
Cambridge Computing
Education Research
Symposium

2

Table of contents

Welcome

Keynote speaker

Paper presentations

Theme 1: Teacher engagement in
computing education research

Enabling school computing to respond to a skills
mismatch between education and the ‘world of
work’: teacher-researcher and academic voices
report on work in progress
Alison Twiner (University of Cambridge), Jo Shillingford
(Chellaston Academy), Louis Major (University of
Cambridge), and Rupert Wegerif (University of Cambridge)

Codeveloping primary (K-5) programming design
concepts with teachers
Jane Waite and Paul Curzon
(Queen Mary University of London)

Theme 2: Assessment tools

Computational Thinking Challenge: a pilot study
on reliability and usability
Rina Lai (University of Cambridge)

Automated marking of free-text questions in STEM
Meurig Thomas and Alastair R. Beresford
(University of Cambridge)

Theme 3: Application of
theoretical frameworks

Semantic waves: analysing the effectiveness
of computing activities
Paul Curzon (Queen Mary University of London),
Jane Waite (Queen Mary University of London),
and Karl Maton (University of Sydney)

Understanding conceptual transfer in second
and subsequent programming languages
Ethel Tshukudu and Quintin Cutts (University of Glasgow)

Theme 4: Perceptions
and attitudes

Exploring resilience for effective learning
in computer science education
Tom Prickett (Northumbria University), Tom Crick
(Swansea University), Morgan Harvey (University of
Sheffield), Julie Walters (Northumbria University),
and Longzhi Yang (Northumbria University)

How is programming taught in code clubs?
Experiences, gender perceptions, and learning
barriers experienced by code club teachers
Efthimia Aivaloglou and Felienne Hermans
(Leiden Institute of Advanced Computer Science)	

Survey of female A-level CS students: sense of
social purpose, sense of belonging, and hedging
Lynne Blair, Lisa Thomas, and Emily Winter
(Lancaster University)	

4

5

6

15

11 19

7

16

18

12
20

22

24

14

9

3

Poster presentations

Learning graphs: a strategic approach to computing
curriculum planning
George Boukeas, Andy Bush, Rebecca Franks, Ben Garside,
Sway Grantham, Ben Hall, and Allen Heard
(Raspberry Pi Foundation)

Mapping the use of physical computing at Key
Stage 2 in England
Katharine Childs (Nottingham Trent University)

The journey is the destination: process-oriented
data visualisations to explore appropriation in
open-ended robotics
Veronica Cucuiat (University College London)

Effective use of mathematical equations in an
online learning environment
Andrea Franceschini, James P. Sharkey, and Alastair R.
Beresford (University of Cambridge)

Communicating computer science in schools:
a case study
Anandha Gopalan and Jackie Bell (Imperial College London)	

A look at conceptual differences between
mathematics and programming
Tobias Kohn (University of Cambridge)

Early findings from Isaac Computer Science
Eirini Kolaiti (Raspberry Pi Foundation)

Investigating the impact that the Raspberry Pi
online learning project has on teachers’
self-efficacy in teaching computing
Alex Parry, Martin O’Hanlon, Mac Bowley, and Matt Hogan
(Raspberry Pi Foundation)

Investigating the relationship between
programming and natural languages, and the
impact of applying language learning tools within
the PRIMM framework

Alex Parry (Raspberry Pi Foundation)

Could an integrated, student-centred approach
to computing curriculum design have a positive
impact upon students’ problem-solving attitudes
and behaviours in Key Stage 3?
Julie Price (Member of the Chartered College of Teaching,
Associate Member of British Computer Society, NCCE CS
Champion, CAS Master Teacher)

Challenges facing computing teachers in Guyana
Lenandlar Singh (University of Guyana), Sue Sentance
(King’s College London), and Penelope De Freitas
(University of Guyana)

Singularity: ​a DataDrivenDance
Genevieve Smith-Nunes (University of Cambridge)	

27

35 45

47

29

37

31

39

33

41

34

43

Table of contents cont.

4

The Raspberry Pi Foundation and the
Department of Computer Science and
Technology at the University of Cambridge
are delighted to welcome you to the
Cambridge Computing Education
Research Symposium.

Welcome from the organisers

This symposium gives us an opportunity to bring together
academics and educators with a common interest in
computing education. For this symposium we are focusing
on the theme of computing education for young people in
non-formal and formal settings.

Research in computing education is a young field. There
has been a steady stream of research focused on higher
education, including how students at university learn
computer science; and another substantial stream on how
technology can and has impacted education more broadly.
Less apparent is research on computing education for young
people, which is our topic for today. Computing is now part
of the school curriculum in many countries worldwide, and
developing as an extra-curricular option in many more. In this
context, further research on how best to teach, learn, and
assess computing is desperately needed. We also need to
investigate ways of inspiring and motivating all young people
in an area which is increasingly important for their future.

We were looking forward to welcoming you to Cambridge,
England, for our first research symposium in what we hope
will be a regular series. Cambridge is a beautiful city and we
had planned two days of networking and discussion. However,
for reasons beyond our control an in-person meeting was not
to be, and we are delighted to be able to offer this symposium
to even more of you as a virtual event. We are very grateful

to all the people who have worked with us to make this a
success, and I’m sure you will appreciate there’s been a
learning curve along the way!

We were very pleased to receive a good number of
submissions to this conference. We hope you will enjoy the
nine presentations and twelve posters we have selected for
today. In addition, we are delighted to welcome Dr Natalie
Rusk from the MIT Media Lab as our keynote speaker.
We hope you enjoy the day!

Dr Sue Sentance
Raspberry Pi Foundation

Professor Alastair Beresford
University of Cambridge

April 2020

Symposium organisation
Programme chair: Hayley Leonard

Local organisation: Diana Kirby

With special thanks to Janina Ander, Sophia Donovan-Spalding,
Helen Drury, Tom Evans, Lizzie Jackson, Thom Kunkeler, Oliver Quinlan,
and Carrie Anne Philbin.

5

Natalie Rusk is one of the creators of Scratch
and is a Research Scientist in the Lifelong
Kindergarten group at the MIT Media Lab.

She is the lead author of the Scratch Coding Cards and co-
founder of the Computer Clubhouse, which has grown into an
international network of 100 after-school centers where young
people create projects that build on their interests.

Natalie researches youth motivation for learning in Scratch
and other learning environments and recently co-authored the
research paper, Youth perspectives on their development in a
coding community.

Natalie earned a Masters in Education from Harvard and a
PhD in child development from Tufts University. You can read
some of Natalie’s writing online, including her article: There’s
More Than One Way to Code a Cat.

Keynote speaker
Dr Natalie Rusk,
MIT Media Laboratory

How can we design research that
supports young people as creators?

Millions of young people around the world use the Scratch
coding environment to create animations, games, and other
interactive projects. While many research studies have focused
on learning with Scratch and related technologies, these
studies differ widely in their questions, methods, and findings.

This keynote will highlight examples and stories from
research that have advanced understanding of how to support
young people developing as creators, including the role of
peers and other community members. Building on these
insights, Natalie will suggest ways to document learning
experiences to help improve and expand opportunities for
young people from diverse backgrounds to develop a broad
range of skills as they create projects.

The Raspberry Pi Foundation and the
Department of Computer Science and
Technology at the University of Cambridge
are delighted to welcome you to the
Cambridge Computing Education Research
Symposium. This symposium gives us an
opportunity to bring together academics
and educators with a common interest in
computing education. For this symposium
we are focusing on the theme of computing
education for young people in non-formal
and formal settings.

6

Paper presentations

Theme 1:
Teacher engagement in
computing education research

7

Enabling school computing to respond to a skills mismatch
between education and the ‘world of work’: teacher-researcher
and academic voices report on work in progress
Alison Twiner (University of Cambridge), Jo Shillingford (Chellaston Academy), Louis Major (University of Cambridge),
and Rupert Wegerif (University of Cambridge)

Background

The ‘fourth industrial revolution’, accelerated by advances in
technology and computing, is widening a mismatch between
skills enabled by traditional schooling and skills needed for the
workplace. Employers in engineering, ICT, and other technical
disciplines are clear about the competencies young people
need: technical and practical skills (such as programming),
alongside the transferable skills (including creativity and
collaboration) that help individuals thrive in any organisation
(Nicholls, 2018). School computing education is ideally placed
to respond to this challenge, with national curriculum criteria
indicating it “equips pupils to use computational thinking and
creativity to understand and change the world” (Department
for Education, 2013). The Virtual Internships Project (VIP) – a
significant collaboration between the University of Cambridge,
BT, and Huawei – is developing and evaluating a new approach
to education that simulates meaningful encounters with the
‘world of work’ for young people aged 11-14. Initially working
with computing and other teachers in ‘education opportunity
areas’ in England, VIP facilitates 1) raising young people’s
aspirations, awareness, and ambition in areas traditionally
associated with low social mobility; and 2) developing complex
competencies, in particular, collaboration and creativity.

Research focus

In this symposium we report on research in progress (2019–
2021): developing and evaluating the VIP programme within
KS3 Computing. We illustrate how this can meet curriculum
criteria, whilst supporting authentic links to the world of work
through a dialogic approach (building on strong evidence
of the value of ‘dialogic education’, e.g. Howe, et al., 2019),
in which collaboration and creativity around meaningful
challenges to design useful technological solutions has an
intrinsic and potentially societal value (Johnson & Adams,
2011). The programme is designed to take roughly 10 in-class
hours over 6-10 weeks, where students in groups will research
the challenge; design, model, or build a solution; and present
their findings.

Method

VIP is informed by design-based research (DBR; Bakker, 2019).
Driven by the need to ‘close the gap’ between educational
theory and practice, alongside demand for rigorous, systematic
ways of developing practically-relevant educational materials
and environments, DBR features design as an integral part
of the research process. Through systematic and iterative
development and evaluation, we collected quantitative and
qualitative data regarding what works, how, and why. Data
from phase one, iteration one (for computing: seven classes
in two schools, five teachers, 200+ students) includes: lesson
observations, post-programme interviews with teachers, focus
groups and surveys with students. In phase one, iteration two,
and into phase two, we are incorporating more quantitative
assessment. This data and assessment will inform ongoing
programme development and evaluation.

8

References
Bakker, A. (2019) Design research in education: a practical guide for early career
researchers. Abingdon, Routledge.

Department for Education (2013) Computing programmes of study: key stages
3 and 4. Available from: https://www.computingatschool.org.uk/data/uploads/
secondary_national_curriculum_-_computing.pdf

Drennan, J. & Hyde, A. (2008) Controlling response shift bias: the use of the
retrospective pre‐test design in the evaluation of a master’s programme.
Assessment & Evaluation in Higher Education. 33 (6), 699-709.

Howe, C., Hennessy, S., Mercer, N., Vrikki, M. & Wheatley, L. (2019) Teacher-
student dialogue during classroom teaching: does it really impact upon student
outcomes? The Journal of the Learning Sciences. 28 (4-5), 462-512. Available
from: DOI: 10.1080/10508406.2019.1573730

Johnson, L. & Adams, S. (2011) Challenge based learning: the report from the
implementation project. Austin, Texas, The New Media Consortium.

Nicholls, B. (2018) Challenge based learning: A real-world approach for
secondary students to solve complex problems using geoscience knowledge
and skills. Terrae Didat. 14 (4), 369-372.

Findings

In this symposium, we share significant outcomes from the
ongoing work in progress in two ‘lead-research schools’. For
instance, through initial discourse analysis of the construct
‘Collaborating2Create’ as manifested in computing classrooms.
Findings will also be presented from 50+ computing student
retrospective pre-test (Drennan & Hyde, 2008) and post-test
perceptions (analysed using related samples Wilcoxon signed
rank test), as well as three focus groups on how attitudes
toward learning and the curriculum changed, and whether
aspirations, awareness, and ambitions were impacted. An
additional focus will be the role of the teacher, as genuine
teacher-researchers in DBR. One computing teacher-researcher
and careers-lead will present findings around the programme
as an innovative and meaningful way to meet curriculum
requirements, with practical classroom examples.

Conclusion and implications

The reported work in progress offers an approach to
computing education that capitalises on authentic links to
the world of work through the facilitation of problem-solving
and effective collaboration around meaningful challenges.
Next steps will utilise the learning from phase 1 to develop
and test a scalable model, which will include connections
with other world of work partners. The development of such
opportunities have the potential to make a real impact on
schools, students, and educational practice.

