

 	For home

	For industry

 	Hardware

	Software

	Documentation

	News

	Forums

	Foundation

 Raspberry Pi Documentation

 	

 Computers

	

 Accessories

	

 Microcontrollers

	

 Services

	

 Pico C SDK

 Getting started

 	
 Getting started with your Raspberry Pi

 	
 Power supply

	
 Boot Media

	
 Keyboard

	
 Mouse

	
 Display

	
 Audio

	
 Networking

	
 Install an operating system

 	
 Install using Imager

	
 Install over the network

	
 Set up your Raspberry Pi

	
 Configuration on first boot

 	
 Bluetooth

	
 Locale

	
 User

	
 WiFi

	
 Browser

	
 Software updates

	
 Finish

	
 Next steps

 	
 Recommended software

	
 Tutorials

	
 Support

	
 Further reading

 Raspberry Pi OS

 	
 Introduction

	
 Updating and upgrading Raspberry Pi OS

 	
 Using APT

	
 Using rpi-update

	
 Playing audio and video

 	
 The VLC application

	
 Playing audio and video on Raspberry Pi OS Lite

	
 Using a USB webcam

 	
 Basic usage

	
 Automating image capture

	
 Time-lapse captures

	
 Utilities

 	
 kmsprint

	
 vcgencmd

	
 vclog

	
 Accessibility options

 	
 Visual aids

	
 Python on Raspberry Pi

 	
 Installing Python packages using apt

	
 About Python virtual environments

	
 Using pip with virtual environments

	
 Using the Thonny editor

	
 GPIO and the 40-pin header

 	
 Voltages

	
 Outputs

	
 Inputs

	
 Other functions

	
 GPIO pinout

	
 Permissions

	
 GPIO in Python

 Configuration

 	
 The raspi-config Tool

 	
 List of options

	
 The raspi-config Command Line Interface

 	
 List of options

	
 Configuring networking

 	
 Using the desktop

	
 Using the command line

	
 Configure DHCP

	
 Assign a static IP address

	
 Set up a headless Raspberry Pi

 	
 Connect to a wired network

	
 Connect to a wireless network

	
 Remote access

	
 Host a wireless network on your Raspberry Pi

 	
 Enable hotspot

	
 Disable hotspot

	
 Use your Raspberry Pi as a network bridge

	
 Using a proxy server

 	
 Configuring your Raspberry Pi

	
 Update the sudoers file

	
 Reboot your Raspberry Pi

	
 HDMI configuration

	
 Setting your display's resolution and rotation

 	
 Setting the desktop environment resolution and rotation

	
 Setting the text console resolution and rotation

	
 Audio configuration

 	
 Changing the audio output

	
 External storage configuration

 	
 Mounting a storage device

	
 Setting up automatic mounting

	
 Unmounting a storage device

	
 Localising your Raspberry Pi

	
 Change the default pin configuration

 	
 Device pins during boot sequence

	
 Provide a custom Device Tree blob

	
 Sections of the dt-blob

	
 Clock configuration

	
 Sample Device Tree source file

	
 Device Trees, overlays, and parameters

 	
 Device Trees

	
 Device Tree overlays

	
 Using Device Trees on Raspberry Pi

	
 Firmware parameters

	
 Troubleshooting

	
 The kernel command line

 	
 Command line options

	
 Configuring UARTs

 	
 Raspberry Pi Zero, 1, 2 and 3

	
 Raspberry Pi 4 and 400

	
 Raspberry Pi 5

	
 CM1, CM3, CM3+ and CM4

	
 Primary UART

	
 Secondary UART

	
 Primary and Secondary UART

	
 Mini-UART and CPU Core Frequency

	
 Disabling the Linux Serial Console

	
 Enabling early console for Linux

	
 UARTs and Device Tree

	
 PL011 and mini-UART

	
 LED warning flash codes

	
 Secure your Raspberry Pi

 	
 Change a user's password

	
 Add a user

	
 Delete a user

	
 Change the default user

 	
 Require a password for sudo commands

	
 Update Raspberry Pi OS

	
 Improving SSH security

	
 Install a firewall

	
 Installing fail2ban

	
 Configure screen blanking

 	
 Desktop

	
 Console

	
 The boot folder

 	
 bootcode.bin

	
 start*.elf

	
 fixup*.dat

	
 cmdline.txt

	
 config.txt

	
 issue.txt

	
 initramfs*

	
 ssh or ssh.txt

	
 Device Tree blob files (*.dtb)

	
 Kernel files (*.img)

	
 overlays folder

 The config.txt file

 	
 What is config.txt?

 	
 File format

	
 Advanced features

	
 autoboot.txt

 	
 boot_partition

	
 The [tryboot] filter

	
 tryboot_a_b

	
 Example update flow for A/B booting

	
 Common options

 	
 Common display options

	
 Common hardware configuration options

	
 Onboard analogue audio (3.5mm jack)

 	
 audio_pwm_mode

	
 disable_audio_dither

	
 enable_audio_dither

	
 pwm_sample_bits

	
 HDMI audio

	
 Boot Options

 	
 start_file, fixup_file

	
 cmdline

	
 kernel

	
 arm_64bit

	
 ramfsfile

	
 ramfsaddr

	
 initramfs

	
 auto_initramfs

	
 disable_poe_fan

	
 disable_splash

	
 enable_uart

	
 force_eeprom_read

	
 os_prefix

	
 otg_mode (Raspberry Pi 4 only)

	
 overlay_prefix

	
 GPIO control

 	
 gpio

	
 Overclocking options

 	
 Overclocking

	
 Clocks relationship

	
 Monitoring core temperature

	
 Monitoring voltage

	
 Overclocking problems

	
 Conditional filters

 	
 The [all] filter

	
 Model filters

	
 The [none] filter

	
 The [tryboot] filter

	
 The [EDID=*] filter

	
 The serial number filter

	
 The GPIO filter

	
 Combining conditional filters

	
 Memory options

 	
 total_mem

	
 Licence key and codec options

 	
 decode_MPG2

	
 decode_WVC1

	
 Video options

 	
 HDMI mode

	
 Composite video mode

	
 LCD displays and touchscreens

	
 Generic display options

	
 Camera settings

 	
 disable_camera_led

	
 awb_auto_is_greyworld

 Legacy config.txt options

 	
 Legacy options

	
 Legacy boot options

 	
 start_x, start_debug

	
 disable_commandline_tags

	
 arm_control

	
 armstub

	
 arm_peri_high

	
 kernel_address

	
 kernel_old

	
 init_uart_baud

	
 init_uart_clock

	
 bootcode_delay

	
 boot_delay

	
 boot_delay_ms

	
 enable_gic (Raspberry Pi 4 Only)

	
 sha256

	
 uart_2ndstage

	
 upstream_kernel

	
 Legacy GPIO control

 	
 enable_jtag_gpio

	
 Legacy overclocking options

 	
 Overclocking

	
 Legacy conditional filters

 	
 The [HDMI:*] filter

	
 Legacy memory options

 	
 gpu_mem

	
 gpu_mem_256

	
 gpu_mem_512

	
 gpu_mem_1024

	
 disable_l2cache

	
 Legacy video options

 	
 HDMI mode

	
 Which values are valid for my monitor?

	
 Custom mode

	
 Composite video mode

	
 LCD displays and touchscreens

	
 Generic display options

	
 Other options

	
 Legacy Raspberry Pi 4 HDMI pipeline

	
 Legacy Miscellaneous Options

 	
 avoid_warnings

	
 logging_level

 The Linux kernel

 	
 Kernel

 	
 Updating your kernel

	
 Getting your code into the kernel

	
 Building the kernel

 	
 Building the kernel locally

	
 Cross-compiling the kernel

	
 Configuring the kernel

 	
 Preparing to configure

	
 Using menuconfig

	
 Saving your changes

	
 Patching the kernel

 	
 Version identification

	
 Applying patches

	
 Kernel headers

 Remote access

 	
 Introduction to remote access

 	
 How to find your IP address

	
 Set up an SSH server

 	
 Set up your local network

	
 Enable the SSH server

	
 Secure Shell

	
 Configure SSH without a password

 	
 Preconfigure a boot image with Raspberry Pi Imager

	
 Manually configure an SSH key

	
 Using Secure Copy

 	
 Copying Files to your Raspberry Pi

	
 Copying Files from your Raspberry Pi

	
 Copying Multiple Files

	
 Copying a Whole Directory

	
 Using rsync

	
 Network File System (NFS)

 	
 Setting up a Basic NFS Server

	
 Configuring an NFS Client

	
 A More Complex NFS Server

	
 Troubleshooting

	
 Samba (SMB/CIFS)

 	
 Installing Samba Support

	
 Mount a Folder Shared from Windows

	
 Sharing a Folder from your Raspberry Pi

	
 Virtual Network Computing (VNC)

