
nesta.org.uk

Collaborative
Problem Solving
and Worked
Examples in
Code Clubs
Oliver Quinlan, Lucia Florianova,
Rik Cross and Tracy Gardner

November 2019

About Nesta

Nesta is an innovation foundation. For us, innovation means
turning bold ideas into reality and changing lives for the better.

We use our expertise, skills and funding in areas where there are
big challenges facing society.

Nesta is based in the UK and supported by a financial endowment.
We work with partners around the globe to bring bold ideas to life
to change the world for good.

www.nesta.org.uk

If you’d like this publication in an alternative format such as Braille
or large print, please contact us at: information@nesta.org.uk

Acknowledgements

With thanks to the Code Club leaders and young people for
taking the time to try this new approach and generously give their
feedback.

Collaborative
Problem Solving
and Worked
Examples in
Code Clubs

Summary	 4
Key findings	 4

Next steps for the 	 4
Raspberry Pi Foundation	

Introduction	 5
Background	 5

Aims and objectives	 5

Methodology	 6

Collaborative problem-solving	 6

Programming concepts	 7

Findings and results	 9
Collaborative problem-solving	 9

Achieving collaboration	 10

Which approach is better?	 12

Learning new programming	 13
concepts	
Ways to improve understanding	 14

Which approach is better?	 15

Conclusion and 	 16
recommendations
Summary	 16

Collaborative problem-solving	 16

Learning new concepts	 16

Key Findings	 17

Next steps for the 	 17
Raspberry Pi Foundation

Bibliography	 18
Learning resources	 18

November 2019 nesta.org.uk

Collaborative Problem Solving and Worked Examples in Code Clubs

4

Summary
Code Club is an international network of
volunteers and educators who run free coding
clubs for children and young people. A volunteer
teams up with a community venue, such as a
school or library, to run an after-school club,
using specially created Code Club resources.
Code Club is a programme of the Raspberry Pi
Foundation, an educational charity focused on
computing and digital making for young people.

In the Autumn term of 2017 we worked with six
Code Clubs in schools in England to try a new
approach to teaching programming and explore
the impact it had on collaborative problem- solving
and the understanding of programming concepts.
We provided children with ‘worked examples’ of
completed programmes and questions about
how they worked to encourage discussion and for
them to manipulate and explore (Sweller & Cooper,
2009). We compared this to our usual approach of

providing step-by-step instructions for children to
build projects from the start.

The children worked on these projects using
the Scratch visual programming language. The
resources focused on teaching them to define
procedures in Scratch, through a process of
creating ‘custom blocks’.

We visited the schools to observe the final session
in the project, and interviewed the adults leading
the Code Clubs. Using Nesta’s ‘Taxonomy of
collaborative problem-solving’ as a framework,
we analysed the nature of the collaborative
problem-solving observed (Luckin et al., 2017). We
found that the worked examples approach could
have benefits for the process of understanding
programming concepts, but that there were
barriers to the collaborative problem-solving
taking place in the clubs.

Key findings

•	 Fostering collaborative problem-solving takes a structured approach, and needs to be closely
facilitated, particularly in informal learning environments. This might involve setting up the
environment to strongly encourage collaboration, or explicitly giving children roles to take.

•	 Worked example-based resources can encourage and allow space for children to take an exploratory
and creative approach to programming.

•	 Worked examples can focus children’s attention on key aspects of the learning objectives, compared
to the step-by-step instructions where their focus can end up on other aspects of building the project
such as presentation.

•	 It can sometimes be difficult for adults to see the progress with worked examples since the children
hadn’t built them from scratch.

Next steps for the Raspberry Pi Foundation

•	 Put in place strategies for volunteers to facilitate collaboration such as children sharing computers
and guidance for volunteers.

•	 Develop more learning resources with a worked example approach, particularly for more complex
concepts to help children focus on mastering them.

•	 Adapt our worked examples approach so children make their own changes and contributions to the
code that adults can use to understand the progress they have made.