9

Background and context

In 2014, the national curriculum of England agreed that by the
age of eleven, young people should know how to design simple
programs (Department for Education, 2013). Yet there has
been little research into what primary programming design is or
how it should be taught (Falkner & Vivian, 2015; Waite, 2017).
A survey of over two hundred primary teachers in England
reported that teachers thought design in programming projects
was important, but this was not converted into teaching
practice (Waite et al., 2018). Reasons for this included pupil
resistance to design, a lack of time, questions on pedagogy,
confusion over what an algorithm is, and a lack of training on
how to teach design (Waite et al., 2020).

Research focus

To create training on how to teach the design of programs,
the concepts related to this area must be known. However,
these concepts have yet to be defined (Rich et al., 2017).
To address this, we are codeveloping a design toolkit with
teachers to provide the underpinning concepts about primary
programming design, and work towards a clearer definition
of programming design. We describe here the approach
taken, which draws on design-based research (Cobb et al.,
2003) and participatory design (Muller & Kuhn, 1993).

Method

An initial version of the toolkit was created and piloted in
professional development (PD). Feedback was used to update
the toolkit, and the new version reviewed by an expert in the field.

The reviewed toolkit contained eleven concepts (including
project genre, design component, design format, and a design
refinement process) and was used with a group of expert
primary teachers in a codevelopment process. Fifty-six teachers
volunteered to take part in this process. Based on their answers
in a participant survey, respondents were ranked by expertise
and asked to interview in that order. The number of teachers
interviewed was managed using a saturation of responses
approach (Fusch & Ness, 2015).

Twenty-eight teachers, half male and half female, geographically
spread from south-west England to Scotland were interviewed
face to face. Interviews followed a protocol, repeated across
concepts. First, the teacher read a concept description, then
they observed the concept being applied to a description of
a teaching activity. Next, the teacher applied the concept to
an activity they taught. After this, the concept was discussed,
including categorising how useful it might be for different types
of teachers.

The toolkit will be updated based on analysis of the interviews,
and a revised version will be shared online with interviewees
for comments. These comments will be used to develop a final
version of the toolkit. Interviews and comments will be analysed
using Kukartz’s (2014) qualitative thematic analysis approach.

Codeveloping primary (K-5) programming
design concepts with teachers
Jane Waite and Paul Curzon (Queen Mary University of London)

10

References
Cobb, P., Confrey, J., diSessa, A. A., Lehrer, R., & Schauble, L. (2003) Design
experiments in educational research. Educational Researcher, 32 (1), 9-13.
Available from: DOI: 10.3102/0013189X032001009

Department for Education (2013) National Curriculum in England: computing
programmes of study - key stages 1 and 2. Available from: https://www.gov.
uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study.

Falkner, K. & Vivian, R. (2015) A review of Computer Science resources for
learning and teaching with K-12 computing curricula: an Australian case study.
Computer Science Education 25, 390–429. Available from: DOI:10.1080/0899340
8.2016.1140410.

Fusch, P. I., & Ness, L. R. (2015) Are we there yet? Data saturation in qualitative
research. The Qualitative Report, 20 (9), 1408-1416. Available from: https://
nsuworks.nova.edu/tqr/vol20/iss9/3

Kuckartz, U. (2014) Qualitative text analysis: a guide to methods, practice and
using software. London, Sage.

Muller, M. J., & Kuhn, S. (1993) Participatory design. Communications of the ACM,
36 (6), 24-28 Available from: DOI: 10.1145/153571.255960

Rich, K., Strickland, C. & Franklin, D. (2017) A literature review through the lens of
computer science learning goals theorized and explored in research. SIGCSE ‘17:
The 48th ACM Technical Symposium on Computer Science Education, 495–500.
ACM, New York, NY, USA. Available from: DOI:10.1145/3017680.3017772.

Waite, J. (2017) Pedagogy in teaching Computer Science in schools: a literature
review (after the reboot: computing education in UK schools). Available from:
https://royalsociety.org/~/media/policy/projects/computing-education/literature-
review-pedagogy-in-teaching.pdf.

Waite, J., Curzon, P., Marsh, W. & Sentance, S. (2018) Comparing K-5 teachers’
reported use of design in teaching programming and planning in teaching
writing. Proceedings of the 13th Workshop in Primary and Secondary Computing
Education. Available from: DOI:10.1145/3265757.3265761.

Waite, J., Curzon, P., Marsh, W. D. & Sentance, S. (2020) Difficulties with design:
the challenges of teaching design in K-5 programming. Computers & Education
150, 103838,ISSN 0360-1315. Available from: https://DOI.org/10.1016/j.
compedu.2020.103838.

Findings

During the interviews, all teachers successfully applied each
concept to their lesson activity. A range of activities were
reviewed, including unplugged, animations, quizzes, games, and
physical computing activities. Teachers suggested many ways
to improve the toolkit, including adding extra detail, changing
definitions, adding examples, and radically changing one
concept. There was broad agreement that some concepts were
more useful to novice teachers than others, but generally that
all concepts were useful to experienced teachers developing
resources and PD for others.

Conclusion and implications

We have worked with teachers to develop a set of primary
programming design concepts. These concepts can be used
to develop an understanding of design in primary programming
projects: to review and compare activities, to guide the creation
of resources, and as underpinning content for PD. Further
research is needed to evaluate whether these concepts are
useful beyond the primary English context and to evaluate the
impact of introducing these on pupil progress.

11

Theme 2:
Assessment tools

12

Background and context

The paucity of assessment tools for teachers is a central
factor that impedes the promotion of computational thinking
(CT) in the classroom (Rich & Hodges, 2017). Indeed,
psychometrically-sound, reliable, and valid CT assessments
are scarce, if not absent, in the current literature. Thus, among
many unaddressed questions regarding CT, the development
and evaluation of assessment tools ought to be owed a
special emphasis in the literature.

Research focus

This pilot study consists of three stages that analyse the
reliability and usability of a computerised competency-
based assessment of CT for secondary school learners:
Computational Thinking Challenge (CTC). CTC automatically
scores and provides personalised formative reports to students
surrounding five components: problem decomposition,
generalisation/ pattern recognition, algorithms, abstraction,
and debugging. They were selected based on our survey with
results aligning with the systematic literature review conducted
by Kalelioglu et al. (2016). The report includes students’
strengths, explanation of CT components, and thinking points
designed to foster metacognitive strategies in CT.

Method

The first stage of the study evaluates the internal consistency
reliability of CTC; the second stage investigates the
comparative reliability between the computer-based version
and the paper-based version of CTC. Cronbach’s alpha was
used to establish the internal consistency reliability in these
two stages based on Kline (2000) and George & Mallery
(2003): excellent (α>.9), good (.7<α<.9), acceptable (.6< α<.7),
poor (.5< α<.6), unacceptable (α<.5). Extending from the first
two parts, the third stage reports the results of a Likert-scale
survey regarding user’s experiences for students regarding
CTC items. The survey aims to address two areas in CTC:
difficulty/clarity of items and motivation/enjoyment.

The sample in stage one was composed of a total of 19
children whose age ranges from 14.9 to 16.2 (Mage=15.51;
SDage = 0.35). The gender ratio was fairly unequal, though
albeit reflects the gender imbalance reported by The Royal
Society (2017); 17 (89%) of the participants were males and
2 (11%) were females. The sample in stage two and three
was composed of a total of 24 children whose age ranges
from 16.9 to 18.4 (Mage= 17.5; SDage = 0.37). Among the
participants, 21 (87.5%) of them were males and 3 (12.5%)
were females. The majority of participants in this group have
had some coding/programming experience prior to the study
(except for two non-responses): 47.4% (N=3) over 3 years;
21% (N=14) over 2 years; 5.7% (N=3) over 1 year and; 5.7%
(N=2) over 6 months.

Computational Thinking Challenge: a pilot
study on reliability and usability
Rina Lai (University of Cambridge)

13

References
George, D., & Mallery, P. (2003) SPSS for Windows step by step: a simple guide
and reference, 11.0 update (4th ed.). Boston: Allyn & Bacon.

Kalelioglu, F., Gulbahar, Y., & Kukul, V. (2016) A framework for computational
thinking based on a systematic research review. Baltic Journal of Modern
Computing, 4, 583–596.

Kline, P. (2000) The handbook of psychological testing. Abingdon, Routledge.

Rich, P., & Hodges, C. B. (Eds.) (2017) Emerging research, practice, and policy on
computational thinking. New York, Springer International Publishing.

The Royal Society (2017) After the reboot: computing education in UK schools.
Available from: https://royalsociety.org/~/media/policy/projects/computing-
education/computing-education-report.pdf

Findings

Using the aforementioned criteria, results in stage one
suggests that CTC demonstrates good reliability, Cronbach’s
α = .79 (Mscale =9.21; SDscale = 3.73; σ2=13.95). Results in
stage two suggest that the paper-based version has relatively
poor reliability, Cronbach’s α =.59, compared to the computer-
based version that demonstrates high reliability, Cronbach’s α
= .78. Stage three of the study suggests half of the participants
found the items to be “neither easy nor difficult” (N=12;
52.2%) and understood the questions “very well” (N=11;
47.8%). Regarding the motivational aspect, almost half of
the participants found CTC to be “moderately” stimulating/
interesting/ fun (N=11; 47.8%), and enjoyed CTC “a little” (N=7;
30.4%) to a “moderate” (N=7; 30.4%) extent.

Conclusion and implications

The three-stage pilot study provides initial supporting evidence
to the feasibility and quality of CTC. It is hoped that the
outcome of this study is a properly validated assessment tool
that allows for robust and reliable data on students’ CT skills,
contributing to future research and practice. The main study will
continue to evaluate the quality of CTC from a psychometric
(item response theory) and educational data mining approach
in a large sample.

14

As well as providing resources for introducing concepts,
the ideal online learning platform would ask questions of
the learner to detect misconceptions and provide timely,
meaningful feedback to correct them. Such online questions
need to consider the trade-off between the possible space of
user answers and the accuracy of the automated marking. In
this talk we discuss the use of short-form, free-text questions
to facilitate a wide range of possible student answers on the
Isaac online learning platform as used by ‘isaacphysics.org’
and ‘isaaccomputerscience.org’.

To consider the possible answer versus accuracy trade-
off, we can look at the case of multiple choice questions.
It is trivial to accurately mark multiple choice questions
automatically, however, learners using this type of question
are aided in their submissions by constraining the set of
possible misconceptions and by testing familiarity rather
than recall. These questions are less effective on an open
online platform where users can create multiple accounts
or submit multiple times.

To increase the range of possible answers, free-form text
response questions can be adopted. This question type also
matches the style of exam questions in many STEM subjects
in the UK. We will discuss how we have been able to facilitate
the creation and marking of free-text questions on an online
platform used by GCSE to A-level learners and outline a view
toward future approaches to finding better compromises in
the trade-off space.

We will discuss the integration of The Open University’s
OpenMark rule-based model (Butcher, 2006; Butcher &
Jordan, 2010) which we have used to mark 14,300 answers
from 1030 students of physics and computer science
since early 2019. The model is built from rules using a
keyword matching technique with word-level wildcards
and phrase-level modifiers to match out-of-order words,
ignore additional words, and accommodate simple spelling
mistakes through evaluating edit distances. We describe
the method’s strengths and weaknesses, and provide an
analysis of its use in practice.

A demo will be given of the tool we have built to help facilitate
the creation of free-text questions with rule-based marking. Our
web-based tool enables question creators to manipulate the
marking rules, and add example student answers to a
test harness to ensure the automated marker matches
expected results.

Despite the benefits of control and interpretability provided
by a rule-based marking system, the expressiveness
of language means that the technique suffers from an
undesirable rate of both false-positives and false-negatives.
In addition, the rule writer needs a large corpus of sample
student answers and many need to accommodate a wide
range of ways to express a correct answer. We will then
describe how several machine learning and natural
language processing approaches may help overcome
these limitations.

For example, inverting the test harness gives us a supervised
learning classification problem where rules can be learnt
from labelled examples. The problem with this approach is
that supervised learning usually requires a large amount of
training data and we cannot expect our question creators
to create thousands of correct and incorrect responses for
each of their questions.

We believe more promising possibilities can be found by
leveraging recent advances in natural language processing. We
will finish the talk by describing several new approaches which
use sentence embedding to automatically mark answers.

References
Butcher, P. G. (2006) OpenMark examples. The Open University. Available from:
http://www.open.ac.uk/openmarkexamples

Butcher, P.G. & Jordan, S.E. (2010) A comparison of human and computer
marking of short free-text student responses. Computers & Education, 55(2),
489-499.