 	
 Enable the VNC server

	
 Connect to your Raspberry Pi

	
 Setting up an Apache Web Server

 	
 Installing Apache

	
 Test the Web Server

	
 Installing PHP for Apache

	
 Network boot your Raspberry Pi

 	
 Client Configuration

	
 Ethernet MAC address

	
 Server Configuration

	
 Network booting using IPv6

 	
 How it works

	
 Test Setup

	
 Debugging

 Camera software

 	
 Introducing the Raspberry Pi cameras

	
 libcamera and rpicam-apps

 	
 Introduction

	
 Getting started

	
 Troubleshooting

	
 rpicam-hello

	
 rpicam-jpeg

	
 rpicam-still

	
 rpicam-vid

	
 libav integration with rpicam-vid

	
 rpicam-raw

	
 rpicam-detect

	
 Common command line options

	
 Still command line options

	
 Video command line options

	
 Differences compared to Raspicam apps

	
 Post-processing

	
 Post-processing with OpenCV

	
 Post-Processing with TensorFlow Lite

	
 Writing your own post-processing stages

	
 Using multiple cameras

	
 libcamera and rpicam-apps packages

	
 Building libcamera and rpicam-apps

	
 Understanding and writing your own apps

	
 Python bindings for libcamera

	
 Camera tuning and supporting third-party sensors

	
 Known issues

	
 Getting help

	
 Application notes

 	
 Creating timelapse video

	
 Using GStreamer

	
 Using libcamera and Qt together

	
 V4L2 drivers

 	
 Device nodes when using libcamera

	
 Using the driver

	
 Camera serial interface 2 (CSI2): Unicam

 	
 Software interfaces

	
 Developing third-party drivers

 Raspberry Pi hardware

 	
 GPIO and the 40-pin header

 	
 Voltages

	
 Outputs

	
 Inputs

	
 Other functions

	
 GPIO pinout

	
 Permissions

	
 GPIO in Python

	
 Schematics and mechanical drawings

 	
 Raspberry Pi 5

	
 Raspberry Pi 4 Model B

	
 Raspberry Pi 3 Model B+

	
 Raspberry Pi 3 Model B

	
 Raspberry Pi 2 Model B

	
 Raspberry Pi 1 Model B+

	
 Raspberry Pi 3 Model A+

	
 Raspberry Pi 1 Model A+

	
 Raspberry Pi Zero

	
 Raspberry Pi Zero W

	
 Raspberry Pi Zero 2 W

	
 Product compliance and safety

 	
 Flammability rating

	
 Raspberry Pi Compliance Support

	
 Powered by Raspberry Pi

	
 Approved Design Partners

	
 Frequency management and thermal control

 	
 Using DVFS

	
 Measuring temperatures

	
 Adding heatsinks

	
 Fan cases

	
 Raspberry Pi boot EEPROM

 	
 Boot diagnostics

	
 Update the bootloader

	
 Updating the EEPROM Configuration

	
 Automatic updates

	
 Bootloader release status

	
 Boot diagnostics on the Raspberry Pi 4

	
 Raspberry Pi boot modes

 	
 Special bootcode.bin-only boot mode

	
 bootcode.bin UART Enable

	
 Boot sequence

	
 Raspberry Pi 4 and Raspberry Pi 5 boot flow

 	
 First stage bootloader

	
 Second stage bootloader

	
 Bootloader updates

	
 Fail-safe OS updates (tryboot)

	
 tryboot_a_b mode

	
 Raspberry Pi bootloader configuration

 	
 Editing the configuration

	
 Configuration properties

	
 Configuration Properties in config.txt

	
 Secure Boot configuration properties in config.txt

	
 USB boot modes

 	
 USB device boot mode

	
 USB host boot mode

	
 USB mass storage boot

 	
 Raspberry Pi 4B and Raspberry Pi 400

	
 Compute Module 4

	
 Raspberry Pi 3B+

	
 Raspberry Pi 2B, 3A+, 3B, CM3, CM3+, Zero 2 W

	
 Booting from USB mass storage

	
 Known issues

	
 Special bootcode.bin-only boot mode

	
 Hardware compatibility

	
 Multiple bootable drives

	
 Network booting

 	
 Network boot flow

	
 Debugging network boot mode

	
 Known problems

	
 GPIO boot mode

 	
 Pin assignments

	
 Boot flow

	
 NVMe SSD boot

 	
 Required hardware

	
 Required software

	
 Troubleshooting

	
 HTTP boot

 	
 Requirements

	
 Keys

	
 Secure boot

	
 Parallel Display Interface

 	
 GPIO pins

	
 Disable other GPIO peripherals

	
 Configure a display

	
 General Purpose I/O (GPIO)

 	
 GPIO pads

	
 Interrupts

	
 Alternative functions

	
 Voltage specifications

	
 GPIO pads control

	
 Industrial use of the Raspberry Pi

 	
 One-time programmable settings

	
 Write and read customer OTP values

	
 Locking OTP on non-BCM2712 devices

	
 Locking OTP on BCM2712 devices

	
 Making customer OTP bits unreadable on non-BCM2712 devices

	
 Customer MAC addresses on BCM2712 devices

	
 Device-specific private key

	
 OTP register and bit definitions

 	
 OTP registers on non-BCM2712 devices

	
 OTP Registers on BCM2712 devices

	
 Raspberry Pi connector for PCIe

 	
 Enable PCIe

	
 Boot from PCIe

	
 PCIe Gen 3.0

	
 Power button

 	
 Restart

	
 Hard shutdown

	
 Add your own power button

	
 Power supply

 	
 Recommended power supplies

	
 Power over Ethernet (PoE) connector

 	
 Typical power requirements

	
 Power supply warnings

	
 Power supplies and Raspberry Pi OS

	
 Back-powering

	
 Real Time Clock (RTC)

 	
 Add a backup battery

	
 Enable battery charging

	
 Disable battery charging

	
 Serial peripheral interface (SPI)

 	
 SPI hardware

	
 SPI software

	
 Troubleshooting

	
 Universal Serial Bus (USB)

 	
 Maximum power output

	
 Raspberry Pi 5

	
 Raspberry Pi 4

	
 Raspberry Pi Zero, 1, 2 and 3

	
 Known USB issues

	
 Raspberry Pi revision codes

 	
 Old-style revision codes

	
 New-style revision codes

	
 New-style revision codes in use

	
 Using revision codes for board identification

	
 Best practices for revision code usage

 Compute Module hardware

 	
 Datasheets and schematics

 	
 Compute Module 4

	
 Older products

	
 Design files for CMIO Boards

	
 Flashing the Compute Module eMMC

 	
 Steps to flash the eMMC

	
 Setting up the CMIO board

	
 Compute Module 4 bootloader

	
 Troubleshooting

	
 Attaching and enabling peripherals

 	
 BCM283x GPIOs

	
 BCM283x boot process

	
 Device Tree

	
 dt-blob.bin

	
 Arm Linux Device Tree

	
 Device Tree source and compilation

	
 Device Tree debugging

	
 Examples

	
 Attach a Raspberry Pi Camera Module

 	
 Update your system

	
 Connect one camera

	
 Connect two cameras

	
 Software

	
 I2C mapping of GPIO pins

	
 Attaching the official 7-inch display

 	
 Connect a display to DISP1

	
 Connect a display to DISP0

	
 Disable touchscreen

	
 Disable display

 Processors

 	
 BCM2835

	
 BCM2836

	
 BCM2837

	
 BCM2837B0

	
 BCM2711

	
 BCM2712

	
 RP3A0

 Computers

 Getting started

 	
 Getting started with your Raspberry Pi

 	
 Power supply

	
 Boot Media

	
 Keyboard

	
 Mouse

	
 Display

	
 Audio

	
 Networking

	
 Install an operating system

 	
 Install using Imager

	
 Install over the network

	
 Set up your Raspberry Pi

	
 Configuration on first boot

 	
 Bluetooth

	
 Locale

	
 User

	
 WiFi

	
 Browser

	
 Software updates

	
 Finish

	
 Next steps

 	
 Recommended software

	
 Tutorials

	
 Support

	
 Further reading

 Raspberry Pi OS

 	
 Introduction

	
 Updating and upgrading Raspberry Pi OS

 	
 Using APT

	
 Using rpi-update

	
 Playing audio and video

 	
 The VLC application

	
 Playing audio and video on Raspberry Pi OS Lite

	
 Using a USB webcam

 	
 Basic usage

	
 Automating image capture

	
 Time-lapse captures

	
 Utilities

 	
 kmsprint

	
 vcgencmd

	
 vclog

	
 Accessibility options

 	
 Visual aids

	
 Python on Raspberry Pi

 	
 Installing Python packages using apt

	
 About Python virtual environments

	
 Using pip with virtual environments

	
 Using the Thonny editor

	
 GPIO and the 40-pin header

 	
 Voltages

	
 Outputs

	
 Inputs

	
 Other functions

	
 GPIO pinout

	
 Permissions

	
 GPIO in Python

 Configuration

 	
 The raspi-config Tool

 	
 List of options

	
 The raspi-config Command Line Interface

 	
 List of options

	
 Configuring networking

 	
 Using the desktop

	
 Using the command line

	
 Configure DHCP

	
 Assign a static IP address

	
 Set up a headless Raspberry Pi

 	
 Connect to a wired network

	
 Connect to a wireless network

	
 Remote access

	
 Host a wireless network on your Raspberry Pi

 	
 Enable hotspot

	
 Disable hotspot

	
 Use your Raspberry Pi as a network bridge

	
 Using a proxy server

 	
 Configuring your Raspberry Pi

	
 Update the sudoers file

	
 Reboot your Raspberry Pi

	
 HDMI configuration

	
 Setting your display's resolution and rotation

 	
 Setting the desktop environment resolution and rotation

	
 Setting the text console resolution and rotation

	
 Audio configuration

 	
 Changing the audio output

	
 External storage configuration

 	
 Mounting a storage device

	
 Setting up automatic mounting

	
 Unmounting a storage device

	
 Localising your Raspberry Pi

	
 Change the default pin configuration

 	
 Device pins during boot sequence

	
 Provide a custom Device Tree blob

	
 Sections of the dt-blob

	
 Clock configuration

	
 Sample Device Tree source file

	
 Device Trees, overlays, and parameters

 	
 Device Trees

	
 Device Tree overlays

	
 Using Device Trees on Raspberry Pi

	
 Firmware parameters

	
 Troubleshooting

	
 The kernel command line

 	
 Command line options

	
 Configuring UARTs

 	
 Raspberry Pi Zero, 1, 2 and 3

	
 Raspberry Pi 4 and 400

	
 Raspberry Pi 5

	
 CM1, CM3, CM3+ and CM4

	
 Primary UART

	
 Secondary UART

	
 Primary and Secondary UART

	
 Mini-UART and CPU Core Frequency

	
 Disabling the Linux Serial Console

	
 Enabling early console for Linux

	
 UARTs and Device Tree

	
 PL011 and mini-UART

	
 LED warning flash codes

	
 Secure your Raspberry Pi

 	
 Change a user's password

	
 Add a user

	
 Delete a user

	
 Change the default user

 	
 Require a password for sudo commands

	
 Update Raspberry Pi OS

	
 Improving SSH security

	
 Install a firewall

	
 Installing fail2ban

	
 Configure screen blanking

 	
 Desktop

	
 Console

	
 The boot folder

 	
 bootcode.bin

	
 start*.elf

	
 fixup*.dat

	
 cmdline.txt

	
 config.txt

	
 issue.txt

	
 initramfs*

	
 ssh or ssh.txt

	
 Device Tree blob files (*.dtb)

	
 Kernel files (*.img)

	
 overlays folder

 The config.txt file

 	
 What is config.txt?