Collaborative Problem Solving and Worked Examples in Code Clubs

5

Introduction
Background

The Raspberry Pi Foundation’s Code Club programme supports after school programming
clubs for children and young people. In over 6,000 clubs in the UK, children work with teachers
and volunteers to create programming projects based on provided project guides. Children
are encouraged to take a creative approach, making the projects their own and learning from
each other. Clubs take place in an informal context, usually after school or during lunch times.

Code Club projects usually take a step-by-step approach. Children start from a blank page
and follow instructions to create a project, with encouragement to customise or make it
their own along the way. In researching alternative approaches to learning we discovered
the strong evidence from mathematics education for an approach using ‘worked examples’
improving children’s ability to solve problems (Sweller & Cooper, 2009). Rather than solving
problems from scratch, the worked examples approach provides learners with examples
of problems and their solutions for them to analyse. We were interested in whether this
approach could be used to increase collaboration in Code Clubs, as the worked examples can
provide an artefact that children can have a discussion about. We designed an approach to
test that involved posing questions to the children to encourage them to explore and discuss
the examples with others, tweaking the code as they worked together to understand how it
had been used to solve a problem.

In this project we worked with a group of clubs, providing them with resources to teach
the programming skill of defining procedures using the Scratch programming language.
Clubs were randomly allocated to take either a step by step approach or a worked example
approach to developing this skill. In the final week the children were all set a challenge to
demonstrate their understanding of the skill, and we visited the clubs to observe learning and
to interview the club leaders about the progress that had been made.

Aims and objectives

The pilot compared two different task designs to determine their effects on learning and
which one better fosters collaborative problem-solving: step-by-step problem-solving or
worked examples.

Research question:

Which results in more success in collaborative digital making: attempting problem-solving
practically or studying worked examples of problem-solving processes?

Aims:

1.	 Explore whether worked examples and discussion prompts encourage more collaborative
digital making.

2.	 Explore whether worked examples and collaborative problem-solving have an impact on
children’s learning in a new programming topic.

Collaborative Problem Solving and Worked Examples in Code Clubs

6

Methodology

The pilot studied the environment of six different Code Clubs for year 3 to year 8 students.
Three clubs had a mix of age groups, and three clubs worked with one school year group
only. All Code Clubs ran in a school environment for one hour. Most were in extra curricular
times such as before or after school or during lunch times. One took place during lesson
time. Clubs were selected in the London and East of England regions. A Code Club regional
coordinator drew up a list of clubs that were well established with leaders who might be open
to participating in a research project. They were contacted and those that responded positively
became part of the project.

Schools were randomly allocated to two groups and provided with six Scratch projects
designed by Code Club (one project for each week of the trial). Group A consisted of two
schools and Group B consisted of four schools. Projects in both groups consisted of the same
learning content, programming concepts and context, but followed different task designs.

Group A received projects providing a step-by-step guide. This was the control group, where
students followed the usual Code Club style involving creating their program from scratch.
Group B received Worked Example projects that took a new approach to teaching the same
concepts. Students had a series of instructions encouraging them to explore how the projects
worked by tweaking them and changing parts of code. The first (introductory) project, and the
last (assessment) project were same for both groups.

We used a combination of qualitative research tools: participant observation during the
final session and a qualitative interview (30-45 minutes long) with each club leader. We also
talked informally with students and examined their completed final project, to explore their
understanding of their solutions.

The analysis was approached from two directions. Firstly, we explored the collaborative
problem-solving that had been observed and discussed when visiting the clubs using Nesta’s
framework for collaborative problem-solving (Nesta, 2017: 49-51). Secondly, we looked at the
children’s engagement with the programming skills the resources aimed to teach.

Collaborative problem-solving

In Solved! Making the case for collaborative problem-solving Luckin et al., set out a taxonomy
of collaborative problem-solving based on the literature into this approach to learning.
This taxonomy has six non-hierarchical, interconnected domains to describe and classify
collaborative problem-solving in practice. They cover all aspects of the experience of
collaborative problem-solving, from the specific features of the activity and the problem,
to wider features of the group and contextual factors affecting its members. We used this
taxonomy as a framework for analysing the activity we observed in Code Clubs involved in
this project, noting features of what was observed against each area of the taxonomy.