Automated marking of free-text questions in STEM
Meurig Thomas and Alastair R. Beresford (University of Cambridge)

15

Theme 3:
Application of theoretical frameworks

16

Background and context

Computer science is being introduced at school level
worldwide, but with little existing research into appropriate
pedagogy, and with many teachers having little experience to
build on. Different teaching approaches have emerged with
differing degrees of success. Simple ways are needed to help
teachers predict the effectiveness of activities and identify
ways to improve them.

Research focus

The notion of ‘semantic waves’ forms part of Legitimation Code
Theory, an educational theory by Maton (2013) that has been
successfully applied in many disciplines. Its focus on changes
in the context-dependence (semantic gravity) and complexity
(semantic density) of knowledge offers a good way to think
about what makes an effective learning experience. Its utility
in understanding the teaching of computing has been argued
for by Curzon et al. (2018), Curzon (2019), Waite et al. (2019),
Curzon and Grover (to appear). The theory gives a way to think
about why different teaching approaches work or do not. It can
be used to evaluate individual or sequences of lesson plans,
online resources, and to teach students how to write good
explanations. To date it has only been applied to one computing
activity (Waite et al., 2019) — we provide further evidence of its
applicability in computing contexts.

Method

We applied semantic wave analysis to two activities /
approaches. The first unplugged programming activity, ‘box
variables’ (Curzon, 2014) was chosen as it was known to be
very effective (from student feedback and peer review). The
second activity followed the copy-code style (easy for novice
teachers), but suggested to be an ineffective way to teach
programming. For each activity, the combined changes in
semantic gravity and semantic density (concrete, everyday
concepts in everyday language versus abstract concepts
in technical language) were plotted in a simple,
coarse-grained way.

Semantic waves: analysing the
effectiveness of computing activities
Paul Curzon (Queen Mary University of London), Jane Waite (Queen Mary
University of London), and Karl Maton (The University of Sydney)

17

References
Curzon, P. (2014) The box variable activity. Available from: https://
teachinglondoncomputing.org/resources/inspiring-unplugged-classroom-
activities/the-box-variable-activity/

Curzon, P., McOwan, P.W., Donohue, J., Wright, S., & Mars, D.W. (2018) Teaching
computer science concepts. Computer science education: perspectives on
teaching and learning in school, S. Sentance, E. Barendsen, & C. Schulte (Eds.),
91-108. Bloomsbury Publishing, London.

Curzon. P. (2019) Follow semantic waves, tip 9 of learning to learn to program.
Available from: https://teachinglondoncomputing.org/learning-to-learn-to-
program/ An informal blog on practical ideas about teaching programming

Curzon, P. & Grover, S. (to appear), Guided exploration for introducing programming
concepts through unplugged activities, chapter in a forthcoming book.

Legitimation Code Theory (n.d.). Available from:
http://legitimationcodetheory.com/

Maton, K. (2013) Making semantic waves: a key to cumulative knowledge-
building. Linguistics and Education 24, 8-22.

Sentance, S. & Waite, J. (2017) PRIMM: Exploring pedagogical approaches for
teaching text-based programming in school. Proceedings of the 12th Workshop
on Primary and Secondary Computing Education, 113-114. ACM. Available from:
DOI 10.1145/3137065.3137084

Waite, J., Maton, K., Curzon, P. & Tuttiett, L. (2019) Unplugged computing and
semantic waves: analysing crazy characters. UKICER: Proceedings of the 1st
UK & Ireland Computing Education Research Conference. University of Kent,
Canterbury, UK. ACM. Available from: DOI: 10.1145/3351287.3351291

Findings

The profile of the box variables activity was found to follow a
semantic wave of moves up and down in context-dependence
and complexity, supporting the packing and unpacking of
subconcepts. The theory predicts this to be a strong approach.
However, analysis highlighted that the repacking section was
weak and suggested an improvement of having the students
summarise the points learned. By contrast, the copy-code
activity had a stepped ‘down escalator’ unlinked structure, with
no unpacking and unpacking support. The theory suggests this
lack of linking and repacking would be a critical factor in its
lack of effectiveness.

A workshop was delivered to in-service teachers, explaining the
theory and having the attendees draw the semantic waves for
the activities before discussing them. Attendees were able to
draw semantic waves, and doing so led to a discussion about
how the copy-code activity could be improved. Participant
feedback was very positive about the approach (though this
remains informal as yet).

Conclusion and implications

Semantic waves provide a powerful way to think about the
effectiveness of a learning activity as well as its particular
delivery, and so improve teaching. By looking at changes
in semantic density and semantic gravity of an activity,
the structure of the activity can be improved. The analysis
helps explain how and why unplugged activities can be an
effective form of teaching computing, and why ways to
teach programming adopting a copy-code strategy may be
ineffective. The analysis also suggests how to improve such
approaches. This leads one from copy-code activity to code-
predicting type approaches, such as PRIMM (Sentance & Waite,
2017), for example.

We believe the theory and analysis techniques behind semantic
waves should become a standard part of teacher training for
computing teachers both for initial teacher training and as part
of continuing professional development.

18

As students learn computer science (CS), they will transfer skills
and understanding from one programming language (PL) to
another, many times. Curricula allow flexibility such that there
is no dominant sequence of languages used. For example,
students can get their first exposure to PL concepts in primary
schools via block-based languages, such as Scratch or Alice,
and then move on to a text-based language later in secondary
school, such as Python and Java. Literature has shown that
transitioning between programming languages remains a
significant challenge for students’ conceptual understanding
(Kӧlling & Altadmri, 2015; Nelson et al., 1997; Powers et al.,
2007; Walker & Schach, 1996). In line with code comprehension
research (Schulte et al., 2010), we believe that for students to
transition effectively, they have to first understand programs in
the new language before they can write them.

We have undertaken three studies that support a model that
we have developed of PL transfer via program comprehension.
These are based on the notion of semantic transfer theory
(Jiang, 2004) and mindshift theory (Armstrong & Hardgrave,
2007). Firstly, an in-depth qualitative study was conducted on
five students transitioning from procedural Python to object-
oriented Java via semi-structured interviews held fortnightly
for a period of ten weeks. Students were asked to talk through
as they carried out code comprehension exercises in Python
and Java. The data was transcribed, coded, and analysed.
The second study was a quantitative within-participant study
which investigated 120 students by exposing them to the
same experimental conditions as they transitioned from
procedural Python to object-oriented Java. A Java pre-quiz on

code comprehension was given on the third week of learning
Java, followed by intervention on awareness of similarities and
differences between the two languages by the instructor on
the fourth week, and finally a post-quiz was given on the eighth
week. The third study was a within-participant quantitative
study conducted at a different university and investigated 277
students transitioning from object-oriented Python to object-
oriented Java in their first lesson of learning Java. These
students were asked to guess the results of hand executing the
Java code given based on their Python knowledge.

The results showed several commonalities across the
three studies. The findings support the model, indicating
that during the initial learning stages, learners relied mostly
on their syntactic matching between Python and Java and
subsequent semantic transfer which affected their learning of
Java concepts both positively and negatively. The semantic
transfer is positive for learning on constructs that share
similar syntax and semantics, negative on constructs that
share similar syntax but different semantics, and lastly there
is little or no transfer on constructs that do not share similar
syntax although they have the same underlying semantics.
Lastly results showed that instructional interventions on
PL transfer helped students to significantly transfer their
conceptual understanding from Python to Java.

In this paper, we will be exploring how these studies and our
model carry over to the prevalent school context of block-
based to text-based transfer. We will also argue about the
role of the teacher in PL transfer and how explicit reference

to similarities and differences between known and new PL
during instruction might benefit students faced with transition
challenges. Although significant work has been carried out in
this area, it has not been via this code comprehension model
of PL transfer, which has new insights to offer.

References
Armstrong, D.J. & Hardgrave, B.C. (2007) Understanding mindshift learning: the
transition to object-oriented development. MIS Quarterly, 453–474.

Jiang, N. (2004) Semantic transfer and its implications for vocabulary teaching
in a second language. Modern Language Journal, 88(3), 416–432.

Kӧlling, M., Brown, N.C.C., & Altadmri, A. (2015) Frame-based editing: easing
the transition from blocks to text-based programming. Proceedings of the
Workshop in Primary and Secondary Computing Education, 29–38. ACM.

Nelson, H.J., Irwin, G., & Monarchi, D.E. (1997) Journeys up the mountain:
different paths to learning object-oriented programming. Accounting,
Management and Information Technologies, 7(2), 53–85.

Powers, K., Ecott, S., & Hirshfield, L.M. (2007) Through the looking glass:
teaching CS0 with Alice. SIGCSE ‘07: Proceedings of the 38th SIGCSE technical
symposium on Computer science education, 213–217.

Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J.H. (2010) An
introduction to program comprehension for computer science educators. ITiCSE-
WGR ‘10: Proceedings of the 2010 ITiCSE working group reports, 65–86. ACM.

Walker, K.P., & Schach, S.R. (1996) Obstacles to learning a second programming
language: an empirical study. Computer Science Education, 7(1), 1–20.

Understanding conceptual transfer in second
and subsequent programming languages
Ethel Tshukudu and Quintin Cutts (University of Glasgow)

19

Theme 4:
Perceptions and attitudes

20

Background and context

Many factors have been shown to be important for supporting
effective learning and teaching — and thus progression and
success — in formal educational contexts. While factors
such as introductory-level computer science knowledge and
skills — as well as pre-university learning and qualifications
— have been extensively explored, the impact of measures of
positive psychology are less well understood for the discipline
of computer science. This preliminary work investigates the
relationship between effective learning and success, and two
measures of positive psychology: grit (Duckworth’s 12-item
grit scale) (Duckworth et al., 2007), and the Nicholson McBride
resilience quotient (NMRQ) (Clarke, 2010). The subjects will be
first year computer science undergraduates, to provide insight
into the factors that impact on the transition from secondary to
tertiary education.

Research methods

This quantitative study was conducted by incorporating two
survey-based measures of positive psychology — grit and
resilience — into the teaching of a first year core subject as
part of a UK computer science degree programme in February
2019. Students were asked to complete the surveys using the
university’s electronic learning platform. The students were
supported in the interpretation of their results and guidance
was provided regarding strategies to adopt to improve their
degree studies. The study was approved by the university’s
ethics board and student consent was explicitly obtained to
use their data for research. Data on student performance was
obtained at the end of the teaching year and consists of the
results from five different subjects over both semesters of the
academic year as well as attendance data over the year.

The data was analysed by a combination of correlation analysis
and logistic regression. The intention of the logistic regression
was to explore the potential strength of relationship rather than
to develop a model for predictive purposes.

Findings

Data was captured related to grit (N=58) and resilience
(N=50) questionnaires and coaching. Analyses demonstrate
that resilience is statistically significantly (1% level) linked
(correlation analysis and logistical regression) to attendance
and performance for individual subjects and year average
marks. However, this was not the case for grit.

Exploring resilience for effective learning
in computer science education
Tom Prickett (Northumbria University), Tom Crick (Swansea University), Morgan Harvey
(University of Sheffield), Julie Walters (Northumbria University), and Longzhi Yang (Northumbria University)

21

References
Bennedsen, J. & Caspersen, M.E. (2019) Failure rates in introductory
programming: 12 years later. ACM Inroads 10(2), 30–36.

Brown, N.C.C., Sentance, S., Crick, T., & Humphreys, S. (2014) Restart: The
resurgence of computer science in UK schools. ACM Transactions on Computer
Science Education 14(2), 1–22.

Clarke, J. (2010). Resilience: Bounce back from whatever life throws at you.
Crimson Publishing, USA.

Crick, T., Davenport, J.H., Hanna, P., Irons, A., & Prickett, T. (2020) Computer
Science degree accreditation in the UK: a post-Shadbolt review update.
Proceedings of Computing Education Practice, article 6, 1-4. ACM.

Crick, T., Davenport, J.H., Irons, A., & Prickett, T. (2019) A UK case study on
cybersecurity education and accreditation. Proceedings of 49th Annual
Frontiers in Education Conference (FIE 2019). IEEE.

Duckworth, A., Peterson, C., Matthews, M.D. & Kelly, D.R. (2007) Grit:
Perseverance and passion for long-term goals. Journal of Personality and
Social Psychology 9(6), 1087–1101.

Tryfonas, T. & Crick, T. (2018) Public policy and skills for smart cities: the
UK outlook. Proceedings of 11th International Conference on Pervasive
Technologies Related to Assistive Environments (PETRA’18), 116-117. ACM.