 	
 File format

	
 Advanced features

	
 autoboot.txt

 	
 boot_partition

	
 The [tryboot] filter

	
 tryboot_a_b

	
 Example update flow for A/B booting

	
 Common options

 	
 Common display options

	
 Common hardware configuration options

	
 Onboard analogue audio (3.5mm jack)

 	
 audio_pwm_mode

	
 disable_audio_dither

	
 enable_audio_dither

	
 pwm_sample_bits

	
 HDMI audio

	
 Boot Options

 	
 start_file, fixup_file

	
 cmdline

	
 kernel

	
 arm_64bit

	
 ramfsfile

	
 ramfsaddr

	
 initramfs

	
 auto_initramfs

	
 disable_poe_fan

	
 disable_splash

	
 enable_uart

	
 force_eeprom_read

	
 os_prefix

	
 otg_mode (Raspberry Pi 4 only)

	
 overlay_prefix

	
 GPIO control

 	
 gpio

	
 Overclocking options

 	
 Overclocking

	
 Clocks relationship

	
 Monitoring core temperature

	
 Monitoring voltage

	
 Overclocking problems

	
 Conditional filters

 	
 The [all] filter

	
 Model filters

	
 The [none] filter

	
 The [tryboot] filter

	
 The [EDID=*] filter

	
 The serial number filter

	
 The GPIO filter

	
 Combining conditional filters

	
 Memory options

 	
 total_mem

	
 Licence key and codec options

 	
 decode_MPG2

	
 decode_WVC1

	
 Video options

 	
 HDMI mode

	
 Composite video mode

	
 LCD displays and touchscreens

	
 Generic display options

	
 Camera settings

 	
 disable_camera_led

	
 awb_auto_is_greyworld

 Legacy config.txt options

 	
 Legacy options

	
 Legacy boot options

 	
 start_x, start_debug

	
 disable_commandline_tags

	
 arm_control

	
 armstub

	
 arm_peri_high

	
 kernel_address

	
 kernel_old

	
 init_uart_baud

	
 init_uart_clock

	
 bootcode_delay

	
 boot_delay

	
 boot_delay_ms

	
 enable_gic (Raspberry Pi 4 Only)

	
 sha256

	
 uart_2ndstage

	
 upstream_kernel

	
 Legacy GPIO control

 	
 enable_jtag_gpio

	
 Legacy overclocking options

 	
 Overclocking

	
 Legacy conditional filters

 	
 The [HDMI:*] filter

	
 Legacy memory options

 	
 gpu_mem

	
 gpu_mem_256

	
 gpu_mem_512

	
 gpu_mem_1024

	
 disable_l2cache

	
 Legacy video options

 	
 HDMI mode

	
 Which values are valid for my monitor?

	
 Custom mode

	
 Composite video mode

	
 LCD displays and touchscreens

	
 Generic display options

	
 Other options

	
 Legacy Raspberry Pi 4 HDMI pipeline

	
 Legacy Miscellaneous Options

 	
 avoid_warnings

	
 logging_level

 The Linux kernel

 	
 Kernel

 	
 Updating your kernel

	
 Getting your code into the kernel

	
 Building the kernel

 	
 Building the kernel locally

	
 Cross-compiling the kernel

	
 Configuring the kernel

 	
 Preparing to configure

	
 Using menuconfig

	
 Saving your changes

	
 Patching the kernel

 	
 Version identification

	
 Applying patches

	
 Kernel headers

 Remote access

 	
 Introduction to remote access

 	
 How to find your IP address

	
 Set up an SSH server

 	
 Set up your local network

	
 Enable the SSH server

	
 Secure Shell

	
 Configure SSH without a password

 	
 Preconfigure a boot image with Raspberry Pi Imager

	
 Manually configure an SSH key

	
 Using Secure Copy

 	
 Copying Files to your Raspberry Pi

	
 Copying Files from your Raspberry Pi

	
 Copying Multiple Files

	
 Copying a Whole Directory

	
 Using rsync

	
 Network File System (NFS)

 	
 Setting up a Basic NFS Server

	
 Configuring an NFS Client

	
 A More Complex NFS Server

	
 Troubleshooting

	
 Samba (SMB/CIFS)

 	
 Installing Samba Support

	
 Mount a Folder Shared from Windows

	
 Sharing a Folder from your Raspberry Pi

	
 Virtual Network Computing (VNC)

 	
 Enable the VNC server

	
 Connect to your Raspberry Pi

	
 Setting up an Apache Web Server

 	
 Installing Apache

	
 Test the Web Server

	
 Installing PHP for Apache

	
 Network boot your Raspberry Pi

 	
 Client Configuration

	
 Ethernet MAC address

	
 Server Configuration

	
 Network booting using IPv6

 	
 How it works

	
 Test Setup

	
 Debugging

 Camera software

 	
 Introducing the Raspberry Pi cameras

	
 libcamera and rpicam-apps

 	
 Introduction

	
 Getting started

	
 Troubleshooting

	
 rpicam-hello

	
 rpicam-jpeg

	
 rpicam-still

	
 rpicam-vid

	
 libav integration with rpicam-vid

	
 rpicam-raw

	
 rpicam-detect

	
 Common command line options

	
 Still command line options

	
 Video command line options

	
 Differences compared to Raspicam apps

	
 Post-processing

	
 Post-processing with OpenCV

	
 Post-Processing with TensorFlow Lite

	
 Writing your own post-processing stages

	
 Using multiple cameras

	
 libcamera and rpicam-apps packages

	
 Building libcamera and rpicam-apps

	
 Understanding and writing your own apps

	
 Python bindings for libcamera

	
 Camera tuning and supporting third-party sensors

	
 Known issues

	
 Getting help

	
 Application notes

 	
 Creating timelapse video

	
 Using GStreamer

	
 Using libcamera and Qt together

	
 V4L2 drivers

 	
 Device nodes when using libcamera

	
 Using the driver

	
 Camera serial interface 2 (CSI2): Unicam

 	
 Software interfaces

	
 Developing third-party drivers

 Raspberry Pi hardware

 	
 GPIO and the 40-pin header

 	
 Voltages

	
 Outputs

	
 Inputs

	
 Other functions

	
 GPIO pinout

	
 Permissions

	
 GPIO in Python

	
 Schematics and mechanical drawings

 	
 Raspberry Pi 5

	
 Raspberry Pi 4 Model B

	
 Raspberry Pi 3 Model B+

	
 Raspberry Pi 3 Model B

	
 Raspberry Pi 2 Model B

	
 Raspberry Pi 1 Model B+

	
 Raspberry Pi 3 Model A+

	
 Raspberry Pi 1 Model A+

	
 Raspberry Pi Zero

	
 Raspberry Pi Zero W

	
 Raspberry Pi Zero 2 W

	
 Product compliance and safety

 	
 Flammability rating

	
 Raspberry Pi Compliance Support

	
 Powered by Raspberry Pi

	
 Approved Design Partners

	
 Frequency management and thermal control

 	
 Using DVFS

	
 Measuring temperatures

	
 Adding heatsinks

	
 Fan cases

	
 Raspberry Pi boot EEPROM

 	
 Boot diagnostics

	
 Update the bootloader

	
 Updating the EEPROM Configuration

	
 Automatic updates

	
 Bootloader release status

	
 Boot diagnostics on the Raspberry Pi 4

	
 Raspberry Pi boot modes

 	
 Special bootcode.bin-only boot mode

	
 bootcode.bin UART Enable

	
 Boot sequence

	
 Raspberry Pi 4 and Raspberry Pi 5 boot flow

 	
 First stage bootloader

	
 Second stage bootloader

	
 Bootloader updates

	
 Fail-safe OS updates (tryboot)

	
 tryboot_a_b mode

	
 Raspberry Pi bootloader configuration

 	
 Editing the configuration

	
 Configuration properties

	
 Configuration Properties in config.txt

	
 Secure Boot configuration properties in config.txt

	
 USB boot modes

 	
 USB device boot mode

	
 USB host boot mode

	
 USB mass storage boot

 	
 Raspberry Pi 4B and Raspberry Pi 400

	
 Compute Module 4

	
 Raspberry Pi 3B+

	
 Raspberry Pi 2B, 3A+, 3B, CM3, CM3+, Zero 2 W

	
 Booting from USB mass storage

	
 Known issues

	
 Special bootcode.bin-only boot mode

	
 Hardware compatibility

	
 Multiple bootable drives

	
 Network booting

 	
 Network boot flow

	
 Debugging network boot mode

	
 Known problems

	
 GPIO boot mode

 	
 Pin assignments

	
 Boot flow

	
 NVMe SSD boot

 	
 Required hardware

	
 Required software

	
 Troubleshooting

	
 HTTP boot

 	
 Requirements

	
 Keys

	
 Secure boot

	
 Parallel Display Interface

 	
 GPIO pins

	
 Disable other GPIO peripherals

	
 Configure a display

	
 General Purpose I/O (GPIO)

 	
 GPIO pads

	
 Interrupts

	
 Alternative functions

	
 Voltage specifications

	
 GPIO pads control

	
 Industrial use of the Raspberry Pi

 	
 One-time programmable settings

	
 Write and read customer OTP values

	
 Locking OTP on non-BCM2712 devices

	
 Locking OTP on BCM2712 devices

	
 Making customer OTP bits unreadable on non-BCM2712 devices

	
 Customer MAC addresses on BCM2712 devices

	
 Device-specific private key

	
 OTP register and bit definitions

 	
 OTP registers on non-BCM2712 devices

	
 OTP Registers on BCM2712 devices

	
 Raspberry Pi connector for PCIe

 	
 Enable PCIe

	
 Boot from PCIe

	
 PCIe Gen 3.0

	
 Power button

 	
 Restart

	
 Hard shutdown

	
 Add your own power button

	
 Power supply

 	
 Recommended power supplies

	
 Power over Ethernet (PoE) connector

 	
 Typical power requirements

	
 Power supply warnings

	
 Power supplies and Raspberry Pi OS

	
 Back-powering

	
 Real Time Clock (RTC)