Collaborative Problem Solving and Worked Examples in Code Clubs

7

Taxonomy of collaborative problem-solving

Luckin et al. (2017) ‘Solved! Making the case for collaborative problem-solving.’ p.25. London: Nesta.

Target skills
CPS activity
characteristics

Scale of activity (e.g.
one off, ongoing)

Pedagogy for skills
development (e.g.
direct instruction)

Development of
group ethos

Explicitly targets skill
development (i.e. yes,
no)

Te
ch

no
lo

gy

So
ci

al
/c

ol
la

bo
ra

tiv
e

sp
ac

e

P
ro

bl
em

-s
ol

vi
ng

 s
pa

ce

Sy
m

m
et

ry

Fa
m

ili
ar

ity

C
om

pl
ex

ity

A
ut

he
nt

ic
ity

O
ut

co
m

e

In
te

rd
ep

en
de

nc
y

Su
pp

or
t

pr
ov

id
ed

Group features

Number of
participants

Age

Gender

Synchrony

Group roles

Problem features

Subject domain

Contextual factors

Education level

Education
environment

Physical space

Support provider
and resources

Activity
environment

Location of
participants

Assessment

Programming concepts

The learning resources for this project consisted of a six week course using the graphical
programming language Scratch. Students manipulate blocks in Scratch to create programs
(or projects), fitting them together to define the actions and behaviour of objects (known as
sprites) displayed on screen. Each block has a predefined function, but users can also define
their own blocks by chaining existing blocks together. Such a chain performs a series of
instructions that can be packaged into a new block and used in their program again.

The focus of the resources was learning how to define your own blocks, the Scratch equivalent
of defining procedures in other programming languages. Packaging sets of instructions into
blocks allows students to simplify the organisation of their programs, and facilitates making
more complex projects. It also allows them to reuse code for efficiency, and abstract away
details to assist with addressing more complex problems. It is a topic that is often not taught
until students are very experienced with Scratch and is rarely the focus of early teaching,
although we felt if presented clearly it could be accessible to beginners. This programming
topic was thus chosen as the children in this project were likely to have no prior experience of it.
The projects demonstrated the technique of creating blocks through tasks such as navigating a
maze, creating an interactive quiz and instructing a character to perform dance moves.

In the final session both groups were set the same challenge; to draw a series of geometric
shapes using a pencil sprite in Scratch. These shapes were initially simple (such as a square),
to let students develop a basic understanding of the concept, encourage them to explore how
to create a basic algorithm using loops and repetitions and define the shapes. The task then
became more complex and required drawing various combinations of the initial shapes (Figure
1). The task could be completed without students creating their own blocks, but doing so would
considerably simplify the problem-solving process (Figure 2)

Collaborative Problem Solving and Worked Examples in Code Clubs

8

Figure 1: Shapes that students were challenged to draw during the final task

Figure 2: Defining a function to draw a square (chain of blocks on the left), which
can then be used to draw other shapes, in this case the shape number 3 (chain of
blocks on the left

1 2 3

4 5 6

define

pen down

pen up

repeat

move steps

turn degrees

when

set pen colour to

key pressed
draw square

draw square

4 repeat 8

50

90 turn degrees45

3

Collaborative Problem Solving and Worked Examples in Code Clubs

9

Findings and results
Collaborative problem-solving

We aimed to find out whether the resources we designed based on worked examples
encouraged more collaborative digital making. We were not able to observe evidence
of a difference in the collaboration that took place between the two groups. However,
our observations and interviews did provide insights into how collaboration works in the
informal settings of Code Clubs.

Making collaborative problem-solving successful depends on the right combination of
many aspects; such as educator support, task design, and group features. Achieving this
combination is often challenging in practice, as we found from working with the schools in
this project.