Watson, C. & Li, F.W.B. (2014) Failure rates in introductory programming
revisited. Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education (ITiCSE’14), 39-44. ACM.

Conclusion and implications

Promoting effective learning and student success remains a
challenge in computer science, with high failure rates reported
in foundation areas, such as introductory programming
(Bennedsen & Caspersen, 2019; Watson & Li, 2014). The
results of this preliminary study demonstrate that the 12-
item resilience scale could be a factor in promoting success,
but that the same was not true for the 12-item grit scale.
The results of this single-institution study lead to a number
of possibilities for future work analysing the transition from
secondary education to tertiary education, such as providing
insight into learner attitudes, behaviours, and dispositions,
especially how this links to the teaching and assessment of
key curricula concepts in computer science. For example:

i) Initiatives related to the active development of student
resilience can be deployed and their effectiveness evaluated

ii) Replicating the study with larger cohorts and at other
schools/colleges/universities to validate this study, increasing
the sample size and strengthening the statistical basis.

iii) Using resilience in predictive models alongside other
key factors in order to further augment and enhance the
prediction of student success.

Alongside substantial national curriculum and qualifications
reform across the four nations of the UK (Brown et al., 2014),
as well as a significant socio-economic push to produce more
graduates with ‘high-value’ digital, data, and cyber skills (Crick
et al., 2020; Crick et al., 2019; Tryfonas & Crick, 2018), these
changes are being monitored and replicated internationally.

With changes to curricula, as well as rethinking programmes,
pedagogies, and practice, we thus recognise similar challenges
and opportunities in a number of other jurisdictions, providing a
platform for replicability, portability and extension of this work.

22

Background and context

Programming is a popular extracurricular activity for school
children. International programs like CoderDojo or Code
Club are supporting an increasing number of after-school
programming clubs. Programming classes are also given in
independent code clubs, coding summer camps, workshops in
libraries and museums, as well as various other venues. Code
club lessons are different from in-school programming classes
in terms of setting and lesson material, whereas the learning
environment in code clubs has already been found to affect
student emotions (McKelvey & Cowan, 2017) and motivation
(Butler et al., 2018).

Research focus

The goal of our research is to explore how programming
is taught at code clubs through the experiences and
perceptions of code club teachers. We investigate if
the learning barriers that have been reported by school
teachers in programming (Dorn et al., 2018), including
motivation, commitment, and abstraction capacity, also
apply to students of code clubs. We also aim to determine
if the gender perceptions that have been found to apply to
school teachers (Funke et al., 2015), for example about the
structuredness, self-confidence, and scientific curiosity of
their students, also apply to code club teachers.

Method

Towards this direction, we conducted an exploratory
survey where we invited code club teachers to answer to a
combination of closed and open-text questions. The survey
received 98 complete responses from people teaching at
CoderDojos, Code Clubs, various country-specific programs,
and independant after-school programming clubs. We
performed quantitative analysis of the data collected
through the survey, as well as qualitative analysis of the
open-text responses.

How is programming taught in code clubs?
Experiences, gender perceptions, and learning
barriers experienced by code club teachers
Efthimia Aivaloglou and Felienne Hermans (Leiden Institute of Advanced Computer Science)

23

References
Aivaloglou, E. & Hermans, F. (2019) Early programming education and career
orientation: the effects of gender, self-efficacy, motivation and stereotypes.
Proceedings of the 50th ACM Technical Symposium on Computer Science
Education (SIGCSE ’19), 679-685. ACM, New York, NY, USA.

Butler, N., Flood, C., & Power, A. (2018) What motivates a Ninja? An exploration
of students’ CoderDojo experience. Cyberpsychology and Society: Current
Perspectives, Andrew Power (Ed.). Abingdon, Routledge.

Dorn, N., Berges, M., Capovilla, D., & Hubwieser, P. (2018) Talking at cross
purposes: perceived learning barriers by students and teachers in programming
education. Proceedings of the 13th Workshop in Primary and Secondary
Computing Education (WiPSCE ’18), article 12. ACM, New York, NY, USA.

Funke, A., Berges, M., Mühling, A. & Hubwieser, P. (2015) Gender differences in
programming: research results and teachers’ perception. Proceedings of the
15th Koli Calling Conference on Computing Education Research (Koli Calling
’15), 161-162. ACM, New York, NY, USA.

McKelvey, N. & Cowan, P. (2017) Valence at CoderDojos: an exploration. Literacy
Information and Computer Education Journal (LICEJ) 8(1), 2525–2533.

Wilcox, C. & Lionelle, A. (2018) Quantifying the benefits of prior programming
experience in an introductory computer science course. Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (SIGCSE ’18), 80-
85. ACM, New York, NY, USA.

Findings

The results from the survey and the qualitative analysis
of the open-text responses suggest that (1) the teaching
material and practices vary between different code clubs and
different programs, but (2) plenary sessions and summative
assessments are rare. Also, (3) motivation and commitment
are rarely identified as learning barriers for code club
students, whereas debugging, error messages, and abstract
thinking are the most commonly reported difficulties. Gender
differences are perceived by code club teachers, with (4)
boys in code clubs being perceived as more confident and
having more familiarity and prior knowledge of programming,
whereas (5) persistence, concentration, responsiveness to
instruction, collaboration skills, grit, and structuredness are
considered increased for girls.

Conclusion and implications

Our findings highlight the differences between code
club lessons and after-school programming classes,
with motivation and commitment being rarely reported
for the former, but within the most commonly identified
learning barriers in the latter. Within the perceived gender
differences, we find that the increased familiarity and
prior knowledge on programming of male students is a
concerning factor, because it is known from existing work
that prior programming experience strongly affects learning
performance (Wilcox & Lionelle, 2018) and CS career
attractiveness (Aivaloglou & Hermans, 2019).

24

Background and context

The percentage of women in the tech workforce stands
at 17% (BCS, 2019) and, in education, 21.4% of females
complete Computing at GCSE (JCQ, 2019-a), and 13.3%
complete CS A level (JCQ, 2019-b). There is widespread
concern how this gender imbalance and persisting image of
CS as a masculine discipline puts off otherwise interested and
competent women.

Research focus and method

A survey of 56 female A-level CS students from schools/
colleges across the north-west (Lancashire) region sought
insights into perceptions of CS and reflections on future
study/careers. Our particular focus was better understanding
the experiences of students in our local context. To recruit
participants, contact was made with CS teachers at all A-level
CS providers in our region. Teachers were asked if they would
help distribute a questionnaire to their female CS students.
Student participation was voluntary.

Findings

Thematic analysis uncovered two themes — sense of social
purpose and sense of belonging — plus the frequent use of
‘hedging’, a sociolinguistic device commonly identified in
female speech (Murphy, 2010).

Sense of social purpose: Regarding important aspects for
their future careers, respondents ranked the “development of
technical skills” first, followed closely by “improving people’s
lives”, and “improving society”, with weighted counts of
n=105, 100, 97 respectively.

Open responses to projects showed students valuing “making a
difference” (R22), and “real-world users” and “realistic situations”
(R47). Examples included simulating “staff movement in a
hospital” (R5), a “voting machine [hardware and software] to be
used in school” (R7), an encrypted “booking system for a local
music school” (R17), and “dyslexia screening” (R37).

However, some respondents felt a disconnect: a CS career
was not “helping people in need” nor “a caring career”
(R10). Similarly:

“I want to impact on people’s lives (social action) and I don’t
think this can be done with CS and, if it can be done, I
haven’t been educated how to.” (R15)

Survey of female A-level CS students: sense of
social purpose, sense of belonging, and hedging
Lynne Blair, Lisa Thomas, and Emily Winter (Lancaster University)

25

Sense of belonging: Identified as an important predictor of
success and retention (Rainey et al., 2018, Sax et al., 2018),
yet a realisation of not fitting in (R49) and wishing for “more
people you can easily relate to” (R3) continues to persist.

Some students were concerned/surprised by the gender
gap: “I wasn’t expecting to be the only girl in my class” (R49,
similarly R19, R21). Stronger emotions included: “intimidated”
(n=4); “uncomfortable” or “worried” (n=3); or “disconcerted”,
“scared”, “out of place” (n=2).

In contrast, positive comments included “it may be an
advantage to be a woman in CS” (R44), feeling “more unique”
(R30), and noting:

 “Girls who enter pave the way for decreasing the gap.” (R27,
similarly R35)

References
BCS (2019) Almost half of women in IT think gender is their biggest barrier to
promotion. Available from: https://www.bcs.org/more/about-us/press-office/
press-releases/almost-half-of-women-in-it-think-gender-is-their-biggest-barrier-
to-promotion/

Joint Council for Qualifications (JCQ) (2019-a) GCSE (full course) results
summer 2019. Available from: https://www.jcq.org.uk/examination-results/
gcses/2019/main-results-tables/gcse-full-course-results-summer-2019

Joint Council for Qualifications (JCQ) (2019-b) A level and AS results
summer 2019. Available from: https://www.jcq.org.uk/examination-results/a-
levels/2019/main-results-tables/a-level-and-as-results-summer-2019

Murphy, B. (2010) Corpus and sociolinguistics: investigating age and gender in
female talk. Studies in Corpus Linguistics (vol. 38). John Benjamins Publishing.

Rainey, K., Dancy, M., Mickelson, R., Stearns, E. & Moller, S. (2018) Race and
gender differences in how sense of belonging influences decisions to major in
STEM. International Journal on STEM Education, 5(10).

Sax, L.J., Blaney, J.M., Lehman, K.J., Rodriguez, S.L., George, K.L. & Zavala,
C. (2018) Sense of belonging in computing: the role of introductory courses
for women and underrepresented minority students. Social Sciences, 7(8),
122–144.

Other responses indicated determination “to take it because I
love it” (R17) and resilience:

“I have to work harder than men to gain men’s respect. I will
not let this prevent me from studying CS [...] and I’m not
going to stop pursuing my ideal career.” (R18, similarly R20)

Hedging: Faced with negative feelings, many respondents
were quick to add diminishing clauses. The extent was
surprising, with n=20 responses clearly exhibiting this
linguistic device:

 “Uncomfortable but would get used to it” (R12, similarly R15,
R39, R48)

“Out of place but would still enjoy it” (R24)

“Isolated at first but once I’ve made friends, I think I’d be ok”
(R25)

Conclusion and implications

These female A-level students have already developed
mechanisms of resilience and a ‘way of being’ in a
predominantly male CS education environment. Yet the
data shows a fragility regarding sense of purpose and
sense of belonging. Many hedged responses embrace an
individualistic perspective that stresses self-responsibility
to fit in and succeed. This offers a challenge to all in CS —
responsibility to adapt also lies at departmental/institutional
and discipline levels.

26

Poster presentations

27

The National Centre for Computing Education (NCCE) is
developing a comprehensive curriculum package of more than
500 hours worth of teaching resources, to support the delivery
of the English national curriculum for computing across all
Key Stages. The resources need to be planned down to the
learning objectives and activities of each individual lesson,
ensuring coverage of the national curriculum, consistency, and
pedagogical robustness.

The scale and complexity of this planning problem is tackled by
organising the content (concepts, knowledge, skills, objectives)
into interconnected networks called ​learning graphs. Depending
on the level of abstraction, the nodes in a learning graph could
contain anything ranging from the contents of a curriculum
strand across an entire Key Stage, to the learning objectives of
a six-lesson unit. Nodes are connected if they represent two
adjacent waypoints in the learning process and will often form
clusters, corresponding to specific themes.

Learning graphs are similar to existing approaches used for
describing learner journeys through knowledge, concepts, or
skills: learning trajectories, learning progressions, and learning
maps are common terms of similar flavour encountered
in the literature (Achieve, 2015; Clements & Sarama, 2004;
Kingston & Broaddus, 2017; Sztajn et al., 2012; Cambridge
Mathematics, n.d.). There is variation in how these approaches
are defined and to what purpose they are used. Learning
graphs are different in that they directly inform our lesson
planning decisions and are thus “translated into usable tools

for teachers” (Daro et al., 2011). Also, learning graphs are
(currently) empirical, instead of research- or evidence- based,
since little is known about learning waypoints in computing
(Guzdial & Morrison, 2016). There is recent work on learning
trajectories for computational thinking concepts (Rich et al.,
2018; Rich et al., 2017).

A collaborative, iterative process for producing learning graphs
is followed. The content developers, teachers, researchers,
and members of the NCCE academic board are involved in
generating and reviewing the graphs. Initially, the graphs
produced are in a ‘fluid’ state: they uncover the structure of
the content and the possible journeys through it, without being
bound to a specific teaching pathway. Eventually the graphs
reach a ‘solid’ state, where the nodes are further organised and
arranged to reflect specific suggestions on the order that the
content could be delivered.