 	
 Add a backup battery

	
 Enable battery charging

	
 Disable battery charging

	
 Serial peripheral interface (SPI)

 	
 SPI hardware

	
 SPI software

	
 Troubleshooting

	
 Universal Serial Bus (USB)

 	
 Maximum power output

	
 Raspberry Pi 5

	
 Raspberry Pi 4

	
 Raspberry Pi Zero, 1, 2 and 3

	
 Known USB issues

	
 Raspberry Pi revision codes

 	
 Old-style revision codes

	
 New-style revision codes

	
 New-style revision codes in use

	
 Using revision codes for board identification

	
 Best practices for revision code usage

 Compute Module hardware

 	
 Datasheets and schematics

 	
 Compute Module 4

	
 Older products

	
 Design files for CMIO Boards

	
 Flashing the Compute Module eMMC

 	
 Steps to flash the eMMC

	
 Setting up the CMIO board

	
 Compute Module 4 bootloader

	
 Troubleshooting

	
 Attaching and enabling peripherals

 	
 BCM283x GPIOs

	
 BCM283x boot process

	
 Device Tree

	
 dt-blob.bin

	
 Arm Linux Device Tree

	
 Device Tree source and compilation

	
 Device Tree debugging

	
 Examples

	
 Attach a Raspberry Pi Camera Module

 	
 Update your system

	
 Connect one camera

	
 Connect two cameras

	
 Software

	
 I2C mapping of GPIO pins

	
 Attaching the official 7-inch display

 	
 Connect a display to DISP1

	
 Connect a display to DISP0

	
 Disable touchscreen

	
 Disable display

 Processors

 	
 BCM2835

	
 BCM2836

	
 BCM2837

	
 BCM2837B0

	
 BCM2711

	
 BCM2712

	
 RP3A0

 Raspberry Pi hardware

GPIO and the 40-pin header

Edit this on GitHub

A powerful feature of the Raspberry Pi is the row of GPIO (general-purpose input/output) pins along the top edge of the board. A 40-pin GPIO header is found on all current Raspberry Pi boards, although it is unpopulated on Raspberry Pi Zero, Raspberry Pi Zero W, and Raspberry Pi Zero 2 W. The GPIO headers on all boards have a 0.1in (2.54mm) pin pitch.

Any of the GPIO pins can be designated in software as an input or output pin and used for a wide range of purposes.

	
Note

	
The GPIO pin numbering scheme is not in numerical order. GPIO pins 0 and 1 are present on the board (physical pins 27 and 28), but are reserved for advanced use.

Voltages

Two 5V pins and two 3.3V pins are present on the board, as well as a number of ground pins (GND), which can not be reconfigured. The remaining pins are all general-purpose 3.3V pins, meaning outputs are set to 3.3V and inputs are 3.3V-tolerant.

Outputs

A GPIO pin designated as an output pin can be set to high (3.3V) or low (0V).

Inputs

A GPIO pin designated as an input pin can be read as high (3.3V) or low (0V). This is made easier with the use of internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3 have fixed pull-up resistors, but for other pins this can be configured in software.

Other functions

As well as simple input and output devices, the GPIO pins can be used with a variety of alternative functions, some are available on all pins, others on specific pins.

	
PWM (pulse-width modulation)

	
Software PWM available on all pins

	
Hardware PWM available on GPIO12, GPIO13, GPIO18, GPIO19

	
SPI

	
SPI0: MOSI (GPIO10); MISO (GPIO9); SCLK (GPIO11); CE0 (GPIO8), CE1 (GPIO7)

	
SPI1: MOSI (GPIO20); MISO (GPIO19); SCLK (GPIO21); CE0 (GPIO18); CE1 (GPIO17); CE2 (GPIO16)

	
I2C

	
Data: (GPIO2); Clock (GPIO3)

	
EEPROM Data: (GPIO0); EEPROM Clock (GPIO1)

	
Serial

	
TX (GPIO14); RX (GPIO15)

GPIO pinout

A GPIO reference can be accessed on your Raspberry Pi by opening a terminal window and running the command pinout. This tool is provided by the GPIO Zero Python library, which is installed by default in Raspberry Pi OS.

	
Warning

	
While connecting simple components to the GPIO pins is perfectly safe, it’s important to be careful how you wire things up. LEDs should have resistors to limit the current passing through them. Do not use 5V for 3.3V components. Do not connect motors directly to the GPIO pins, instead use an H-bridge circuit or a motor controller board.

Permissions

In order to use the GPIO ports, your user must be a member of the gpio group. The default user account is a member by default, other users need to be added manually.

 Copy to Clipboard

sudo usermod -a -G gpio <username>

GPIO in Python

Using the GPIO Zero library makes it easy to control GPIO devices with Python. The library is comprehensively documented at gpiozero.readthedocs.io.

LED

To control an LED connected to GPIO17:

 Copy to Clipboard

from gpiozero import LED
from time import sleep

led = LED(17)

while True:
 led.on()
 sleep(1)
 led.off()
 sleep(1)

Run this in an IDE like Thonny, and the LED will blink on and off repeatedly.

LED methods include on(), off(), toggle(), and blink().

Button

To read the state of a button connected to GPIO2:

 Copy to Clipboard

from gpiozero import Button
from time import sleep

button = Button(2)

while True:
 if button.is_pressed:
 print("Pressed")
 else:
 print("Released")
 sleep(1)

Button functionality includes the properties is_pressed and is_held; callbacks when_pressed, when_released, and when_held; and methods wait_for_press() and wait_for_release.

Button and LED

To connect the LED and button together, you can use this code:

 Copy to Clipboard

from gpiozero import LED, Button

led = LED(17)
button = Button(2)

while True:
 if button.is_pressed:
 led.on()
 else:
 led.off()

Alternatively:

 Copy to Clipboard

from gpiozero import LED, Button

led = LED(17)
button = Button(2)

while True:
 button.wait_for_press()
 led.on()
 button.wait_for_release()
 led.off()

or:

 Copy to Clipboard

from gpiozero import LED, Button

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

Going further

You can find more information on how to program electronics connected to your Raspberry Pi with the GPIO Zero Python library in the Raspberry Pi Press book Simple Electronics with GPIO Zero. The book gets you started with the GPIO Zero library, and walks you through how to use it by building a series of projects.

You can download this book as a PDF file for free, it has been released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY NC-SA) licence.

Schematics and mechanical drawings

Edit this on GitHub

Schematics for the various Raspberry Pi board versions:

Raspberry Pi 5

	
Mechanical drawings, PDF

	
STEP file for Raspberry Pi 5

Raspberry Pi 4 Model B

	
Schematics, revision 4.0

	
Mechanical drawings, PDF

	
Mechanical drawings, DXF

Raspberry Pi 3 Model B+

	
Schematics, revision 1.0

	
Mechanical drawings, PDF

	
Mechanical drawings, DXF

	
Case drawings, PDF

Raspberry Pi 3 Model B

	
Schematics, revision 1.2

	
Mechanical drawings, PDF

	
Mechanical drawings, DXF

Raspberry Pi 2 Model B

	
Schematics, revision 1.2

Raspberry Pi 1 Model B+

	
Schematics, revision 1.2

	
Mechanical drawings, PDF

	
Mechanical drawings, DXF

Raspberry Pi 3 Model A+

	
Schematics, revision 1.0

	
Mechanical drawings, PDF

	
Case drawings, PDF

	
Note

	
Mechanical drawings for the Raspberry Pi 3 Model A+ are also applicable to the Raspberry Pi 1 Model A+.

Raspberry Pi 1 Model A+

	
Schematics, revision 1.1

Raspberry Pi Zero

	
Schematics, revision 1.3

	
Mechanical drawings, PDF

	
Case drawings, PDF - blank lid

	
Case drawings, PDF - GPIO lid

	
Case Drawings, PDF - camera lid

Raspberry Pi Zero W

	
Schematics, revision 1.1

	
Mechanical drawings, PDF

Raspberry Pi Zero 2 W

	
Schematics

	
Mechanical drawings, PDF

	
Test pad positions

Test pad locations

The Raspberry Pi Zero 2 W has a number of test pad locations used during production of the board.

	Label	Function	X (mm from origin)	Y (mm from origin)
	STATUS_LED
	Power state of LED (LOW = ON)
	5.15
	8.8

	CORE
	Processor power
	6.3
	18.98

	RUN
	Connect to GND to reset
	8.37
	22.69

	5V
	5V input
	8.75
	11.05

	5V
	5V input
	11.21
	6.3

	GND
	Ground pin
	10.9
	3.69

	GND
	Ground pin
	17.29
	2.41

	USB_DP
	USB port
	22.55
	1.92

	USB_DM
	USB port
	24.68
	1.92

	OTG
	On-the-go ID pin
	39.9
	7.42

	1V8
	1.8V analog supply
	42.03
	8.42

	TV
	Composite TV out
	45.58
	3.17

	GND
	Ground pin
	49.38
	3.05

	GND
	Ground pin
	55.99
	22.87

	3V3
	3.3V I/O supply
	48.55
	22.44

	SD_CLK
	SD Card clock pin
	60.95
	18.45

	SD_CMD
	SD Card command pin
	58.2
	16.42

	SD_DAT0
	SD data pin
	58.13
	20.42

	SD_DAT1
	SD data pin
	60.65
	21.1

	SD_DAT2
	SD data pin
	57.78
	13.57

	SD_DAT3
	SD data pin
	60.8
	15.22

	BT_ON
	Bluetooth power status
	25.13
	19.55

	WL_ON
	Wireless LAN power status
	27.7
	19.2

Product compliance and safety

Edit this on GitHub

All Raspberry Pi products have undergone extensive compliance testing. For more information see the Product Information Portal.

Flammability rating

The PCBs used in Raspberry Pi devices adhere to UL94-V0.

	
Note

	
This applies to the PCBs only.

