
The results of the two tests found that the performance of students on the baseline
test was not significantly different between the two groups, yet the experimental
group achieved a significantly higher score on the posttest than the control group.
This indicates that the inclusion of language tools within the PRIMM materials
made a positive impact on students’ learning.

Some of the student in the focus group also commented on these tools, saying that
they found the colour coded program statements helpful for understanding the
grammatical structure of a new concept and that the fading cloze exercises were
useful in the later stages of writing code.

Investigating the impact of applying natural language
learning tools into the PRIMM programming framework
__

Cambridge Computing Education Research Symposium 2020, UK

Author: Alex Parry
alex.parry@raspberrypi.org

Background

The role of language in the field of computer science education is seen by some
researchers as a particularly important aspect that is often overlooked when designing and
implementing introductory programming courses (Lister et al., 2009; Portnoff, 2018).

This study investigates the relationship between learning a programming language and
learning a first or second natural language, and how this may influence the way in which
text-based programming is taught in schools. It was conducted in a school in England with
12-13 year old students, and builds upon the PRIMM (Predict, Run, Investigate, Modify,
Make) framework. PRIMM aims to counter the problems that novices encounter as they
attempt to write programs before they are able to read them (Sentance and Waite, 2017).

Findings

Baseline and posttest
To examine whether the results showed any significant difference between the control group and the experimental group
before the intervention began, the Mann-Whitney U test was used on the data with the null hypothesis: “there is no significant
difference between the scores of the experimental group and the control group in the baseline test”. Table 1 displays the
results, revealing that the p value (0.191) is over the common alpha risk value of 0.05. Therefore, the performance of students
on the baseline test was not significantly different between the two groups so the null hypothesis could not be rejected.

Conclusions

Method

One aim was to investigate the impact of integrating methods for learning natural
languages on students’ learning of a programming language. Material used in the initial
large-scale PRIMM study (Sentance et al., 2019) was modified to include extra teaching
tools, such as colour coding words , cloze exercises , and fading worked examples. Some
of these tools were combined further, for example fading cloze exercises. An experimental
group was taught with the new material and the control group was taught using the
original resources. Each group took a baseline test and a posttest to compare progress.

The second part of this study explored how students perceive learning a programming
language compared to a natural language. A focus group of 5 students from the
experimental group explored students’ views on this, which was categorised into themes.

References:
● Dijkstra, E. W. (1975) How do we tell truths that might hurt? ACM SIGPLAN Notices. 17 (5), 13–15.
● Lister, R. et al. (2009) ‘Further evidence of a relationship between explaining, tracing and writing skills in introductory programming’, in Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology

in Computer Science Education . ITiCSE ’09. 2009 New York, NY, USA: ACM. pp. 161–165.
● Portnoff, S. R. (2018) The introductory computer programming course is first and foremost a language course. ACM Inroads. 9 (2), 34–52.
● Sentance, S. et al. (2019) ‘Teachers’ Experiences of using PRIMM to Teach Programming in School’, in Proceedings of the 50th ACM Technical Symposium on Computer Science Education. SIGCSE ’19. 2019 New York, NY,

USA: ACM. pp. 476–482.
● Sentance, S. & Waite, J. (2017) ‘PRIMM: Exploring Pedagogical Approaches for Teaching Text-based Programming in School’, in Proceedings of the 12th Workshop on Primary and Secondary Computing Education. WiPSCE

’17. 2017 New York, NY, USA: ACM. pp. 113–114.Figure 2. A series of fading cloze exercises to support code writing.

The data from the posttests was used to analyse if there was any differences between students’ learning in the
intervention lessons compared to the control group once all of the lessons had ended. Table 1 shows the results
of the Mann-Whitney U test against the null hypothesis: “there is no significant difference between the scores
of the experimental group and the control group in the posttest”. Considering that the p value (0.001) is under
the alpha risk value of 0.05, this means that there is a statistically significant difference between the two
groups and the null hypothesis can be rejected. Judging by the results of the Mann-Whitney U test, the
experimental group achieved a significantly higher score on the posttest than the control group.

Focus group
Four themes emerged whilst coding and categorising the comments from the transcription: programming and
natural language similarities, range and scope of vocabulary, usefulness of the material, and problems with
syntax. Examples of these comments are shown in Table 2. Analysis of the focus group conveyed that most
students made similar connections between both types of languages, however they were not always
considered to be on the same level of difficulty. Some students thought programming was more challenging
due to the syntax, whilst others found it easier because of the limited, yet more versatile vocabulary.

Table 1. Baseline test and posttest analysis.

Table 2. Themes and example comments from the focus group.

Findings from the focus group indicate that a positive perspective of foreign or native
languages may benefit students' belief in their ability to learn a text-based
programming language, whilst negative preconceptions can discourage students. This
corresponds with the view that to be good at programming, you must be highly skilled
in your native language (Dijkstra, 1975).

One of the areas that was highlighted as a determinant regarding the self-efficacy of
learning to program was encountering syntax errors. Further research is required to
understand how natural language skills translate to learning a text-based
programming language. This could include using more tools from natural languages
that focus on supporting novices with vocabulary and syntax.

Figure 1. A colour coded if / else statement with a correct and incorrect example.