The use of learning graphs for planning has been evaluated
through a series of interviews and discussions with the content
developers, who report significant merits. In contrast to lists of
curriculum statements or learning objectives, learning graphs
reveal the non-linear structure of the content and lead to critical
thinking about the ​relationships​ between different components,
which directly impacts the structure and sequence of the
lessons. They highlight possible gaps between learning
waypoints. They are also instrumental in clarifying terminology
and using it consistently.

On the other hand, learning graphs can get large, complicated,
and interwoven. Structuring them in a clear way can be
challenging and it is evident that a purpose-built tool is
necessary for working efficiently with them.

Our aim is to further investigate research into similar
approaches, to see how learning graphs can be put to other
uses, such as informing assessment and pedagogy. Another
focus is on how to capture and structure teacher feedback
on learning graphs, for the purpose of improving and refining
them. Finally, we would also like to use teacher feedback to
understand how they can be used by teachers, such as for
understanding the ‘flow’ of content through a unit’s lessons,
ensuring curriculum coverage, or justifying teaching decisions.

Our grand vision is that the learning graphs produced in
the context of the NCCE will serve as the starting point
for a comprehensive set of learning waypoints for
computing education.

Learning graphs: a strategic approach
to computing curriculum planning
George Boukeas, Andy Bush, Rebecca Franks, Ben Garside, Sway Grantham,
Ben Hall, and Allen Heard (Raspberry Pi Foundation)

28

References
Achieve (2015) The role of learning progressions in competency-based
pathways. Available from: https://www.achieve.org/files/Achieve-
LearningProgressionsinCBP.pdf

Cambridge Mathematics (n.d.) An update on the Cambridge mathematics
framework. Retrieved January 2020 from: www​.cambridgemaths.org/Images/
cambridge-mathematics-framework.pdf

Clements, D. & Sarama, J. (2004) Learning trajectories in mathematics
education. Mathematical Thinking and Learning, 6, 81-89.

Daro, P., Mosher, F., Corcoran, T., Barrett, J., Battista, M., Clements, D.,
Confrey, J., Daro, V., Maloney, A., Nagakura, W., Petit, M., Sarama, J. (2011)
Learning trajectories in mathematics: a foundation for standards, curriculum,
assessment, and instruction. CPRE Research Report # RR-68.

Guzdial, M. & Morrison, B (2016) Growing computer science education into a
STEM education discipline. Communications of the ACM 59(11), 31–33.

Kingston, N. & Broaddus, A. (2017) The use of learning map systems to support
the formative assessment in mathematics. Education Sciences, 7(1), 41.

Rich, K.M., Binkowski, T.A., Strickland, C. & Franklin, D. (2018) Decomposition:
A K-8 computational thinking learning trajectory. Proceedings of the 2018
ACM Conference on International Computing Education Research (ICER ’18),
124–132.

Rich, K.M., Strickland, C., Binkowski, T.A., Moran, C. & Franklin, D. (2017) K-8
learning trajectories derived from research literature: sequence, repetition,
conditionals. Proceedings of the 2017 ACM Conference on International
Computing Education Research (ICER ’17), 182–190.

Sztajn, P., Confrey, J., Holt Wilson, P. & Edgington, C. (2012) Learning trajectory
based instruction: toward a theory of teaching. Educational Researcher 41(5),
147-56.

29

Background and context

Computing was introduced into the English national curriculum
in 2014, replacing the disaggregated subject of ICT. After the
reboot (Royal Society, 2017) evaluated existing provision and
identified some significant challenges that must be overcome
to fully embed the curriculum consistently across all schools.
This research responds to a suggestion from Crick (2017)
to map with greater clarity what is actually being taught in
schools and focuses on physical computing, one of the four
pedagogical contexts for teaching computer science identified
by Waite (2017).

Research focus

At Key Stage 2 (ages 7–11), pupils are required to design
and write programs including those to control or simulate
physical systems (DfE, 2013). However, there is little available
evidence about which devices teachers are (or are not) using
in the classroom to deliver this curriculum requirement.
Pedagogy starts with planning, and teachers are influenced
by a number of different factors when they plan a scheme of
work: their school, the curriculum, themselves as a practitioner
and, specifically for computing, their community of practice
(Sentance & Humphreys, 2018). This framework of four
influencing factors was used to explore how teachers decide
whether to include physical computing in their classroom, and
if they do, which devices they are choosing to use.

Method

An opportunistic sample of teachers who use online
communities was surveyed using an electronic questionnaire,
which was first piloted and evaluated. Three online
communities were selected for their ability to reach suitable
Key Stage 2 teachers in England: Computing at School, Primary
Rocks and TES. The survey questions asked teachers about the
content of their 2018/2019 plans and schemes of work, and
then used digital images to help them identify which devices
they were planning to use, if any.

Mapping the use of physical computing
at Key Stage 2 in England
Katharine Childs (Nottingham Trent University)

30

References
Crick, T. (2017) Final draft: Computing education: an overview of research
in the field. The Royal Society, London. Available from: https://royalsociety.
org/-/media/policy/projects/computing-education/literature-review-overview-
research-field.pdf.

Department for Education (DfE) (2013) Computing programmes of study: key
stages 1 and 2. House of Commons, London. Available from: https://www.
gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study/national-curriculum-in-england-computing-programmes-
of-study#key-stage-2

Przybylla, M., Henning, F., Schreiber, C. & Romeike, R. (2017) Teachers’
expectations and experience in physical computing. In: Dagienė V., Hellas A.
(eds.). Informatics in Schools: Focus on Learning Programming. ISSEP 2017.
Lecture Notes in Computer Science, vol 10696, pp 49-61. Cham, Springer.

Royal Society (2017) After the reboot: computing education in UK schools.
Available from: https://royalsociety.org/~/media/events/2018/11/computing-
education-1-year-on/after-the-reboot-report.pdf

Sentance, S. & Humphreys, S. (2018) Understanding professional learning
for Computing teachers from the perspective of situated learning. Computer
Science Education, 28(4), 1-26. Available from: https://DOI.org/10.1080/089934
08.2018.1525233

Waite, J. (2017) Pedagogy in teaching computer science in schools: a literature
review. The Royal Society, London. Available from: https://royalsociety.org/~/
media/policy/projects/computing-education/literature-review-pedagogy-in-
teaching.pdf.

Findings

69% of respondents (n=54) were qualified teachers, with
the remaining 31% reporting other job roles, ranging from a
Specialist Learning Advisor (Computing) to an IT Technician /
Teaching Assistant. Only 57% (n=54) of the respondents had
the role of computing coordinator in their school. The most
surprising aspect was that the 43% of respondents taught
all four KS2 year groups. This subgroup (n=23) taught in all
different sizes of school, and of these 23 teachers, 7 were not
computing subject coordinators.

Of the four factors influencing curriculum design, teachers were
most positive about the curriculum area. There was strong
support for both the benefits of using physical computing and
its use to deliver learning outcomes. As would be expected
from a sample of teachers who use online communities,
almost two-thirds of respondents felt they had opportunities
to network with other teachers and share ideas.

However at school level, the time to prepare physical
computing activities and access to enough equipment were
both barriers to its use, which aligned with previous research in
the field (Pryzbylla et al., 2017). At practitioner level, almost half
the teachers surveyed felt they lacked access to high-quality
written resources and training opportunities to use physical
computing in their lessons, although a majority of teachers
(74%) felt they had a good understanding of the learning
outcomes that physical computing activities could deliver.
Devices which can be seen as more time consuming were
the most prevalent devices used in the classroom, specifically
the BBC micro:bit and the Crumble microcontroller boards.

Conclusion and implications

Teachers need access to high-quality resources and training
to support them to teach computing using the most prevalent
physical computing devices. Further qualitative research is
needed to produce case studies which evidence learning
outcomes when using physical computing and which
investigate practical solutions to the time problems faced
by teachers.

31

Open-ended project-based learning activities are rooted in
constructivist, student-centred, growth-based pedagogies which
emphasise a trial and error learning process over perfect end
results (Berland et al., 2014; Cukurova et al., 2016; Papert, 1993).

In addition, open-ended projects offer students the chance to
externalise their own interpretation of the ideas they are exposed
to, associate them with previously existing concepts, and in
that process, expand their corpus of personal understanding
(Duckworth & Yeager, 2015; Polman, 2006). The open-ended
aspect of project-based learning is explored in the educational
theory literature via the concept of appropriation, as the self-
constructive component of activity (Poizat et al., 2013; Wertsch,
1991). However current project-based learning assessments are
usually based on the resulting end-product of the project, such
as an artefact or a portfolio, overlooking the actual cognitive
and development processes that occur in the process (Black &
Wiliam, 2010; Resnick et al., 1970), such as appropriation.

The study uses trace log data which stores every version of
the students’ work to produce visualisations which showcase
the experimentation process, during the project timeline,
independent of final outcomes. Drawing upon quantitative
ethnography (Shaffer, 2017) and the theory of appropriation
(Rogoff, 1995; Wertsch, 1991), the trace logs data was
structured across three dimensions of variety, validity, and
complexity to characterise the students’ actions (Fry, 2007).
Aspects of students’ appropriation of the SAM Labs kits
are discussed as they emerge from comparisons between
students’ experimentation process.

The journey is the destination: process-oriented data
visualisations to explore appropriation in open-ended robotics
Veronica Cucuiat (University College London)

32

The data was collected at a London school, during a real-life
design and technology project spanning over six months,
with 18 children aged 10–12. The children built intelligent
board games, inspired by traditional games but enhanced
with electronic behaviours built using the SAM Labs blocks,
such as automatic dice, trap doors, light and sound effects as
the players progress on the board. Each version of the virtual
circuits was logged to record the modifications students
make to their artefacts. These provide a versioning of the
graphs throughout the project timeline.

References
Berland, M., Baker, R., & Blikstein, P. (2014) Educational data mining and learning
analytics: applications to constructionist research. Technology, Knowledge and
Learning, 19. Available from: DOI: 10.1007/s10758-014-9223-7.

Black, P. & Wiliam, D. (2010) Inside the black box raising standards through
classroom assessment. Available from: DOI: 10.1177/003172171009200119.
http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/[in=epidoc1.
in]/?t2000=022921/(100)

Cukurova, M., Avramides, K., Spikol, D., Luckin, R. & Mavrikis, M. (2016) An
analysis framework for collaborative problem solving in practice-based learning
activities: a mixed-method approach. Proceedings of the Sixth International
Conference on Learning Analytics & Knowledge (LAK ’16), 84-88. ACM, New
York, NY, USA. Available from: DOI: 10.1145/2883851.2883900.

Duckworth, A. & Yeager, D. (2015) Measurement matters: assessing personal
qualities other than cognitive ability for educational purposes. Educational
Researcher, 44(4), 237–251. Available from: DOI: 10.3102/0013189X15584327.

Fry, B. (2007) Visualizing data. Newton, O’Reilly Media.

Papert, S. (1993) The children’s machine: rethinking school in the age of the
computer. New York, NY, USA, Basic Books, Inc.

Poizat, G., Haradji, Y. & Adé, D. (2013) When design of everyday things meets
lifelong learning. . . International Journal of Lifelong Education, 32(1). Available
from: DOI: 10.1080/02601370.2012.734485.

Polman, J. (2006) Mastery and appropriation as means to understand the
interplay of history learning and identity trajectories. Journal of The Learning
Sciences, 15(2), 221–259. Available from: DOI: 10.1207/s15327809jls1502_3.

Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K. & Silverman, B.
(1970) Digital manipulatives: new toys to think with, 281–287.

Rogoff, B. (1995) Observing sociocultural activity on three planes: participatory
appropriation, guided participation, and apprenticeship. In: In J. V. Wertsch, P.
del Rio, & A. Alvarez (Eds.), Sociocultural Studies of Mind, 139-164. Cambridge,
UK, Cambridge University Press.

Shaffer, D. (2017) Quantitative ethnography. Madison, Cathcart Press.

Wertsch, J.V. (1991) Voices of the mind: a sociocultural approach to mediated
action. Cambridge, Massachusetts, Harvard University Press.