Raspberry Pi Compliance Support

The Compliance Support programme is designed to eliminate the burden of navigating compliance issues and make it easier for companies to bring new products to consumers. It provides access to the same test engineers who worked on our Raspberry Pis during their compliance testing, connecting the user to a dedicated team at UL who assess and test the user’s product, facilitated by their in-depth knowledge of Raspberry Pi.

Find out more about the Raspberry Pi Compliance Support Programme.

Powered by Raspberry Pi

The Powered by Raspberry Pi progamme provides a process for companies wanting to use a form of the Raspberry Pi logo, and covers products with Raspberry Pi computers or silicon inside, and services provided by a Raspberry Pi. If you wish to start the process to apply you can do so online.

Approved Design Partners

Our list of Approved Design Partners provides a set of consultancies which we work closely with and support so they can provide paid-for design services across hardware, software, and mechanical fields.

Frequency management and thermal control

Edit this on GitHub

All Raspberry Pi models perform a degree of thermal management to avoid overheating under heavy load. The SoCs have an internal temperature sensor, which software on the GPU polls to ensure that temperatures do not exceed a limit which we define as 85°C on all models. It is possible to set this to a lower value, but not to a higher one. As the device approaches the limit, various frequencies and sometimes voltages used on the chip (Arm, GPU) are reduced. This reduces the amount of heat generated, keeping the temperature under control.

When the core temperature is between 80°C and 85°C, the Arm cores will be progressively throttled back. If the temperature reaches 85°C, both the Arm cores and the GPU will be throttled back.

For Raspberry Pi 3 Model B+, the PCB technology has been changed to provide better heat dissipation and increased thermal mass. In addition, a soft temperature limit has been introduced, with the goal of maximising the time for which a device can "sprint" before reaching the hard limit at 85°C. When the soft limit is reached, the clock speed is reduced from 1.4GHz to 1.2GHz, and the operating voltage is reduced slightly. This reduces the rate of temperature increase: we trade a short period at 1.4GHz for a longer period at 1.2GHz. By default, the soft limit is 60°C, and this can be changed via the temp_soft_limit setting in config.txt.

The Raspberry Pi 4 Model B continues with the same PCB technology as the Raspberry Pi 3 Model B+, to help dissipate excess heat. There is currently no soft limit defined.

Using DVFS

	
Note

	
Discussion of DVFS applies to Raspberry Pi 4 Model B, Raspberry Pi 400, and Compute Module 4 only.

Raspberry Pi 4 devices implement dynamic voltage and frequency scaling (DVFS). This technique allows Raspberry Pi 4 devices to run at lower temperatures whilst still providing the same performance.

Various clocks (e.g. Arm, Core, V3D, ISP, H264, HEVC) inside the SoC are monitored by the firmware, and whenever they are not running at full speed, the voltage supplied to the particular part of the chip driven by the clock is reduced relative to the reduction from full speed. In effect, only enough voltage is supplied to keep the block running correctly at the specific speed at which it is running. This can result in significant reductions in power used by the SoC, and therefore in the overall heat being produced.

Due to possible system stability problems involved with running an undervoltage, especially when using undervoltaged fixed clock peripherals (eg. PCIe), three DVFS modes are available and can be configured in /boot/firmware/config.txt with the below properties. Most systems should use dvfs=3, headless systems may benefit from a small power reduction with dvfs=1 at the risk of PCIe stability issues.

	property=value	Description
	dvfs=1
	allow undervoltage

	dvfs=2
	fixed voltage for default operating frequencies

	dvfs=3
	scale voltage up on demand for over clocking (default). If over_voltage is specified in config.txt then dynamic voltage scaling is disabled causing the system to revert to dvfs=2.

	
Note

	
This setting has been removed on Raspberry Pi 5 and is effectively always mode 3.

In addition, a more stepped CPU governor is also used to produce finer-grained control of ARM core frequencies, which means the DVFS is more effective. The steps are now 1500MHz, 1000MHz, 750MHz, and 600MHz. These steps can also help when the SoC is being throttled, and mean that throttling all the way back to 600MHz is much less likely, giving an overall increase in fully loaded performance.

The default CPU governor is ondemand. The governor can be manually changed with the cpufreq-set command (from the cpufrequtils package) to reduce idle power consumption:

 Copy to Clipboard

 sudo apt install cpufrequtils
 sudo cpufreq-set -g powersave

Measuring temperatures

Due to the architecture of the SoCs used on Raspberry Pi devices, and the use of the upstream temperature monitoring code in the Raspberry Pi OS distribution, Linux-based temperature measurements can be inaccurate. However, the vcgencmd command provides an accurate and instantaneous reading of the current SoC temperature, as it communicates with the GPU directly:

 Copy to Clipboard

 vcgencmd measure_temp

Adding heatsinks

Thanks to built-in throttling, heatsinks are not necessary to prevent overheating damage to the SoC. However, a heatsink or small fan can reduce thermal throttling and improve performance. Mount the Raspberry Pi vertically for the best airflow and thus slightly improved heat dissipation.

Fan cases

Raspberry Pi 5 has two official fan options to assist with cooling:

	
Active Cooler

	
Case for Raspberry Pi 5

Both of these plug into the four-pin JST-SH PWM fan connector located in the upper right of the board between the 40-pin GPIO header and the USB 2 ports. The fan connector pulls from the same current limit as USB peripherals. We recommend the Active Cooler case for overclockers, since it provides better cooling performance.

Both of the available official accessories are actively managed by Raspberry Pi firmware. As the temperature of the Raspberry Pi increases, the fan reacts in the following way:

	
below 50°C, the fan does not spin at all (0% speed)

	
at 50°C, the fan turns on at a low speed (30% speed)

	
at 60°C, the fan speed increases to a medium speed (50% speed)

	
at 67.5°C, the fan speed increases to a high speed (70% speed)

	
at 75°C the fan increases to full speed (100% speed)

Temperature decreases use the same mapping with a 5°C hysteresis; fan speed decreases when the temperature drops to 5°C below each of the above thresholds.

At boot the fan is turned on, and the tachometer input is checked to see if the fan is spinning. If it is, then the cooling_fan device tree overlay is enabled. This overlay is in bcm2712-rpi-5-b.dtb by default, but with status=disabled.

INFO: Both fan options use the Coolcox CC3007H05S part.

Fan connector pinout

The fan connector is a 1mm pitch JST-SH socket containing the following four pins:

	Pin
	Function
	Wire colour

	1
	+5V
	Red

	2
	PWM
	Blue

	3
	GND
	Black

	4
	Tach
	Yellow

Raspberry Pi boot EEPROM

Edit this on GitHub

Raspberry Pi 5, Raspberry Pi 4, 400, Compute Module 4, and Compute Module 4S computers use an EEPROM to boot the system. All other models of Raspberry Pi computer use the bootcode.bin file located in the boot filesystem.

	
Note

	
The scripts and pre-compiled binaries used to create the rpi-eeprom package which is used to update the Raspberry Pi 4 bootloader and VLI USB controller EEPROMs is available on GitHub.

Boot diagnostics

If an error occurs during boot, then an error code will be displayed via the green LED. Newer versions of the bootloader will display a diagnostic message which will be shown on both HDMI displays.

Update the bootloader

There are multiple ways to update the bootloader of your Raspberry Pi.

Raspberry Pi 5, Raspberry Pi 4 and Raspberry Pi 400

Raspberry Pi OS automatically updates the bootloader for critical bug fixes. The recommended methods for manually updating the bootloader or changing the boot modes are Raspberry Pi Imager and raspi-config.

Using Raspberry Pi Imager to update the bootloader

Raspberry Pi Imager provides a GUI for updating the bootloader and selecting the boot mode.

	
Download Raspberry Pi Imager

	
Select a spare SD card (bootloader images overwrite the entire card)

	
Launch Raspberry Pi Imager

	
Select Choose OS

	
Select Misc utility images

	
Select Bootloader for your version of Raspberry Pi (Pi 400 is part of the 4 family)

	
Select a boot mode: SD (recommended), USB or Network

	
Select SD card and then Write

	
Click Yes to continue

	
Boot the Raspberry Pi with the new image and wait for at least ten seconds

	
When the green activity LED blinks with a steady pattern and the HDMI display shows a green screen, you have successfully written the bootloader

	
Power off the Raspberry Pi and remove the SD card

Using raspi-config to update the bootloader

To change the boot-mode or bootloader version from within Raspberry Pi OS, run raspi-config.

	
Update Raspberry Pi OS to get the latest version of the rpi-eeprom package

	
Run sudo raspi-config

	
Select Advanced Options

	
Select Bootloader Version

	
Select Default for factory default settings or Latest for the latest stable bootloader release

	
Reboot

Updating the EEPROM Configuration

The default version of the bootloader is only updated for critical fixes and major releases. The LATEST/STABLE bootloader updates more often to include the latest fixes and improvements.

Advanced users can switch to the LATEST/STABLE bootloader to get the latest functionality.

Open a command prompt and start raspi-config.

 Copy to Clipboard

sudo raspi-config

Navigate to Advanced Options and then Bootloader Version. Select Latest and choose Yes to confirm. Select Finish and confirm you want to reboot. After the reboot, open a command prompt again and update your system:

 Copy to Clipboard

sudo apt update

If you run rpi-eeprom-update, you should see that a more recent version of the bootloader is available and it’s the stable release.

 Copy to Clipboard

*** UPDATE AVAILABLE ***
BOOTLOADER: update available
 CURRENT: Tue 25 Jan 14:30:41 UTC 2022 (1643121041)
 LATEST: Thu 19 Oct 11:57:12 UTC 2022 (1646913432)
 RELEASE: stable (/lib/firmware/raspberrypi/bootloader/stable)
 Use raspi-config to change the release.

Now you can update your bootloader.

 Copy to Clipboard

sudo rpi-eeprom-update -a
sudo reboot

Reboot, then run rpi-eeprom-update. You should now see that the CURRENT date has updated to the latest version of the bootloader:

 Copy to Clipboard

BOOTLOADER: up to date
 CURRENT: Thu 19 Oct 11:57:12 UTC 2023 (1646913432)
 LATEST: Thu 19 Oct 11:57:12 UTC 2023 (1646913432)
 RELEASE: stable (/lib/firmware/raspberrypi/bootloader/stable)
 Use raspi-config to change the release.