Collaboration

Although some students worked together, they were not observed collaborating in the strict
sense. Interviews with adults suggested this was the case throughout the sessions. Children
helped each other, but did not systematically discuss problems and join different knowledge
they had. Instead, they seemed to seek others’ advice and expertise when stuck; either from
their friends who knew what to do, or from a teacher. They were not generally able to move
on without such help when getting stuck during the final task.

Volunteers emphasised that the task we observed was much more challenging than
previous tasks. Several asserted that collaboration, in terms of ‘helping each other’, had
taken place more in previous sessions.

“They are great at actually supporting each other, like ‘a’ or ‘b’, when she was
stuck, the other one showed her what to do.“

“So I would have leaders in groups who were kind of doing my job. They enjoy
showing and helping other kids so it’s good.”

Nevertheless, based on our observation of the group communication and the adults’
descriptions, this peer support activity did not address the range of factors in the taxonomy
that would allow it to be classified as collaborative problem-solving. It seemed that helping
peers was less about lateral thinking and synthesising knowledge, and more about one
person having completed a section of the task and another receiving their explanation of
how they had done so.

We did observe some limited interaction that would be defined as collaboration. In one
particular example, two boys compared their code and discussed how they had achieved
the same result in different ways. They were comparing, contrasting and discussing, and
appeared to be exploring their approach with a high level of understanding. They were
identified by the teacher as particularly able children and seemed to have knowledge
symmetry, ability to reflect, enthusiasm and engagement. They were also friends.

Collaborative Problem Solving and Worked Examples in Code Clubs

10

“They are quite good at talking to each other. They would just stand up and
walk around and look at someone else’s code to see what’s working there. So I
will always go around and be like: Look, this guy can do this! And this person
has done this! And then you get kids go like No, no, no! And they go and
compare their code to someone else’s. And where possible, they would change
their [code] if they remember.”

These sorts of interactions were observed in several cases, but were not happening
systematically across the children in the project. They suggest the importance of
considering the grouping of children according to the group features in the Nesta
collaborative problem-solving framework. In the example above there is some symmetry
(sharing knowledge) and familiarity with working with one another evident, but this is by
chance rather than design, and facilitated through children moving through the classroom.
The potential for collaborative problem-solving could be maximised by forming groups
based on different levels of knowledge so that this can be shared when considering the
problem. The process would also benefit from building familiarity with collaborative
problem-solving through modeling by the adult or other participants, or through low-
challenge activities designed to practice the collaborative approaches to activities, as are
promoted in the Kagan Cooperative Learning approach (Kagan & Kagan, 2015).

Achieving collaboration

Following Nesta’s taxonomy of collaborative problem-solving, we identified a number of
aspects that may have hindered successful collaborative problem-solving in this pilot and
could be improved in the future. We found that collaborative problem-solving was primarily
impeded by environmental factors, how technology was used and lack of guidance for
adults on how to facilitate collaborative problem-solving. There were also some issues with
group formation, interdependency and targeting collaborative skills development.

Environmental factors

Code Clubs generally take place in informal situations either after school or during lunch
times. This informal nature means that facilitation varies across different clubs, and the
sessions are often loosely structured and driven by the children themselves. Several adults
expressed that Code Club was an experience that was different to lessons, and that it
should stay this way. They would be reluctant to structure it too closely as they perceive
children enjoy the freedom they have.

‘I didn’t sit them. Because it’s a club, not a class. So they get to choose their
little group and they work in them.’

‘They come and they sit next to anyone they want; they come and get their
Chromebook, get their cards, sit where they want. [...] But that’s ok, because
it’s not a classroom; that’s what I tell everybody.’

Giving the children tightly defined collaborative roles or expecting the adult to take a
strong lead in mediating interactions is rarely appropriate for Code Clubs, and collaborative
problem-solving has to be encouraged by more subtle approaches related to the setup of
the environment and the task design.

Collaborative Problem Solving and Worked Examples in Code Clubs

11

Technology and equipment

Technology can facilitate collaboration, such as by providing a channel for communication
(Nesta, 2017:51). However, in the case of sessions we observed the abundance of technology
hampered the opportunities for collaborative problem-solving. In every school we visited,
children had access to enough computers to have one each.