From the visualisations, appropriation comes through in
various forms:

• the different blocks used to achieve the same
SAM behaviour

• the different experiments of achieving the same
SAM behaviour

• the different contexts of using the same block

• the different experimentation volume towards achieving
the same SAM behaviour

• the different final implementations of the same
SAM behaviour

Three emerging themes emerges from initial explorations
with teachers:

1. showing the construction journey in full has value in
understanding individual students’ nuances

2. cross-contextual applications of the same functionality
can differ significantly

3. emerging tensions between complexity, variety and
validity as students experiment

33

Mathematical analysis is an essential tool in the practice
of science, technology, engineering, and mathematics, and
consequently it is important for students in these subjects
to demonstrate effective use of mathematics (Goldstone
& Landy, 2009). In this talk we are interested in supporting
the use of mathematical equations in an online learning
environment; in particular, we require methods of supporting
both the entry and automated marking of mathematical
equations, in order to support immediate personalised
feedback to the learner.

We report on our experience designing, building, and using
Inequality: an open-source formula entry tool which works
across all major browsers, supports both mouse and touch-
based entry, and is usable by high school children and teachers.
Inequality is composed of a graphical, drag-and-drop front-end
interface to build expressions in response to a question and a
back-end service. It automatically marks answers entered with
model answers for the given question as specified by our team
of content creators, with various degrees of flexibility in how
two expressions are considered equivalent.

Inequality has been used for nearly three years to support
over 20,000 students and 900 teachers of GCSE and A level
Physics. Since May 2019, Inequality supported over 300 pupils
and about 50 teachers with symbolic Boolean expressions as
taught in A level Computer Science.

We describe the effect Inequality has on the behaviour and
performance of students using our learning platform. We
compared the behaviour of students who used approximately

350 physics and mathematics questions, in either multiple
choice or symbolic format. Our analysis explored nearly 500,000
answer attempts and determined that 73% of the 350 questions
required fewer attempts to answer correctly in symbolic format.
Because the Boolean logic questions in our computer science
platform were developed symbolically from the beginning, we
currently cannot perform the same comparison.

We also looked at how formulae are constructed using
Inequality across physics and computer science. We built
action trees comprising actions such as dragging a symbol
from the menu, attaching and detaching a symbol to another
symbol, and so on. We found that, while there are a few
recurring and efficient ways of building correct answers,
many students arrived at correct answers in less efficient
and sometimes more convoluted ways. For example,
some students effectively used Inequality to manipulate
an expression as they built it, adapting what they would
otherwise do with pen and paper. We found very similar
patterns in both physics and computer science, which tells us
that students work in similar ways, and suggests that many of
the benefits seen in the physics platform may translate to the
computer science platform.

We asked some of our students from the physics platform
to complete a feedback questionnaire that was essential
in contextualising our quantitative analysis. We analysed
563 valid responses from students who were largely in Year
12 (typically aged 16–17) and started using the physics
platform in the same year. The questionnaires produced
three key findings:

1. Students found it more difficult to work with larger
formulae — mainly due to some usability issues that we
since fixed — but they generally do not avoid work that
they think will require large formulae

2. Students have a slight preference towards Inequality as
opposed to pen and paper when they need to manipulate
formulae, and they find the editor helpful in working
out solutions

2. Students do not find Inequality distracting or hindering in
their workflow

Effective use of mathematical equations
in an online learning environment
Andrea Franceschini, James P. Sharkey, and Alastair R. Beresford (University of Cambridge)

References
Franceschini, A., Sharkey, J.P. & Beresford, A.R. (2019) Inequality:
Multi-modal equation entry on the web. Proceedings of the Sixth ACM
Conference on Learning @ Scale, 1–10. Available from: https://DOI.
org/10.1145/3330430.3333625

Goldstone, R. & Landy, D. (2009) How much of symbolic manipulation is just
symbol pushing? Proceedings of the Annual Meeting of the Cognitive Science
Society, 31.

34

In recent years there has been a drop in the numbers of
students studying GCSE Computer Science in the UK (Cellan-
Jones, 2019). This has been linked to a couple of factors,
primarily the lack of support in schools for the new curriculum
and the lack of awareness of the relevance of the subject
in wider society. To support the learning of computing in
schools, and help plug this gap a little, the Department of
Computing at Imperial College London has developed a
course titled ‘Communicating computer science in schools’. In
this course, undergraduate students go into schools to assist
with and lead computer science lessons, spreading their
knowledge and skills to the pupils, and helping to develop
schools’ competency in teaching modern computer science.

The new GCSE computing curriculum introduced in 2014
heralded a sea change in schools, as it replaced ICT with
Computer Science, 2018 being the last year for the ICT GCSE.
The ICT curriculum was very broad and consisted of fairly
mundane activities concerned with ‘data processing’, such
as spreadsheets and document preparation. The new GCSE
curriculum, on the other hand, teaches all aspects of computer
science, including programming and data presentation and
analysis by computers. Unfortunately, there had been a
decrease in the number of students taking the new GCSE as
compared to 2016, as well as a decrease in the numbers taking
ICT. If this trend continues, the numbers of secondary school
students receiving a fair and representative course on modern
computer science and its applications will be relatively small
and there is a real concern that we will not have enough trained
computer scientists in the future (Cellan-Jones, 2017).

‘Communicating computer science in schools’ (Imperial
College London, n.d.) is an optional module which students
can take either in the third or fourth year of their degree in lieu
of another computing course in the department. Each student
is placed with a different London-area school for a period of
six to eight weeks (usually for around two hours per week).
While taking this module, students support the teaching of
computer science by gaining first-hand experience of the
school environment.

At first, the students observe the host teacher and after they
gain more experience and confidence, they take the lead and
implement a special teaching project, which may be to teach a
lesson themselves and/or plan some activities (such as code
clubs, etc.). This project is planned directly in conjunction with
a teacher at the school. To ensure the suitability of the student
in terms of motivation and responsibility, we interview every
student. We started with eight students and schools in 2013–
14 and now have twenty students engaged in the programme.
Many of the schools which started with the first cohort are still
taking part in the programme and these schools are a mix of
state, private, girls-only, boys-only, and co-ed schools.

Running this course has provided us with unique insights
into the ground realities of teaching computing in schools.
We observed that it was better to have a subject specialist
teaching it, although a teacher who is passionate and
willing to learn was more effective than an expert who was
disinterested. Pupils seemed to be more engaged when shown
the applications of what they were learning, especially when
examples were tailored to them. Misconceptions about the

subject abound and start very early on. Children love to learn
concepts kinaesthetically, sometimes involving computer-
based activities too early can put them off. It is very important
to win the parents’ support.

Communicating computer science in schools:
a case study
Anandha Gopalan and Jackie Bell (Imperial College London)

References
Cellan-Jones, R. (2017) Computing in schools - alarm bells over England’s
classes. BBC News. Available from: https://www.bbc.co.uk/news/
technology-40322796

Cellan-Jones, R. (2019) Computing in schools in ‘steep decline’. BBC News.
Available from: https://www.bbc.co.uk/news/technology-48188877

Imperial College London. (n.d.) Communicating computer science in schools.
Available from: http://www.imperial.ac.uk/computing/current-students/
courses/322/

35

Background and context

Mathematics and computer science are closely related fields
that share a lot of common ground and terminology. Indeed,
the difference between mathematical and computational
thinking is still being debated, and algorithms and
programming are often taught as part of a mathematics
course. Closer inspection, however, reveals some
fundamental differences in how basic concepts and ideas
are treated and how problems are approached. Even where
mathematics guarantees the existence of a unique solution,
for instance, finding that solution might be beyond the means
of any computer.

In an educational setting, the differences between
mathematics and computer science make a strong case
for why the introduction of computer science alongside
mathematics is well warranted. Moreover, when we introduce
students to programming, say, we might find that their
existing knowledge and skills in mathematics can both be
an asset as well as a hurdle to overcome in order to master
programming. In particular, students need to comprehend the
difference between mathematical reasoning on the one hand,
and following algorithmic computations, on the other hand.

Research focus

Functions are a well-known example of a seemingly shared
concept between mathematics and programming, which, on
closer inspection, reveals to bear significant differences. In
particular, when seen as a mathematical expression, `f(2)`
stands for a uniquely determined element, whereas the
same expression as part of a computer program triggers
a sequence of operations with possibly undetermined or
varying outcome. Hence, a program containing lines such as
`if input() < 0 or input() > 9:` indicates a conceptual model that
is closer to the mathematical notion of functions, rather than
to the notion effectively used in programming. When made
the subject of discussion in classes, such differences can
provide an opportunity to deepen the students’ understanding.
Without proper discussion, however, these differences can
equally give rise to deep misconceptions, where students
struggle to reconcile concepts from both fields.

Methodology and findings

Learning to program is well accepted as a difficult challenge
and often frustrating experience. Errors and bugs of various
kinds can be hard to see, especially for a novice programmer,
and can keep a program from running or following the
intended algorithm. Some of these errors might in fact stem
from misconceptions where students apply mathematical
reasoning instead of computational procedure to solve a
problem. By inspecting about 40 programs from students in
10th grade, we have attempted to identify bugs and errors
that suggest such a background.

Our inspection of variable usage, assignment, and sequential
execution in students’ programs suggests indeed an
underlying, misapplied ‘mathematical’ approach of about
a third of the students (Kohn, 2017). This is in accordance
with findings from older, similar studies (Bayman & Mayer,
1983), with other research also pointing out the difficulties of
variables and assignment, e.g. Kuittinen & Sajaniemi, 2004,
Putnam et al., 1986, and Samurçay, 1985. Furthermore, a
more recent study (Lister et al., 2004) has found that novice
programmers have poor tracing skills, which is also in
agreement with our findings.

A look at conceptual differences between
mathematics and programming
Tobias Kohn (University of Cambridge)

36

Conclusion and implications

Understanding possible sources of misconceptions is a
first step towards successfully addressing misconceptions
in the classroom. Our findings suggest that care must be
taken when emphasising the close relationship between
mathematics and computer science during a programming
course. During a trial run in a high school, we have instead
discussed some of the issues discovered during our study,
with promising results: explicit discussion in the classroom
might indeed have a positive impact on the students.

References
Bayman, P. & Mayer, R.E. (1983) A diagnosis of beginning programmers’
misconceptions of basic programming statements. Communications of the
ACM, 26(9), 677-679.

Kohn, T. (2017) Variable evaluation: an exploration of novice programmers’
understanding and common misconceptions. SIGCSE ‘17: Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education,
345-350.

Kuittinen, M & Sajaniemi, J. (2004) Teaching roles of variables in elementary
programming courses. SIGCSE Bulletin, 36(3), 57-61.

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Moström, J.E., Sanders, K., Seppälä, O., Simon, B. & Thomas,
L. (2004) A multi-national study of reading and tracing skills in novice
programmers. SIGCSE Bulletin, 36(4), 119-150.

Putnam, R.T., Sleeman, D., Baxter, J.A. & Kuspa, L.K. (1986) A summary of
misconceptions of high school basic programmers. Journal of Educational
Computing Research, 2(4), 459-472.

Samurçay, R. (1985) The concept of variable in programming-its meaning and
use in problem-solving. Educational Studies in Mathematics, 16(2), 143-161.

37

Background

Isaac Computer Science (CS) is a free, online platform for
supporting students and teachers with A level Computer
Science. It is part of the Department for Education’s
National Centre for Computing Education that aims to boost
computing education across England. Isaac CS provides
learning materials that cover every topic of the Computer
Science curriculum and questions for students to practise
with. The programme also offers a variety of training events
for teachers and students.

Content informed by research

Both the content and features of the platform are informed
by research in the field. A well-established area of computing
education research stresses the importance of identifying and
resolving misconceptions around programming (Sorva, 2013;
Sirkiä & Sorva, 2012; Du Boulay, 1986). In order to address
misconceptions, the Isaac CS platform includes carefully
planned multiple-choice, text, and numeric questions.
Feedback for common wrong answers is provided to the
student which can help with resolving misunderstandings.

Research has shown that reading, explaining the purpose of,
and tracing code fosters the ability of novices to write their
own programs (Lister et al., 2009). In light of these findings,
Isaac CS includes tasks such as asking students to fill in
missing code, trace an algorithm to find an output, or identify
the overall purpose of a snippet of code.

A popular type of question for the development of
programming skills is Parson’s Problems; answers are split
into pieces and randomised which the learners then need to
put in the right order. Parson’s Problems are considered to be
motivating (Guzdial, 2017) and beneficial to the learner as they
can be used to model well-written code to encourage good
programming practice (Parsons & Haden, 2006). On Isaac CS,
Parson’s Problems are used across multiple topics. Questions
might involve creating a code snippet, ordering steps in a
process, or constructing a valid expression or sentence.