Reading the current EEPROM configuration

To view the configuration used by the current bootloader during the last boot, run one of the following:

	
rpi-eeprom-config

	
vcgencmd bootloader_config

Reading the configuration from an EEPROM image

To read the configuration from an EEPROM image:

 Copy to Clipboard

rpi-eeprom-config pieeprom.bin

Editing the current bootloader configuration

The following command loads the current EEPROM configuration into a text editor. When the editor is closed, rpi-eeprom-config applies the updated configuration to latest available EEPROM release and uses rpi-eeprom-update to schedule an update when the system is rebooted:

 Copy to Clipboard

sudo -E rpi-eeprom-config --edit
sudo reboot

If the updated configuration is identical or empty, then no changes are made.

The editor is selected by the EDITOR environment variable.

Applying a saved configuration

The following command applies boot.conf to the latest available EEPROM image and uses rpi-eeprom-update to schedule an update when the system is rebooted.

 Copy to Clipboard

sudo rpi-eeprom-config --apply boot.conf
sudo reboot

Automatic updates

The rpi-eeprom-update systemd service runs at startup and applies an update if a new image is available, automatically migrating the current bootloader configuration.

To disable automatic updates:

 Copy to Clipboard

sudo systemctl mask rpi-eeprom-update

To re-enable automatic updates:

 Copy to Clipboard

sudo systemctl unmask rpi-eeprom-update

	
Note

	
If the FREEZE_VERSION bootloader EEPROM config is set then the EEPROM update service will skip any automatic updates. This removes the need to individually disable the EEPROM update service if there are multiple operating systems installed, or when swapping SD cards.

rpi-eeprom-update

Raspberry Pi OS uses the rpi-eeprom-update script to implement an automatic update service. The script can also be run interactively or wrapped to create a custom bootloader update service.

Reading the current EEPROM version:

 Copy to Clipboard

vcgencmd bootloader_version

Check if an update is available:

 Copy to Clipboard

sudo rpi-eeprom-update

Install the update:

 Copy to Clipboard

sudo rpi-eeprom-update -a
sudo reboot

Cancel the pending update:

 Copy to Clipboard

sudo rpi-eeprom-update -r

Installing a specific bootloader EEPROM image:

 Copy to Clipboard

sudo rpi-eeprom-update -d -f pieeprom.bin

The -d flag instructs rpi-eeprom-update to use the configuration in the specified image file instead of automatically migrating the current configuration.

Display the built-in documentation:

 Copy to Clipboard

rpi-eeprom-update -h

Bootloader release status

The firmware release status corresponds to a particular subdirectory of bootloader firmware images (/lib/firmware/raspberrypi/bootloader/...), and can be changed to select a different release stream.

	
default - Updated for new hardware support, critical bug fixes and periodic update for new features that have been tested via the latest release

	
latest - Updated when new features are available

Since the release status string is just a subdirectory name, it is possible to create your own release streams e.g. a pinned release or custom network boot configuration.

	
Note

	
default and latest are symbolic links to the older release names of critical and stable.

Changing the bootloader release

	
Note

	
You can change which release stream is to be used during an update by editing the /etc/default/rpi-eeprom-update file and changing the FIRMWARE_RELEASE_STATUS entry to the appropriate stream.

Updating the bootloader configuration in an EEPROM image file

The following command replaces the bootloader configuration in pieeprom.bin with boot.conf and writes the new image to new.bin:

 Copy to Clipboard

rpi-eeprom-config --config boot.conf --out new.bin pieeprom.bin

recovery.bin

At power on, the ROM found on BCM2711 and BCM2712 looks for a file called recovery.bin in the root directory of the boot partition on the SD card. If a valid recovery.bin is found then the ROM executes this instead of the contents of the EEPROM. This mechanism ensures that the bootloader EEPROM can always be reset to a valid image with factory default settings.

See also Raspberry Pi boot-flow

EEPROM update files

	Filename
	Purpose

	recovery.bin
	Bootloader EEPROM recovery executable

	pieeprom.upd
	Bootloader EEPROM image

	pieeprom.bin
	Bootloader EEPROM image - same as pieeprom.upd but changes recovery.bin behaviour

	pieeprom.sig
	The sha256 checksum of bootloader image (pieeprom.upd/pieeprom.bin)

	vl805.bin
	The VLI805 USB firmware EEPROM image - Raspberry Pi 4B revision 1.3 and earlier only.

	vl805.sig
	The sha256 checksum of vl805.bin

	
If the bootloader update image is called pieeprom.upd then recovery.bin is renamed to recovery.000 once the update has completed, then the system is rebooted. Since recovery.bin is no longer present the ROM loads the newly updated bootloader from EEPROM and the OS is booted as normal.

	
If the bootloader update image is called pieeprom.bin then recovery.bin will stop after the update has completed. On success the HDMI output will be green and the green activity LED is flashed rapidly. If the update fails, the HDMI output will be red and an error code will be displayed via the activity LED.

	
The .sig files contain the hexadecimal sha256 checksum of the corresponding image file; additional fields may be added in the future.

	
The ROM found on BCM2711 and BCM2712 does not support loading recovery.bin from USB mass storage or TFTP. Instead, newer versions of the bootloader support a self-update mechanism where the bootloader is able to reflash the EEPROM itself. See ENABLE_SELF_UPDATE on the bootloader configuration page.

	
The temporary EEPROM update files are automatically deleted by the rpi-eeprom-update service at startup.

For more information about the rpi-eeprom-update configuration file see rpi-eeprom-update -h.

EEPROM write protect

Both the bootloader and VLI EEPROMs support hardware write protection. See the eeprom_write_protect option for more information about how to enable this when flashing the EEPROMs.

Boot diagnostics on the Raspberry Pi 4

Edit this on GitHub

Starting with version 2020-04-16 of the Raspberry Pi 4 bootloader, diagnostic information can be displayed at boot time on an HDMI display. To see this diagnostic information, power down the Raspberry Pi 4, remove the SD card, then power back up. A diagnostic display similar to below should appear on the attached display.

This diagnostics page will also appear if the bootloader is unable to boot from an inserted SD card, or is unable to network boot; for example, if there is no bootable image on the card, or if it is defective, or if the network boot parameters are incorrect.

Once the diagnostics page is displayed, a reboot is only possible by power cycling the device (i.e. unplug then re-plug the power supply).

The top line describes the model of Raspberry Pi and its memory capacity. The QR code is a link to the downloads page.

The diagnostic information is as follows:

	Line:	Information
	bootloader
	Bootloader git version - RO (if EEPROM is write protected) - software build date

	update-ts
	The timestamp corresponding to when the EEPROM configuration was updated. This timestamp is checked in self-update mode to avoid updating to an old configuration.

	secure-boot
	If secure-boot is enabled, then the processor revision (B0/C0) and signed-boot status flags are displayed. Otherwise, this line is blank.

	board
	Board revision - serial number - Ethernet MAC address

	boot
	mode (current boot mode name and number) order (the BOOT ORDER configuration) retry (retry count in the current boot mode) restart (number of cycles through the list of boot modes).

	SD
	The SD card detect status (detected/not detected).

	part
	Master Boot Record primary partitions type:LBA.

	fw
	Filename for start.elf and fixup.dat if present (e.g. start4x.elf, fixup4x.dat).

	net
	Network boot: link status (up/down), client IP address (ip), subnet (sn), default gateway (gw)

	tftp
	Network boot: TFTP server IP address

	display
	Indicates whether hotplug was detected (HPD=1) and if so whether the EDID was read successfully (EDID=ok) for each HDMI output.

This display can be disabled using the DISABLE_HDMI option, see Bootloader configuration.

	
Note

	
This is purely for diagnosing boot failures; it is not an interactive bootloader. If you require an interactive bootloader, consider using a tool such as U-Boot.

Raspberry Pi boot modes

Edit this on GitHub

The Raspberry Pi has a number of different stages of booting. This document explains how the boot modes work, and which ones are supported for Linux booting.

Special bootcode.bin-only boot mode

USB host and Ethernet boot can be performed by BCM2837-based Raspberry Pis - that is, Raspberry Pi 2B version 1.2, Raspberry Pi 3B, and Raspberry Pi 3B+ (Raspberry Pi 3A+ cannot net boot since it does not have a built-in Ethernet interface). In addition, all Raspberry Pi models prior to Raspberry Pi 4 can use a bootcode.bin-only method to enable USB host boot.

	
Note

	
Raspberry Pi 4 and 5 do not use the bootcode.bin file. Instead, the bootloader is located in an on-board EEPROM chip. See the documentation on the Raspberry Pi bootflow and the SPI boot EEPROM.

Format an SD card as FAT32 and copy over the latest bootcode.bin. The SD card must be present in the Raspberry Pi for it to boot. Once bootcode.bin is loaded from the SD card, the Raspberry Pi continues booting using USB host mode.

This is useful for the Raspberry Pi 1, 2, and Zero models, which are based on the BCM2835 and BCM2836 chips, and in situations where a Raspberry Pi 3 fails to boot (the latest bootcode.bin includes additional bugfixes for the Raspberry Pi 3B, compared to the boot code burned into the BCM2837A0).

If you have a problem with a mass storage device still not working, even with this bootcode.bin, then add a new file called "timeout" to the SD card. This will extend to six seconds the time for which it waits for the mass storage device to initialise.

bootcode.bin UART Enable

	
Note

	
For boards which predate Raspberry Pi 4 Model B.

For information on enabling the UART on the Raspberry Pi 4 bootloader, please see the bootloader configuration documentation.

It is possible to enable an early stage UART to debug booting issues (useful with the above bootcode.bin only boot mode). To do this, make sure you’ve got a recent version of the firmware (including bootcode.bin). To check if UART is supported in your current firmware:

 Copy to Clipboard

 strings bootcode.bin | grep BOOT_UART

To enable UART from bootcode.bin:

 Copy to Clipboard

sed -i -e "s/BOOT_UART=0/BOOT_UART=1/" bootcode.bin

Next, connect a suitable USB serial cable to your host computer (a Raspberry Pi will work, although you may find that the easiest path is to use a USB serial cable, since it’ll work out the box without any pesky config.txt settings). Use the standard pins 6, 8 and 10 (GND, GPIO14, GPIO15) on a Raspberry Pi or Compute Module.