This meant adults encouraged children to use individual laptops rather than sharing, which
resulted in an individualistic focus to the work. The children did not need to discuss when
they had different ideas and approaches, everyone could simply follow their own ideas on
their own device. We only observed them turning to others when they felt stuck, something
which was affirmed by our interviews with adults.

Future projects exploring collaboration would benefit from more explicit instructions on
the use of equipment. It was mentioned in guidance to adults that we wanted children
to work together to produce their work, but this was not interpreted as them using the
same computer in pairs or groups, which would be likely to have encouraged much more
collaboration.

Adults’ roles

When discussing collaboration and working together, it was apparent that adults framed
the activities as tasks to be completed individually, with the chance to work together
coming when a child reached a point at which they could not continue without help. This
resembles the mode of working often used in traditional lessons in schools.

There may also be preconceptions about the nature of the subject. Programming can be
seen as a solitary activity, especially as only one individual can realistically be manipulating
a computer at a time. In more sophisticated programing, tasks could be split between
programmers working on their own computers and then recombined to make a whole. In
the context of Scratch, which is used for short time periods and by children with developing
IT skills, this kind of collaboration would be hard to achieve.

One adult we discussed collaborative problem-solving with expressed that he would need to
undertake some training in order to be able to effectively facilitate the kind of collaboration
we were looking for. Another volunteer felt the same way:

“I think they’d be able to, but it would have to be really structured. You would
need to assign roles [...] and we will see how we can combine all those three
things. That would be the way I would approach it.”

The role of the adult is clearly important, and the adults in this project would have needed
much more support on what collaborative problem-solving is and the techniques to
encourage it in the form we were looking for.

Group formation

The trial did not involve any deliberate formation of groups. A more explicit focus on
creating groups and coalescing them around a shared goal and identity as part of the
activities, or setting particular roles within groups, could have fostered more collaborative
problem-solving. In the relatively short time available for a Code Club it can seem
counterintuitive to spend some of it on group formation, but if collaborative problem-
solving is one of the aims then an early investment of time in this would be needed.

Collaborative Problem Solving and Worked Examples in Code Clubs

12

Interdependency

Our tasks were designed to encourage collaboration by prompting children to discuss
key questions about the tasks. This was particularly emphasised in the worked examples
approach, and not explicitly directed in the step by step resources. They were not designed
to deliberately create interdependency between the children to foster collaboration, just to
encourage them to discuss the challenge.

The problem-solving tasks themselves also need to be structured conceptually so that
they contain opportunities for interdependent work. Problems with multiple facets
that are meaningful enough in themselves to be divided would be needed to facilitate
interdependence. There are questions around whether children would need to have
developed a certain level of skills in programming before they are able to access problems
that are sophisticated enough to allow this approach.

Targeting collaboration skills development

Given the time available and the focus of Code Clubs, our resources did not contain discrete
or explicit activities to address the development of collaboration skills. The focus of skills
development was in the problem-solving space rather than the social space. Although
environmental, technology and support factors appear to be more fundamental issues with
collaborative problem-solving, it also appeared from our observations and interviews with
adults that some explicit skills development would be needed to ensure that children this
age have the skills to meaningfully engage in collaborative problem-solving. Task design
alone may not be enough to facilitate this complex process.

Which approach is better?

Nesta’s collaborative problem-solving framework provides a rich tool for examining
collaborative problem-solving in the context of programming and Code Clubs. We have
identified the most significant factors in this project being the environmental factors
related to technology, classroom logistics, support of adults and a problem designed to
rely on collaboration. In our case these are areas to focus on developing first; but there are
other aspects of the framework that could be improved and mainly considered through
further research.

Although this project did not show a strong difference between the two approaches in
terms of collaborative problem-solving, the findings do make clear reasons why this is
the case. They demonstrate the importance of creating an environment which facilitates
collaboration around computers rather than individual work, as well as the expectations
that adults have for the activity that takes place.