The use of worked examples has been highlighted as a key
practice for computer science because it enables students
to develop problem-solving techniques and improve their
performance on near transfer tests (Skudder & Luxton-Reilly,
2014). Fully worked examples are used to demonstrate an
approach to solving a problem and for clarifying difficult
concepts. Equivalent questions with three levels of hints
function as faded-worked examples to consolidate learning.

Early findings from Isaac Computer Science
Eirini Kolaiti (Raspberry Pi Foundation)

38

Bespoke features

Research suggests that response systems (i.e. online
platforms that auto-mark questions) facilitate learning when
they provide instant feedback that both the students and the
teacher can act upon (Kay & LeSage, 2009). The ‘markbook’
and ‘my progress’ pages offer real-time insights that help
identify areas of difficulty. Bespoke features such as the
marking of free-text questions and the boolean logic
editor have opened up the opportunity for further research
in the field.

Engagement

Even though it is still early to evaluate the impact of Isaac CS,
data around user engagement suggest that Isaac CS has been
received positively from the educational community. Taking
into consideration the geographical spread of state schools
who have signed up to Isaac CS, we can assert that the
platform has reached learners across England.

To conclude, Isaac CS has made a very encouraging start.
Nonetheless, there are many aspects that need to be
researched further. Only 20% of the active users are female;
a figure that reflects the gender balance in computer science
education and needs to be addressed further. Moving forwards,
an annual survey of the registered users will be carried out to
help evaluate the impact of the programme. There is also scope
to analyse the various learning paths that students follow,
pinpoint challenging topics, and test interactive
features to understand how to best support learners.

References
Du Boulay, B. (1986) Some difficulties of learning to program. J. Educational
Computing Research 2(1), 57–73.

Guzdial, M. (2017) Balancing teaching CS efficiently with motivating students.
Communications of the ACM 60(6), 10–11.

Kay, R. H. & LeSage, A. (2009) Examining the benefits and challenges of using
audience response systems: A review of the literature. Computers & Education,
53(3), 819–827.

Lister, R., Fidge, C. & Teague, D. (2009) Further evidence of a relationship
between explaining, tracing and writing skills in introductory programming, in
ACM SIGCSE Bulletin, 41(3), 161-165. ACM.

Parsons, D. & Haden, P. (2006) Parson’s Programming puzzles: a fun and
effective learning tool for first programming courses, ACE ‘06: Proceedings of
the 8th Australasian Conference on Computing Education, 52.

Sirkiä, T. & Sorva, J. (2012) Exploring programming misconceptions: an analysis
of student mistakes in visual program simulation exercises. Proceedings of the
12th Koli Calling International Conference on Computing Education Research,
19-28. ACM.

Skudder, B. & Luxton-Reilly, A. (2014) Worked examples in computer science.
Proceedings of the Sixteenth Australasian Computing Education Conference,
148, 59-64. Australian Computer Society, Inc..

Sorva, J. (2013) Notional machines and introductory programming education.
ACM Transactions on Computing Education, 13(2), 1–31.

39

Background

When the new computing curriculum was introduced in
England in September 2014, many teachers found themselves
without the subject knowledge and pedagogical skills required
to teach the subject. The Royal Society’s (2017) report ‘After
the reboot: computing education in UK schools’ found the
computing provision to be ‘patchy and fragile’, and identified
concerns around a shrinking workforce and teachers’
readiness to implement the new curricula.

A recent study of secondary school teachers in England from
the National Foundation for Educational Research analysed
the recruitment and retention problem faced by teachers
of science, mathematics, and computing (Worth & Van
den Brande, 2019). This report suggests that high-quality
professional development is likely to help improve teachers’
self-efficacy (belief in their own abilities), satisfaction, and
their likelihood of staying in teaching. Moreover, the report
found that technology (including computing) teachers are
significantly more likely than other teachers to identify a need
for professional development.

The Raspberry Pi online learning project aims to enhance
subject knowledge, pedagogical skills, and confidence of
computing teachers to enable them to successfully deliver the
English computing curricula. The courses are free to access
and available to all at FutureLearn.com, and are structured to
support teachers who are new to computing and experienced
teachers alike.

Method

The data gathered about learners on the online courses is
taken from two places: course participation data provided by
FutureLearn, and course surveys provided towards the end of
the course.

FutureLearn provides anonymised quantitative data about
learners participation on individual courses, which includes
detailed information relating to enrolments, step completions,
comments, video views, and peer assignments and reviews.

Learners are also presented with a course survey in the
final week of the course. There are two different surveys:
one for courses that include programming, and one for
non-programming courses. These surveys ask the learners
to rate how much they agree with statements about their
understanding and confidence of the course content.

Findings

While the online courses are targeted to teachers in England,
they are used by learners all over the world from many
different professions and backgrounds. In 2019, 1251
teachers in England participated in 3205 combined course
runs. In the same time period, 39,143 learners participated
in our courses from over 200 different countries. From these
participants, 37.1% are employed in teaching and education
and 39.8% live in the UK. This means that from the people
who take our courses, a minority are teachers in England.

For the non-programming courses, 83% of learners agreed
that they have become more confident in their understanding
of the course material since starting the course. 81% of
learners also agreed that they had become more confident in
explaining the concepts from the course to others.

For the programming courses, 81% of learners agreed that
they have improved their programming skills, but only 64%
also report increased confidence in teaching programming
(this difference compared to the non-programming courses
may be related to the way the question was phrased
specifically as referring to ‘teaching’ rather than ‘explaining’).

Investigating the impact that the Raspberry Pi online learning
project has on teachers’ self-efficacy in teaching computing
Alex Parry, Martin O’Hanlon, Mac Bowley, and Matt Hogan (Raspberry Pi Foundation)

40

Conclusions

The initial data that has been collected on teacher satisfaction
and increased confidence is positive. However, it is important
to note that the current data from the surveys does not
account for learners who dropped out before reaching the
final week of the course.

More research is needed to further understand teachers’ self-
efficacy and support them appropriately with delivering the
computing curricula in England. Two questions that inform the
next steps of research are:

• How do teachers implement what they have learned from
online learning with their students in the classroom?

• What are the barriers to teachers taking our courses?

References
Royal Society (2017) After the reboot: computing education in UK schools.
The Royal Society, London. Available from: https://royalsociety.org/~/media/
events/2018/11/computing-education-1-year-on/after-the-reboot-report.pdf

Worth, J. & Van den Brande, J. (2019) Retaining science, mathematics and
computing teachers. Slough, NFER

41

Background

The role of language in the field of computer science
education is seen by some researchers as a particularly
important aspect that is often overlooked when designing and
implementing introductory programming courses (Lister et
al., 2009; Portnoff, 2018). A recent framework for structuring
programming lessons that actively encourages the use of
language is PRIMM (Predict-Run- Investigate-Modify-Make),
which aims to counter the known problems that novices
encounter as they attempt to write programs before they
are able to read them (Sentance & Waite, 2017). The initial
large-scale study of PRIMM — involving nearly 500 Key Stage
3 students in England (aged 11–14 years old) — showed
promising results on learners’ attainment (Sentance et al.,
2019). However, some teachers observed students spending
hardly any time in the later code writing stages of ‘modify’
and ‘make’, which aligns with the majority of programming
research that contends that writing code is more difficult than
reading or tracing (Lopez et al., 2008; Qian & Lehman, 2017).

Method

This empirical study involved modifying the resources from
the initial PRIMM study to include tools commonly used when
teaching first and second languages to young people, such
as colour coding words, cloze exercises, and fading worked
examples. The aims of this research were to measure the
impact that the modified resources had on student learning,
and to explore how students perceive learning a programming
language compared to a natural language. The study was
conducted in a girls school in England with Year 8 students
aged 12–13 years old. There were two non-randomised
groups of 30 students each; one class was the control
group who were taught with the original PRIMM material,
whilst the other class was the experimental group taught
with the modified resources. Each group took a baseline
test and a post-test so their progress could be measured.
The Mann-Whitney U test was employed for the analysis
of the test scores since the data was being compared
across two independent groups and it was not normally
distributed. Furthermore, a focus group of 5 students from
the experimental group was conducted a week after the
intervention had finished to explore students’ perceptions
on whether learning a programming language was similar
to learning a natural language. The focus group was audio
recorded and transcribed before being categorised into
themes for analysis.

Findings

The results of the two tests found that the performance of
students on the baseline test was not significantly different
between the two groups, yet the experimental group achieved
a significantly higher score on the post-test than the control
group. This indicates that the inclusion of language tools
within the PRIMM materials made a positive impact on
students’ learning. Analysis of the focus group conveyed that
most students made similar connections between both types
of languages, however they were not always considered to
be on the same level of difficulty. Some students thought
programming was more challenging due to the syntax,
whilst others found it easier because of the limited, yet more
versatile vocabulary.

Investigating the relationship between programming and
natural languages, and the impact of applying language
learning tools within the PRIMM framework
Alex Parry (Raspberry Pi Foundation)

42

Conclusions

The analysis of the focus group indicates that a positive
perspective of foreign or native languages may benefit
students’ belief in their ability to learn a text-based
programming language, and negative preconceptions can
discourage students. These findings correspond with the view
that to be good at programming you must be highly skilled
in your native language (Dijkstra, 1982, 129-131). Students
found the colour-coded program statements helpful for
understanding the grammatical structure of a new concept,
and fading cloze exercises useful in the later stages of writing
code. Further research is required to understand how natural
language skills translate to learning a programming language.

References
Dijkstra, E.W. (1982) Selected writings on computing: a personal perspective.
New York, Springer-Verlag. ISBN: 0–387–90652–5.

Lister, R., Fidge, C. & Teague, D. (2009) Further evidence of a relationship
between explaining, tracing and writing skills in introductory programming. In
Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’09), 161–165.

Lopez, M., Whalley, J., Robbins, P. & Lister, R. (2008) Relationships between
reading, tracing and writing skills in introductory programming. In Proceedings
of the Fourth International Workshop on Computing Education Research (ICER
’08), 101–112.

Portnoff, S. R. (2018) The introductory computer programming course is first
and foremost a language course. ACM Inroads, 9(2), 34–52.

Qian, Y. & Lehman, J. (2017) Students’ misconceptions and other difficulties in
introductory programming: a literature review. ACM Transactions on Computing
Education, 18(1), 1–24.

Sentance, S. & Waite, J. (2017) PRIMM: Exploring pedagogical approaches
for teaching text-based programming in school’. In Proceedings of the 12th
Workshop on Primary and Secondary Computing Education (WiPSCE ’17),
113–114.

Sentance, S., Waite, J. & Kallia, M. (2019) Teachers’ experiences of using
PRIMM to teach programming in school. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education (SIGCSE ’19), 476–482.

43

Background and context

Where once it was assumed that the vast majority of brain
development took place during the first few years of life,
advances in technology have allowed neuroscientists to
demonstrate that the brain continues to develop through
adolescence, potentially into one’s twenties or thirties.

The brain area involved in higher-order cognitive processes
changes most dramatically during adolescence. Meanwhile,
the area involved in emotion- and reward-processing is
hypersensitive. As the ability to inhibit inappropriate behaviour
is still developing, adolescents become more inclined to take
risks, moodiness, social sensitivity, and self-consciousness.

An understanding of the nature of adolescent development,
therefore, should inform the design of the school curriculum.
An engaging, inclusive, and motivational student-centred
computing curriculum design can draw upon computational
thinking as enabling students to understand the digital world
in a deeper way. Learning needs to be real to the students’
lives and relevant links forged with other subjects and real-life
situations (Curzon et al., 2014).

Wing (2010) defined computational thinking as “the mental
activity in formulating a problem to admit a computational
solution”. While identifying no conclusive definition, Roman-
Gonzales, et al. (2017) corroborate the conceptualisation of
computational thinking as a problem-solving ability.

Research focus

At the heart of the research project lies the question: could an
integrated, student-centred approach to computing curriculum
design have a positive impact upon students’ problem-solving
attitudes and behaviours in Key Stage 3? The project formed
a requirement of the British Computer Society Certificate
in (Secondary) Computer Science Teaching. The sample of
the student population participating in this study comprised
28 Year 7 students: 10 female and 18 male. This gender
imbalance extended to SEND for mathematics and reading.

Method

Having been introduced to the concept of problem-solving
attitudes and behaviours (Bagge, n.d.), the students carried
out a self-evaluation and responded to a real-life problem, a
process which was repeated at the end of the project. The
intervention took the form of an integrated study, applying
skills from English and personal and social education (PSE),
with new computing learning being hung on an unfolding
crime-investigation narrative.