Then use screen on Linux or a Mac or putty on windows to connect to the serial.

Set up your serial to receive at 115200-8-N-1, and then boot your Raspberry Pi. You should get an immediate serial output from the device as bootcode.bin runs.

Boot sequence

Edit this on GitHub

	
Important

	
The following boot sequence applies to the BCM2837 and BCM2837B0 based models of Raspberry Pi only. On models prior to this, the Raspberry Pi will try SD card boot, followed by USB device mode boot. For the Raspberry Pi 4 and Raspberry Pi 5 boot sequence please see the Raspberry Pi boot flow section.

USB boot defaults on Raspberry Pi 3 will depend on which version is being used. See this page for information on enabling USB boot modes when not enabled by default.

When the BCM2837 boots, it uses two different sources to determine which boot modes to enable. Firstly, the one-time-programmable (OTP) memory block is checked to see which boot modes are enabled. If the GPIO boot mode setting is enabled, then the relevant GPIO lines are tested to select which of the OTP-enabled boot modes should be attempted. Note that GPIO boot mode can only be used to select boot modes that are already enabled in the OTP. See GPIO boot mode for details on configuring GPIO boot mode. GPIO boot mode is disabled by default.

Next, the boot ROM checks each of the boot sources for a file called bootcode.bin; if it is successful it will load the code into the local 128K cache and jump to it. The overall boot mode process is as follows:

	
BCM2837 boots

	
Read OTP to determine which boot modes to enable

	
If GPIO boot mode enabled, use GPIO boot mode to refine list of enabled boot modes

	
If enabled: check primary SD for bootcode.bin on GPIO 48-53

	
Success - boot

	
Fail - timeout (five seconds)

	
If enabled: check secondary SD

	
Success - boot

	
Fail - timeout (five seconds)

	
If enabled: check NAND

	
If enabled: check SPI

	
If enabled: check USB

	
If OTG pin == 0

	
Enable USB, wait for valid USB 2.0 devices (two seconds)

	
Device found:

	
If device type == hub

	
Recurse for each port

	
If device type == (mass storage or LAN951x)

	
Store in list of devices

	
Recurse through each MSD

	
If bootcode.bin found boot

	
Recurse through each LAN951x

	
DHCP / TFTP boot

	
Else (device mode boot)

	
Enable device mode and wait for host PC to enumerate

	
We reply to PC with VID: 0a5c PID: 0x2763 (Raspberry Pi 1 or Raspberry Pi 2) or 0x2764 (Raspberry Pi 3)

	
Note

	

	
If there is no SD card inserted, the SD boot mode takes five seconds to fail. To reduce this and fall back to USB more quickly, you can either insert an SD card with nothing on it or use the GPIO bootmode OTP setting described above to only enable USB.

	
The default pull for the GPIOs is defined on page 102 of the ARM Peripherals datasheet. If the value at boot time does not equal the default pull, then that boot mode is enabled.

	
USB enumeration is a means of enabling power to the downstream devices on a hub, then waiting for the device to pull the D+ and D- lines to indicate if it is either USB 1 or USB 2. This can take time: on some devices it can take up to three seconds for a hard disk drive to spin up and start the enumeration process. Because this is the only way of detecting that the hardware is attached, we have to wait for a minimum amount of time (two seconds). If the device fails to respond after this maximum timeout, it is possible to increase the timeout to five seconds using program_usb_boot_timeout=1 in config.txt.

	
MSD boot takes precedence over Ethernet boot.

	
It is no longer necessary for the first partition to be the FAT partition, as the MSD boot will continue to search for a FAT partition beyond the first one.

	
The boot ROM also now supports GUID partitioning and has been tested with hard drives partitioned using Mac, Windows, and Linux.

	
The LAN951x is detected using the Vendor ID 0x0424 and Product ID 0xec00: this is different to the standalone LAN9500 device, which has a product ID of 0x9500 or 0x9e00. To use the standalone LAN9500, an I2C EEPROM would need to be added to change these IDs to match the LAN951x.

The primary SD card boot mode is, as standard, set to be GPIOs 49-53. It is possible to boot from the secondary SD card on a second set of pins, i.e. to add a secondary SD card to the GPIO pins. However, we have not yet enabled this ability.

NAND boot and SPI boot modes do work, although they do not yet have full GPU support.

The USB device boot mode is enabled by default at the time of manufacture, but the USB host boot mode is only enabled with program_usb_boot_mode=1. Once enabled, the processor will use the value of the OTGID pin on the processor to decide between the two modes. On any Raspberry Pi Model B/B+, the OTGID pin is driven to 0 and therefore will only boot via host mode once enabled (it is not possible to boot through device mode because the LAN951x device is in the way).

The USB will boot as a USB device on the Raspberry Pi Zero or Compute Module if the OTGID pin is left floating (when plugged into a PC for example), so you can push the bootcode.bin into the device. The usbboot code for doing this is available on GitHub.

Raspberry Pi 4 and Raspberry Pi 5 boot flow

Edit this on GitHub

The main difference between these and previous products is that the second-stage bootloader is loaded from SPI flash EEPROM instead of from the bootcode.bin file as on previous products.

First stage bootloader

The boot flow for the ROM (first stage) is as follows:

	
SoC powers up

	
Read OTP to determine if the nRPIBOOT GPIO is configured

	
If nRPIBOOT GPIO is high or OTP does NOT define nRPIBOOT GPIO

	
Check OTP to see if recovery.bin can be loaded from SD/EMMC

	
If SD recovery.bin is enabled then check primary SD/EMMC for recovery.bin

	
Success - run recovery.bin and update the SPI EEPROM

	
Fail - continue

	
Check SPI EEPROM for second stage loader

	
Success - run second stage bootloader

	
Fail - continue

	
While True

	
Attempt to load recovery.bin from USB device boot

	
Success - run recovery.bin and update the SPI EEPROM or switch to USB mass storage device mode

	
Fail - retry USB device boot

	
Note

	
recovery.bin is a minimal second stage program used to reflash the bootloader SPI EEPROM image.

Second stage bootloader

This section describes the high-level flow of the second stage bootloader.

Please see the bootloader configuration page for more information about each boot mode, and the boot folder page for a description of the GPU firmware files loaded by this stage.

	
Initialise clocks and SDRAM

	
Read the EEPROM configuration file

	
Check PM_RSTS register to determine if HALT is requested

	
Check POWER_OFF_ON_HALT and WAKE_ON_GPIO EEPROM configuration settings

	
If POWER_OFF_ON_HALT is 1 and WAKE_ON_GPIO is 0 then

	
Use PMIC to power off system

	
Else if WAKE_ON_GPIO is 1

	
Enable fall-edge interrupts on GPIO3 to wake-up if GPIO3 is pulled low

	
Sleep

	
While True

	
Read the next boot-mode from the BOOT_ORDER parameter in the EEPROM config file.

	
If boot-mode == RESTART

	
Jump back to the first boot-mode in the BOOT_ORDER field

	
Else if boot-mode == STOP

	
Display start.elf not found error pattern and wait forever.

	
Else if boot-mode == SD CARD

	
Attempt to load firmware from the SD card

	
Success - run the firmware

	
Failure - continue

	
Else if boot-mode == NETWORK then

	
Use DHCP protocol to request IP address

	
Load firmware from the DHCP or statically defined TFTP server

	
If the firmware is not found or a timeout or network error occurs then continue

	
Else if boot-mode == USB-MSD or boot-mode == BCM-USB-MSD then

	
While USB discover has not timed out

	
Check for USB mass storage devices

	
If a new mass storage device is found then

	
For each drive (LUN)

	
Attempt to load firmware

	
Success - run the firmware

	
Failed - advance to next LUN

	
Else if boot-mode == NVME then

	
Scan PCIe for an NVMe device and if found

	
Attempt to load firmware from the NVMe device

	
Success - run the firmware

	
Failure - continue

	
Else if boot-mode == RPIBOOT then

	
Attempt to load firmware using USB device mode from the USB OTG port - see USB boot. There is no timeout for RPIBOOT mode.

Differences on Raspberry Pi 5

	
The power button is used to wake up from PMIC STANDBY or HALT instead of GPIO 3.

	
Instead of loading start.elf, the firmware loads the Linux kernel. Effectively, the bootloader has an embedded version of start.elf.

	
USB boot is disabled by default when connected to a 3A power supply. Set usb_max_current_enable=1 in /boot/firmware/config.txt to enable USB boot. Alternatively, you can press the power button a single time on a failed USB boot to temporarily enable usb_max_current_enable and continue booting. However, this setting will not persist after a reboot if enabled by pressing the power button.

Bootloader updates

The bootloader may also be updated before the firmware is started if a pieeprom.upd file is found. See the bootloader EEPROM page for more information about bootloader updates.

Fail-safe OS updates (tryboot)

The bootloader/firmware provide a one-shot flag which, if set, is cleared but causes tryboot.txt to be loaded instead of config.txt. This alternate config would specify the pending OS update firmware, cmdline, kernel and os_prefix parameters. Since the flag is cleared before starting the firmware, a crash or reset will cause the original config.txt file to be loaded on the next reboot.

To set the tryboot flag add tryboot after the partition number in the reboot command. Normally, the partition number defaults to zero but it must be specified if extra arguments are added.

 Copy to Clipboard

Quotes are important. Reboot only accepts a single argument.
sudo reboot '0 tryboot'

All Raspberry Pi models support tryboot, however, on Raspberry Pi 4 Model B revision 1.0 and 1.1 the EEPROM must not be write protected. This is because older Raspberry Pi 4B devices have to reset the power supply (losing the tryboot state), so this is stored inside the EEPROM instead.

If secure-boot is enabled, then tryboot mode will cause tryboot.img to be loaded instead of boot.img.

tryboot_a_b mode

If the tryboot_a_b property in autoboot.txt is set to 1 then config.txt is loaded instead of tryboot.txt. This is because the tryboot switch has already been made at a higher level (the partition), so it’s unnecessary to have a tryboot.txt file within alternate partition itself.