Collaborative Problem Solving and Worked Examples in Code Clubs

13

Learning new programming
concepts
We also explored how the worked example approach affected children’s engagement with
and learning of new programming concepts. The topic was building new blocks, the Scratch
equivalent of defining procedures. We observed the children undertaking the final challenge
project where they were asked to draw combinations of shapes, and we interviewed adults
about students’ engagement with the previous five weeks of tasks.

In general we did not observe a difference between how the two different groups engaged
with the final challenge. However, feedback from adults suggested that they had engaged
with the programming concepts and progressed.

Observing understanding

Observation of the final task revealed that there is often a difference between children
engaging with the programming concepts and completing the set tasks in the informal
environments of Code Clubs. For example, some children were encouraged to work
creatively by the adult and make their own shape. Having drawn an initial shape, many
children decided to explore what they could create with shapes rather than stick to those
that were defined for them as the challenge. These children adapted their code for different
shapes, demonstrating an understanding of the concepts but not achieving the outcomes
set out in the task.

Identifying the changes that needed to be made demonstrates students’ understanding of
an algorithm. However, observation showed that some of the children were changing values
randomly until they got the result they wanted or liked. They sometimes could not identify
the part of their tinkering that secured the result and did not remember it for future use. For
example, some children struggled to change the blocks of code used to draw a square into
blocks that would draw a triangle. They did not know which block would change the length
of sides or the angle. One student drew a triangle with sides consisting of curved instead of
straight lines. Even though the shape looked right on a first sight, it failed to demonstrate
that the amendments to the code were intentional.

Below, we outline the main aspects that seemed to support students’ understanding of their
code and directed the learning of programing concepts in the desirable way. In so doing, we
try to compare whether this was better achieved through the worked example or step-by-
step task design.

Collaborative Problem Solving and Worked Examples in Code Clubs

14

Ways to improve understanding

Tinkering and experimenting

Tinkering and changing smaller parts of a working program allows students to confirm
what those parts are responsible for, and explore how their code works. It allows them
to practically try out the ideas they may have and teaches them to explore the possible
answers to their own ‘what happens if’ questions. It can also serve as a useful practical
demonstration of otherwise complex and abstract processes that they may find hard to
follow and imagine. The worked examples approach supports this by providing a working
program and then directing attention to changing key values through questions.

This was observed in several of the clubs. In the final task children were given some blocks
they could use to draw a square. Many of them implemented these blocks on screen before
tinkering with the numbers to explore how they actually worked. In previous sessions, this
could have been facilitated by either the step by step or worked example approach, but
worked examples explicitly encouraged it by providing the children with the programs
already made, allowing them to focus on adjusting values. Adults described that children
built understanding by adjusting aspects of the programs and seeing the results.

It is also important to make sure that the activity relates to programming skills and not
just presentation details such as backgrounds and colours. In this example children were
exploring what they could achieve with programming constructs by manipulating values.
Some adults interviewed told us that this was a particular strength of the worked example
approach, as it encouraged children to focus their efforts on the programing constructs
rather than on presentation aspects.

“Compared to [step by step projects], worked example works great. It is useful
to have the resource ready because even: ‘Change the background to…’ takes
time. And then everyone goes ‘Wooo’ and then change a colour, and change
sounds and… I say: You always have to limit the potential for entropy. You
just gotta keep it - still be creative-, but: ‘This is the objective, this is how we
get there’. So limit the almost secretarial work.”

Supporting adults to see progress

A challenge of the worked examples approach that was mentioned by adults in different
Clubs was that of the visibility of progress in what the children had created. When children
start in a blank programming environment it is quickly obvious what they have achieved in
a session to an adult looking at their screen.

With the worked examples projects it is not, as the working program is on screen from
the start. This necessitates a more detailed discussion with a child to ascertain what they
have learned in a session, although one adult did note that even children following step by
step instructions may not have fully understood what they are doing. This is not a major
drawback, but it is a perception of adults involved in Code Clubs that should be more
explicitly addressed as part of a further implementation of worked examples.