The qualitative data provided by the students’ responses was
processed quantitatively and analysed alongside observations
made during the project, together with the tangible evidence
provided by the students’ endeavours.

Could an integrated, student-centred approach to computing
curriculum design have a positive impact upon students’
problem-solving attitudes and behaviours in Key Stage 3?
Julie Price (Member of the Chartered College of Teaching, Associate Member of British Computer Society, NCCE CS Champion, CAS Master Teacher)

44

Findings

An analysis of the data collected suggests that the students
had become more confident at solving problems over the
course of the project. With regard to the relative progress
made by girls and boys, their responses indicate that the
initial gender gap has been reduced.

While the boys admitted to being over-confident, girls
commented that they had underestimated their level of
confidence in each of the eight problem-solving attitudes
and behaviours capabilities at the beginning of the project.
However, both judge that their ability to assess accurately
improved as the project progressed.

References
Bagge, P. (n.d.) Problem solving attitudes & behaviours. Code-it. Available from:
http://code-it.co.uk/attitudes/

Curzon, P., Dorling, M., Ng, T., Selby, C. & Woollard, J. (2014) Developing
computational thinking in the classroom: a framework. Swindon, UK, University
of Southampton.

Román-González, M., Pérez-González, J. & Jiménez-Fernández, C. (2017)
Which cognitive abilities underlie computational thinking? Criterion validity of
the Computational Thinking Test. Computers in Human Behavior, 72, 678-691,
Available from: DOI: 10.1016/j.chb.2016.08.047

Wing, J. M. (2010) Computational Thinking: What and why? Carnegie Mellon
University. Available from: http://www.cs.cmu.edu/link/research-notebook-
computational-thinking-what-and-why

With regard to the application of computational thinking
to problem-solving at the project’s end, double the number
of girls provided evidence of a significant improvement,
whereas 80% of boys provided evidence compared with
zero at the beginning.

Overall, the analysis of data indicates that the learning
experiences have had an overall positive effect upon the
problem-solving skills of the students and their confidence
when presented with problems requiring solutions.

Conclusion and implications

This study was carried out over a brief period of time and
with a limited number of students, and circumstances
dictated that compromises caused deviation from the
original plans for the study.

Nevertheless, the project has highlighted several interesting,
tentative ideas worthy of further research, requiring the
application of greater rigour.

45

Background

Guyana is the only English-speaking South American country
and has a population of approximately 750,000 inhabitants.
Information technology is taught in most secondary schools
using a national syllabus, including problem solving,
algorithms, programming, hardware and software. Both
information technology and computer science can be taken
as an elective. Guyana’s education system has a strong
association with the Caribbean.

With the introduction of computer science into school
curricular around the world in recent years, it is easy to forget
the challenges that developing countries may experience in
following suit. The shift from the teaching of basic digital
skills to a knowledge-based curriculum that comprises of
more computer science concepts, including programming,
is particularly challenging for countries where a lack of
resources and in-service teacher education makes change
more difficult to effect. Teachers face a range of challenges
introducing computing into schools, including subject
knowledge and confidence (Sentance & Csizmadia, 2017;
Yadav et al., 2016).

Research focus

Here we describe a study carried out to investigate the
challenges faced by teachers in Guyana relating to resources,
student engagement, and in-service teacher education
(Sentance, Singh & De Freitas, 2020). A small-scale mixed-
methods study with 48 teachers was conducted in two areas
of Guyana, accompanied by a workshop covering a range of
interactive activities. Teachers reported a desire to improve
the opportunities for their students, but described challenges
including lack of computers, subject knowledge, and support.
They also reported that they found programming hard to
learn and teach, with computer architecture easier in both
these areas.

Method

In March 2018, two all-day workshops were held for teachers
of IT and computing in two areas of Guyana. The sessions
consisted of three sets of activities: a) teaching computing
unplugged, b) using the Micro:bit, and c) pedagogical
strategies for teaching programming. Alongside the
workshop, a study was conducted to elicit teachers’ needs
and attitudes using a range of data collection methods,
enabling quantitative and qualitative analysis. Data collection
methods included free-text writing, a short survey, and focus
group notes.

Challenges facing computing teachers in Guyana
Lenandlar Singh (University of Guyana), Sue Sentance (King’s College London),
and Penelope De Freitas (University of Guyana)

46

Findings

Teachers were asked which topics they found easy or hard
to teach and which students they found easy or difficult to
teach. The free-text task elicited a range of topics across
information technology and computer science. The majority
of teachers reported that programming was hard to teach and
hard to learn, whereas the teaching and learning of computer
architecture was thought to be easy.

In a questionnaire, 94% teachers said they would like to
improve their subject knowledge in IT and computing. 63%
said they would like more support in teaching the topics in
the curriculum and 58% said that students are not always
engaged in the subject matter. Only 15% said that they lacked
confidence in what they were teaching. Through focus groups,
teachers articulated a need for teacher training, support, and
more resources to support teaching and to engage students.
Teachers’ confidence was not as much of an issue as we had
expected. However, where confidence was described as an
issue, it was around programming.

Conclusion

This poster describes the first study relating to computing
education in Guyana. Although professional development
opportunities and resources for the teaching of computing are
emerging in many countries, developing countries have not
had access to the same inputs as the western world. We need
to hear the voices of teachers all around the world, and need
more research into what computing education could look like
globally, including how we can overcome some of the likely
obstacles and challenges.

References
Sentance, S. & Csizmadia, A. (2017) Computing in the curriculum: challenges
and strategies from a teacher’s perspective. Education and Information
Technologies 22, 2 (2017), 469–495.

Sentance, S., Singh, L., & De Freitas, P. (2020) Challenges facing computing
teachers in Guyana. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pp. 1323-1323.

Yadav, A., Gretter, S., Hambrusch,S., & Sands, P. (2016) Expanding computer
science education in schools: understanding teacher experiences and
challenges. Computer Science Education 26, 4 (2016), 235–254.

47

‘Singularity: ​​A DataDrivenDance’ is a transdisciplinary design-
based research (DBR) investigation into computing education,
using classical ballet and biometric data to help teach
computer science theory to disadvantaged/under-represented,
secondary-aged students, and explore the ethical and social
justice implications of future technologies upon this cohort.
My practice of data-driven-dance views the systematic nature
of ballet to that of a programming language. In ballet, to
recreate different patterns associated with computer science
theories and concepts. In ‘Singularity’, the ballet, physical
computing, biodata, and educational resources combine to
explore the story of interstellar travel, computing theory, and
biodigital ethics through this proposed study.

Background

‘DataDrivenDance’ was born out of the lower numbers of
female students opting for computing GCSE or A level during
my secondary teaching career. Girls continue to be heavily
under-represented in computing education, current figures
for the UK show that only 10% of A- level computer science
students are female (Kemp et al., 2018). DataDrivenDance
involves classical ballet productions as a medium for
delivering computing theory and concepts aimed at non-
specialist audiences. An ongoing award winning project
since 2012, it uses ballets as an R&D platform for developing
creative computing educational classroom resources.

 Research focus

The literature led to an awareness of two particular issues
that are central for computing education in the current
landscape. In their simplest form: One: How do you engage
girls in computing? Two: How do you raise awareness of
data ethics? These conjectures paved the way to DBR as
the most appropriate methodology to answer these central
issues in computing education. Why are so few girls taking
computing pre-university exams? The precise attributes
of classical ballet, with set structures, routines, rules, and
terminology, marry with programming and computational
thinking (Wing, 2006). Make available opportunities to
address future ethical questions of biodigital ethics-
cognitive privacy (Farahany, 2018).

Singularity: ​​a DataDrivenDance
Genevieve Smith-Nunes (University of Cambridge)

48

 Methodology

Not confined to a single approach but the amalgam of
education, computing, and traditional ballet practice,
materials, and pedagogy. This interdisciplinary DBR (Bakker,
2018) crosses the boundaries of computer science, dance,
and education incorporating the research methods and
practices of each domain. It is not a risk-free approach:
each domain has particular frameworks relating to theory
and methodology. From the world of dance, using ‘studio
as practice’, studio-based research as a method for enquiry
(Barrett & Bolt, 2014), and practitioner research to develop a
methodology that applies the rigour, practice, and pedagogies
of each domain. DBR is iterative in nature, similar to Agile
software methodology, the proposed design framework will
consist of three iterations. Each interaction will test the use of
ballet and biodata, both as tools for creativity and a platform
for discourse on (neuro) ethics (Le, 2019). Cyclic conjectures
leading to a more refined design framework and design
principles. Iteration one focuses on dancers participants, the
second iteration on students, and thirdly trainee computing
teachers; all co-creators within the study.

Proposed data analysis

Using an integrated data approach (Hesse-Biber, 2010)
complemented with thematic analysis of interview data
using stemming and lemmatisation techniques (Vallbé et al.,
2007; Schütze et al., 2008) to reduce researcher subjectivity.
The education components evaluated for subject suitability
and impact on students’ creative computing knowledge.
Tools such as ARCS: attention, relevance, confidence, and
satisfaction model, (Keller, 1987) and RIMMS (reduced
instructional motivational materials survey) questionnaires
(Loorbach et al., 2014). EGG data (aggregated and
anonymised) collected from participants during the study and
audience members during live performance will be used as
open datasets for interactive live performance elements, and
educational resources. Datasets will then be shared later for
other researchers and educators to use.

49

References
Bakker, A. (2019) Design principles in design research: a commentary. In
Unterrichtsentwicklung macht Schule,177-192. Wiesbaden, Germany, Springer VS.

Barad, K. (2007) ​Meeting the universe halfway: quantum physics and the
entanglement of matter and meaning​. Durham, USA, Duke University Press.

Barrett, E. & Bolt, B. (Eds.). (2014) ​Practice as research: approaches to creative
arts enquiry​. London, Ib Tauris.

Golz, P. & Smith-Nunes, G. (2015) [arra] stre: a data-driven ballet. In Proceedings
of the Conference on Electronic Visualisation and the Arts (EVA ‘17), 90-91.
Swindon, UK, BCS Learning & Development Ltd.

GOV.UK. (2018) ​National curriculum in England: computing programmes of
study​. Available from: https://www.gov.uk/government/publications/national-
curriculum-in-england-computing-programmes-of-study/ national-curriculum-in-
england-computing-programmes-of-study

Farahany, N. (2018) When technology can read minds, how will we protect our
privacy?. TED. Available from: https://www.ted.com/talks/nita_farahany_when_
technology_can_read_minds_how_will_we_protect_our_privacy?language=en

Hesse-Biber, S. N. (2010) Mixed methods research: merging theory with
practice. New York, NY, Guilford.

Keller, J.M. (1987) Development and use of the ARCS model of instructional
design. ​Journal of instructional development,​ 10(3).

Kemp, P.E.J., Berry, M.G. & Wong, B. (2018) The Roehampton annual computing
education report. London, University of Roehampton.

Law, J. & Hassard, J. (1999) Actor-network theory and after. Oxford,
Blackwell Publishers.

Loorbach, N., Peters, O., Karreman, J. & Steehouder, M. (2014) Validation of the
instructional materials motivation survey (IMMS) in a self-directed instructional
setting aimed at working with technology. ​British Journal of Educational
Technology, 46(1), 204–21, Available from: DOI:10.1111/bjet.12138.

Schütze, H., Manning, C.D. & Raghavan, P. (2008) ​Introduction to information
retrieval​. Cambridge University Press, Available from: https://nlp.stanford.edu/
IR-book/pdf/irbookonlinereading.pdf

Smith-Nunes, G., Shaw, A. & Neale, C. (2018) [pain]Byte: Chronic Pain and
BioMedical Engineering Through the Lens of Classical Ballet & Virtual Reality.
In Proceedings of the Twelfth International Conference on Tangible, Embedded,
and Embodied Interaction (TEI’ 18), 493-497.

Toussaint, M.J. & Brown, V. (2018) Connecting the arcs motivational model to
game design for mathematics learning. ​Transformations​, 4(1), 19-28.

Vallbé, J.J., Martí, M.A., Fortuna, B., Jakulin, A., Mladenic, D. & Casanovas,
P. (2007) Stemming and lemmatization: improving knowledge management
through language processing techniques. Available from: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.470.9503&rep=rep1&type=pdf

Wing, J.M. (2006) Computational thinking. Communications of the ACM, 49(3),
33-35.

www.raspberrypi.org @raspberrypifoundation@Raspberry_Pi @Raspberry_Pi raspberrypi

