency-Based Pathways (2015) Report.

[5] N. Kingston et. al, The Use of Learning Map Systems to Support the Formative Assessment in Mathematics (2017). Education Sciences 7(1).

[6] Cambridge Mathematics, An update on the Cambridge Mathematics Framework. Retrieved January 2020.


[7] M. Guzdial et. al, Growing computer science education into a STEM education discipline (2016). Communications of the ACM 59(11), pp. 31–33. [8] K. Rich et. al, Decomposition: A K-8 Computational Thinking Learning Trajectory (2018). In Proceedings of the 2018 ACM Conference on International

Computing Education Research (ICER '18), pp. 124–132.

[9] K. Rich et. al, K-8 Learning Trajectories Derived from Research Literature: Sequence, Repetition, Conditionals (2017). In Proceedings of the 2017 ACM Conference on International Computing Education Research (ICER '17), pp. 182–190.

A collaborative, iterative process involving content the NCCE academic board.

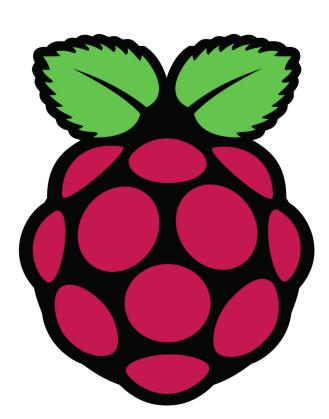
- be adjacent in any learning journey.
- Commit to a specific journey: Structure the graph to reflect decisions on how the content will be delivered.
- reflect how nodes can be grouped into themes.

Evaluation: findings

Evaluation of learning graphs through a series of interviews and discussions with content developers.

Merits

- Reveal the non-linear structure of the content.
- Lead to critical thinking about the relationships between different components > direct impact on the structure and sequence of the lessons.
- Highlight possible gaps between learning waypoints that need to be addressed by inserting intermediate nodes.
- Instrumental in (debating and) agreeing on terminology and then using it consistently.


Issues

- Can get large, complicated and interwoven. Structuring them clearly can be challenging.
- It is evident that a purpose-built tool is necessary for working efficiently with them.

Further work

- Investigate how learning graphs could inform assessment.
- Investigate how learning graphs could inform pedagogy
- Investigate how learning graphs could be combined with concept maps.
- Capture teacher feedback on the content of the learning graphs, to improve and refine them.
- Capture teacher feedback to understand their perception of learning graphs

Our vision is that the learning graphs produced in the context of the NCCE will serve as the **starting point** for a comprehensive set of learning waypoints for Computing education .