Collaborative Problem Solving and Worked Examples in Code Clubs

15

Which approach is better?

We did not observe strong differences in understanding between the different groups on
our visits. However, we did gather positive feedback from adults that suggests there may
be some in the way the children worked in the sessions before our visit. In summary, both
worked example and step-by-step approaches have their advantages and can support
different type of learning.

Adults felt that worked examples had been beneficial to the children in allowing them
to build understanding better than the step by step approach. The concept of ‘reverse
engineering’ to learn how something works has much precedent, and adults were
enthusiastic about its potential for building understanding in Code Clubs.

“I think it was quite good for pupils to have projects that they were mending
rather than starting from scratch. When you do that, sometimes you don’t
get beyond choosing the background and putting the sounds in. So it’s good
start with having it all there, doing a bit of coding and then I’d say, ok, you
can change the background. Otherwise they just get caught up in kind of
drawing. ”

Adults did raise that projects need to be at the right level of complexity that the children
can successfully reverse engineer them.

“The maze one they absolutely loved and they did that one really well. The
talking one they loved, as well. They only struggled with the dancing one,
because it was a really heavy-coded. They had too many things they were
amending.”

Our findings suggest that the worked example approach can have a positive impact on
the learning that happens in Code Clubs. On a practical level it removes the ‘secretarial’
work that children often opt to complete before engaging with more difficult programming
concepts. It also eliminates some frustration stemming from lower IT skills and instead
throws pupils straight to programing. On another level, it allows them to access
programming constructs they have not seen before and learn how they work through
‘reverse engineering’ them and adjusting them creatively to achieve different aims.

The step-by-step approach, on the other hand, gives children the experience of building
their own program from scratch; experience that they do not get when the code is partially
completed for them. Even though secretarial work cuts from time that can be spent on
meaningful engagement with programming concepts, it is necessary part of building a new
project; the outcome that clubs often promote. Code Clubs aim to motivate and empower
children to get creative with technology, engage with digital making, develop new ideas and
create their own projects. Especially in a setting like this, building a project from scratch is
thus a crucial skill to have.

One adult expressed that a range of approaches to projects keeps things fresh and
interesting, and that this approach would be most welcomed by club leaders and children.

“[A] mix of worked examples and then doing your own problems might
work better. The children get to see the possibilities this way, but not sure
they internalise the learning in the same way without building something
themselves. I would like more of an alternating structure.”

Collaborative Problem Solving and Worked Examples in Code Clubs

16

Conclusion and
recommendations
Summary

At the end of the pilot, teacher confidence and perceived value of all teaching approaches
(problem-solving, collaborative and collaborative problem-solving) had gone up (see Figure
4). The biggest increase was seen in the perceived value of collaborative problem-solving
approaches and teachers reported a better understanding of what it was and how it could
be taught.

Collaborative problem-solving

We compared the newly designed set of learning resources based on a worked example
approach to our usual step-by-step approach to find out which one more successfully
fosters collaborative problem-solving. Our resources were successful in terms of the problem
space as they explicitly targeted the use and development of problem-solving skills.
However, despite prompting discussion and cooperation, they did not foster collaborative
problem-solving in a strict sense.

The informal ethos and structure of Code Clubs make achieving structured collaborative
problem-solving challenging. Fostering collaboration in a strict sense in our groups would
require a much more structured approach. This was true for both trial groups regardless of
the task design. There are some simple ways to improve collaboration without damaging
the informal atmosphere such as requiring children to share computers and encouraging
them to work together based on similar skill levels.

Learning new concepts

Alongside collaborative problem-solving, we also examined how worked examples can
facilitate students to develop understanding of code and learn new programming concepts,
in this case defining a function in Scratch.

We found that worked examples could encourage children to take creative approaches and
tinker with code more than step by step instructions. The types of worked examples we used
included questions to focus the children’s attention on tweaking particular aspects of the
code and developing their understanding of how these sections are working. This approach
means the limited time children have in Code Club can be spent understanding concepts
rather than having to build a program that contains these concepts from the start. More
time spent on a concept is likely to result in more secure understanding of it.

