
The use of worked examples has been
highlighted as a key practice for computer
science because it enables students to
develop problem-solving techniques and
improve their performance in near transfer
tests (Skudder & Luxton-Reilly, 2014).

Fully worked examples are used to
demonstrate an approach to solving a
problem, and to clarify difficult concepts.
Equivalent questions with three levels of
hints function as faded worked examples to
consolidate learning.

Worked examples

Gender ratio of engaged students Geographical spread of state schools in England
who have signed up to Isaac CS (last updated
March 2020)

Engaged teachers and students (state and
independent schools anywhere in the world)

 References
 Du Boulay, B. (1986) Some difficulties of learning to program. Journal of Educational Computing Research. 2 (1), 57–73.
 Guzdial, M. (2017) Balancing teaching CS efficiently with motivating students. Communications of the ACM. 60 (6), 10–11.
 Kay, R. H. & LeSage, A. (2009) Examining the benefits and challenges of using audience response systems: A review of the literature. Computers & Education. 53 (3), 819–827.
 Lister, R. et al. (2009) Further evidence of a relationship between explaining, tracing and writing skills in introductory programming. ACM SIGCSE Bulletin. 41 (3), 161–165.
 Parsons, D. & Haden, P. (2006) Parson’s programming puzzles: a fun and effective learning tool for first programming courses. In: Tolhurst, D. and Mann, S. (eds.) Proceedings of the 8th Australasian Conference on Computing Education. Darlinghurst, Australia, Australian Computer Society, Inc. pp. 157–163.
 Sirkiä, T. & Sorva, J. (2012) Exploring programming misconceptions: an analysis of student mistakes in visual program simulation exercises. In: Proceedings of the 12th Koli Calling International Conference on Computing Education Research. New York, Association for Computing Machinery. pp. 19–28.
 Skudder, B. & Luxton-Reilly, A. (2014) Worked examples in computer science. In: Whalley, J. and D’Souza, D. (eds.) Proceedings of the Sixteenth Australasian Computing Education Conference. Darlinghurst, Australia, Australian Computer Society, Inc. pp. 59–64.
 Sorva, J. (2013) Notional machines and introductory programming education. ACM Transactions on Computing Education. 13 (2), 8:1–8:31.

 Early findings from Isaac Computer Science
Content informed by research

Isaac CS offers monthly competitions and a variety of training
events for teachers and students that help them learn and stay
connected with the educational community.

Cambridge Computing Education Research Symposium 2020, UK
Authors: Eirini Kolaiti, Laura Sach, Diane Dowling, James Sharkey

Background

The Boolean logic editor is an interactive environment that allows
students to construct a Boolean expression as the answer to a
question.

More on this in:
Effective use of mathematical equations in an online learning
environment (Franceschini & Beresford, 2020)

Isaac Computer Science (CS) is a free, online platform supporting
students and teachers of A level Computer Science.

It is part of the National Centre for Computing Education, a
Department for Education project aiming to boost computing
education across England.

Isaac CS provides learning materials covering every topic of the
A level Computer Science curriculum, as well as self-marking
questions for students to practise with. The resources can be used
in the classroom and for independent study, for homework,
revision, extension activities, or flipped learning.

Bespoke features

Free-text questions allow students to enter answers using natural
language. The questions are then marked according to rules.

More on this in:
Automated marking of free-text questions in STEM (Thomas &
Beresford, 2020)

Example of common wrong answers and feedback

1 – This is a value that the variable answer takes, but it is not the
final value.

9 – This is the value of the variable number, not of the variable
answer.

-1 – This is the initial value of answer, but not the final one.

2 – The first element of the array is in position 0 (not 1). Also, the
value 9 appears twice in the array.

5 – Almost; the first element of the array is in position 0 (not 1).

Reading and explaining the purpose
of code, as well as tracing code,
fosters the ability of novices to write
their own programs (Lister et al.,
2009).

Isaac CS includes a variety of
questions that include tasks such as
asking students to fill in missing
code, trace an algorithm to find an
output, or identify the overall
purpose of a snippet of code.

Where possible, this gradual
approach to learning has been
extended to other parts of the
curriculum, for example, algorithms.

Each question is accompanied by a
video hint that provides a partial
solution or some of the working, but
never the full answer.

Response systems (i.e. online platforms that auto-mark questions)
can facilitate learning when they provide instant feedback that both
the students and the teacher can act upon (Kay & LeSage, 2009).

The ‘markbook’ feature of the platform provides teachers with a quick
overview of their students’ progress on a given assignment.

The ‘My progress’ feature shows students statistics about the
questions that they have answered and attempted.

A well-established area of computing education research stresses
the importance of identifying and resolving misconceptions
around programming (Sorva, 2013; Sirkiä & Sorva, 2012; Du Boulay,
1986).

To address common misconceptions, we use carefully planned
multiple-choice, text, and numerical questions. Feedback for
common wrong answers is provided to the student, which can
help with resolving misunderstandings.

Wrong answers entered into the platform are analysed monthly to
find misconceptions that we may not have anticipated.

A popular type of question for the development of programming
skills is Parson’s Problems: answers are split into pieces, which
are randomised, then the learner needs to put them in the right
order.

Parson’s Problems are considered to be motivating (Guzdial, 2017)
and beneficial to the learner as they can be used to model
well-written code to encourage good programming practice
(Parsons & Haden, 2006).

On Isaac CS, Parson's Problems are used across multiple topics.
Questions might involve creating a code snippet, ordering steps in
a process, or constructing a valid expression or sentence.

Engagement Next steps
Even though it is early to evaluate the impact of Isaac CS, data
around user engagement suggests that Isaac CS has been
positively received by the educational community.

Moving forwards, there is scope to analyse the various learning
paths that students follow, pinpoint challenging topics, and test
interactive features to understand how to best support learners.

An annual survey of the registered users will be carried out to
help evaluate the impact of the programme.

Even though the percentage of active female students reflects
the gender balance in computer science education, it is an area
that needs to be addressed further.

Events and competitions

Free-text questions

Boolean logic editor

Parson’s Problems

Tracing and reading code

Misconceptions and
common wrong answers

Formative assessment

● Teacher CPD
● Discovery Day

● Student Masterclass
● Student Booster