Adults running Code Clubs were positive about the worked example approach, seeing its
potential for developing understanding of complex concepts. Those using step by step
instructions said that there was a need for projects that built understanding in the way
the worked examples projects did. However, adults using worked examples did say it was
harder for them to monitor and understand how children had progressed with a project
quickly when asked to help them. This was because they could not judge this based on the
completeness of the program they saw on screen, which would have been entirely created
by a child and therefore easy to judge using the step by step approach.

Collaborative Problem Solving and Worked Examples in Code Clubs

17

Tinkering and experimenting with existing code takes away part of the complexity and
allows children to focus on smaller parts of a problem. Thinking about how to change
code to reach different outcomes can make children reflect on the effect of different parts
of the code. Nevertheless, it works best if a task allows children to see the effect of their
amendments immediately.

Worked examples were welcomed by educators and appear to be a valuable addition
to Code Club learning resources. They could work especially well in combination with
a standard step-by-step approach. Step-by-step instructions lead children through the
whole process of creating a project, from start to finish; the experience that is essential
if motivating children to create their own projects is the aim. Worked examples, on the
other hand, could work well to break down problems, unpack more complex concepts and
direct learners’ attention on the key aspects of a task. We plan to developed more learning
resources based on worked examples for use in Code Clubs interspersed with step by step
projects, and focused on key concepts that might be more challenging or at points when
they are particularly new to children.

Key findings

•	 Fostering collaborative problem-solving takes a structured approach, and needs to be closely
facilitated, particularly in informal learning environments. This might involve setting up the
environment to strongly encourage collaboration, or explicitly giving children roles to take.

•	 Worked examples based resources can encourage and allow space for children to take an exploratory
and creative approach to programming.

•	 Worked examples can focus children’s attention on key aspects of the learning objectives, compared
to the step-by-step instructions where their focus can end up on other aspects of building the project
such as presentation.

•	 It can sometimes be difficult for adults to see the progress with worked examples since the children
hadn’t built them from scratch.

Next steps for the Raspberry Pi Foundation

•	 Put in place strategies for volunteers to facilitate collaboration such as children sharing computers
and guidance for volunteers.

•	 Develop more learning resources with a worked example approach, particularly for more complex
concepts to help children focus on mastering them.

•	 Adapt the worked examples approach where appropriate so children make amendments to the
projects to demonstrate progress.

Collaborative Problem Solving and Worked Examples in Code Clubs

18

Bibliography
Kagan, S. and Kahan, M. (2015) ‘Kagan Cooperative Learning.’

Luckin, R., Baines, E., Cukurova, M. and Holmes, W. (2017) ‘Solved! Making the case for
collaborative problem-solving.’ [online] Nesta. Available at: https://www.nesta.org.uk/sites/
default/files/solved-making-case-collaborative-problem-solving.pdf [Accessed 13 Apr. 2018].

Sweller, J. and A. Cooper, G. A. (1985) The Use of Worked Examples as a Substitute for
Problem Solving in Learning Algebra. ‘Cognition and Instruction.’ Vol. 2, No. 1 , pp. 59-89.
Available online at: http://www.jstor.org/stable/3233555 [Accessed 13 Apr. 2018].

Learning resources

Learning resources used in this project and referred to in the report are available online at
rpf.io/cpsresources

https://www.nesta.org.uk/sites/default/files/solved-making-case-collaborative-problem-solving.pdf
https://www.nesta.org.uk/sites/default/files/solved-making-case-collaborative-problem-solving.pdf
http://www.jstor.org/stable/3233555
http://rpf.io/cpsresources

58 Victoria Embankment
London EC4Y 0DS

+44 (0)20 7438 2500
information@nesta.org.uk
	 @nesta_uk
	 www.facebook.com/nesta.uk
www.nesta.org.uk

Nesta is a registered charity in England and Wales with company number 7706036 and charity number 1144091.
Registered as a charity in Scotland number SCO42833. Registered office: 58 Victoria Embankment, London, EC4Y 0DS.