N.B. The tryboot_a_b property is implicitly set to 1 when loading files from within a boot.img ramdisk.

Raspberry Pi bootloader configuration

Edit this on GitHub

Editing the configuration

Before editing the bootloader configuration, update your system to get the latest version of the rpi-eeprom package.

To view the current EEPROM configuration, run the following command:

 Copy to Clipboard

rpi-eeprom-config

To edit the current EEPROM configuration and apply the updates to latest EEPROM release, run the following command:

 Copy to Clipboard

sudo -E rpi-eeprom-config --edit

For more information about the EEPROM update process, see boot EEPROM.

Configuration properties

This section describes all the configuration items available in the bootloader. The syntax is the same as config.txt but the properties are specific to the bootloader. Conditional filters are also supported except for EDID.

BOOT_UART

If 1 then enable UART debug output on GPIO 14 and 15. Configure the receiving debug terminal at 115200bps, 8 bits, no parity bits, 1 stop bit.

Default: 0

UART_BAUD

Raspberry Pi 5 only.

Changes the baud rate for the bootloader UART.

Supported values: 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600

Default: 115200

WAKE_ON_GPIO

If 1 then sudo halt will run in a lower power mode until either GPIO3 or GLOBAL_EN are shorted to ground.

This setting is not relevant on Raspberry Pi 5 because the dedicated power button may always be used to wakeup from HALT or STANDBY.

Default: 1

POWER_OFF_ON_HALT

If 1 and WAKE_ON_GPIO=0 then sudo halt will switch off all PMIC outputs. This is lowest possible power state for halt but may cause problems with some HATs because 5V will still be on. GLOBAL_EN must be shorted to ground to boot.

Raspberry Pi 400 has a dedicated power button which operates even if the processor is switched off. This behaviour is enabled by default, however, WAKE_ON_GPIO=2 may be set to use an external GPIO power button instead of the dedicated power button.

On Raspberry Pi 5 this places the PMIC in STANDBY mode where all outputs are switched off. There is no need to set WAKE_ON_GPIO and pressing the dedicated power button will boot the device.

Default: 0

BOOT_ORDER

The BOOT_ORDER setting allows flexible configuration for the priority of different boot modes. It is represented as a 32-bit unsigned integer where each nibble represents a boot-mode. The boot modes are attempted in lowest significant nibble to highest significant nibble order.

BOOT_ORDER fields

The BOOT_ORDER property defines the sequence for the different boot modes. It is read right to left, and up to eight digits may be defined.

	Value	Mode	Description
	0x0
	SD CARD DETECT
	Try SD then wait for card-detect to indicate that the card has changed. Deprecated now that 0xf (RESTART) is available.

	0x1
	SD CARD
	SD card (or eMMC on Compute Module 4).

	0x2
	NETWORK
	Network boot - See Network boot server tutorial.

	0x3
	RPIBOOT
	RPIBOOT - See usbboot.

	0x4
	USB-MSD
	USB mass storage boot - See USB mass storage boot.

	0x5
	BCM-USB-MSD
	USB 2.0 boot from USB Type C socket (CM4: USB type A socket on CM4IO board). Not available on Raspberry Pi 5.

	0x6
	NVME
	CM4 and Pi 5 only: boot from an NVMe SSD connected to the PCIe interface. See NVMe boot for more details.

	0x7
	HTTP
	HTTP boot over ethernet. See HTTP boot for more details.

	0xe
	STOP
	Stop and display error pattern. A power cycle is required to exit this state.

	0xf
	RESTART
	Restart from the first boot-mode in the BOOT_ORDER field i.e. loop.

RPIBOOT is intended for use with Compute Module 4 to load a custom debug image (e.g. a Linux RAM-disk) instead of the normal boot. This should be the last boot option because it does not currently support timeouts or retries.

BOOT_ORDER examples

	BOOT_ORDER	Description
	0xf41
	Try SD first, followed by USB-MSD then repeat (default if BOOT_ORDER is empty)

	0xf14
	Try USB first, followed by SD then repeat

	0xf21
	Try SD first, followed by NETWORK then repeat

MAX_RESTARTS

If the RESTART (0xf) boot-mode is encountered more than MAX_RESTARTS times then a watchdog reset is triggered. This isn’t recommended for general use but may be useful for test or remote systems where a full reset is needed to resolve issues with hardware or network interfaces.

Default: -1 (infinite)

SD_BOOT_MAX_RETRIES

The number of times that SD boot will be retried after failure before moving to the next boot-mode defined by BOOT_ORDER.

-1 means infinite retries.

Default: 0

NET_BOOT_MAX_RETRIES

The number of times that network boot will be retried after failure before moving to the next boot-mode defined by BOOT_ORDER.

-1 means infinite retries.

Default: 0

DHCP_TIMEOUT

The timeout in milliseconds for the entire DHCP sequence before failing the current iteration.

Minimum: 5000

Default: 45000

DHCP_REQ_TIMEOUT

The timeout in milliseconds before retrying DHCP DISCOVER or DHCP REQ.

Minimum: 500

Default: 4000

TFTP_FILE_TIMEOUT

The timeout in milliseconds for an individual file download via TFTP.

Minimum: 5000

Default: 30000

TFTP_IP

Optional dotted decimal ip address (e.g. 192.168.1.99) for the TFTP server which overrides the server-ip from the DHCP request.

This may be useful on home networks because tftpd-hpa can be used instead of dnsmasq where broadband router is the DHCP server.

Default: ""

TFTP_PREFIX

In order to support unique TFTP boot directories for each Raspberry Pi the bootloader prefixes the filenames with a device specific directory. If neither start4.elf nor start.elf are found in the prefixed directory then the prefix is cleared.

On earlier models the serial number is used as the prefix, however, on Raspberry Pi 4 the MAC address is no longer generated from the serial number making it difficult to automatically create tftpboot directories on the server by inspecting DHCPDISCOVER packets. To support this the TFTP_PREFIX may be customized to either be the MAC address, a fixed value or the serial number (default).

	Value	Description
	0
	Use the serial number e.g. 9ffefdef/

	1
	Use the string specified by TFTP_PREFIX_STR

	2
	Use the MAC address e.g. dc-a6-32-01-36-c2/

Default: 0

TFTP_PREFIX_STR

Specify the custom directory prefix string used when TFTP_PREFIX is set to 1. For example:- TFTP_PREFIX_STR=tftp_test/

Default: ""

Max length: 32 characters

PXE_OPTION43

Overrides the PXE Option43 match string with a different string. It’s normally better to apply customisations to the DHCP server than change the client behaviour, but this option is provided in case that’s not possible.

Default: Raspberry Pi Boot

DHCP_OPTION97

In earlier releases the client GUID (Option97) was just the serial number repeated four times. By default, the new GUID format is the concatenation of the four-character code (FourCC) for RPi4 (0x34695052 - little endian), the board revision (e.g. 0x00c03111) (4-bytes), the least significant 4 bytes of the mac address and the 4-byte serial number.
This is intended to be unique but also provides structured information to the DHCP server, allowing Raspberry Pi 4 computers to be identified without relying upon the Ethernet MAC OUID.

Specify DHCP_OPTION97=0 to revert the old behaviour or a non-zero hex-value to specify a custom 4-byte prefix.

Default: 0x34695052

MAC_ADDRESS

Overrides the Raspberry Pi Ethernet MAC address with the given value. e.g. dc:a6:32:01:36:c2

Default: ""

MAC_ADDRESS_OTP

Overrides the Raspberry Pi Ethernet MAC address with a value stored in the Customer OTP registers.

For example, to use a MAC address stored in rows 0 and 1 of the Customer OTP.

 Copy to Clipboard

MAC_ADDRESS_OTP=0,1

The first value (row 0 in the example) contains the OUI and the most significant 8 bits of the MAC address. The second value (row 1 in the example) stores the remaining 16-bits of the MAC address.
This is the same format as used for the Raspberry Pi MAC address programmed at manufacture.

Any two customer rows may be selected and combined in either order.

The Customer OTP rows are OTP registers 36 to 43 in the vcgencmd otp_dump output so if the first two rows are programmed as follows then MAC_ADDRESS_OTP=0,1 would give a MAC address of e4:5f:01:20:24:7e.

 Copy to Clipboard

36:247e0000
37:e45f0120

Default: ""

Static IP address configuration

If TFTP_IP and the following options are set then DHCP is skipped and the static IP configuration is applied. If the TFTP server is on the same subnet as the client then GATEWAY may be omitted.

CLIENT_IP

The IP address of the client e.g. 192.168.0.32

Default: ""

SUBNET

The subnet address mask e.g. 255.255.255.0

Default: ""

GATEWAY

The gateway address to use if the TFTP server is on a different subnet e.g. 192.168.0.1

Default: ""

DISABLE_HDMI

The HDMI boot diagnostics display is disabled if DISABLE_HDMI=1. Other non-zero values are reserved for future use.

Default: 0

HDMI_DELAY

Skip rendering of the HDMI diagnostics display for up to N seconds (default 5) unless a fatal error occurs. The default behaviour is designed to avoid the bootloader diagnostics screen from briefly appearing during a normal SD/USB boot.

Default: 5

ENABLE_SELF_UPDATE

Enables the bootloader to update itself from a TFTP or USB mass storage device (MSD) boot filesystem.

If self-update is enabled then the bootloader will look for the update files (.sig/.upd) in the boot file system. If the update image differs from the current image then the update is applied and system is reset. Otherwise, if the EEPROM images are byte-for-byte identical then boot continues as normal.

Notes:

	
Bootloader releases prior to 2021 do not support self-update.

	
Prior to 2022, self-update was not enabled in SD boot. On a Raspberry Pi 4, the ROM can already load recovery.bin from the SD card. On a CM4, neither self-update nor recovery.bin have any effect and USB boot is required (see the CM4 bootloader docs).

	
Starting in 2022 (beta and stable), self-update from an SD card is enabled.

	
For network boot make sure that the TFTP boot directory can be mounted via NFS and that rpi-eeprom-update can write to it.

Default: 1

FREEZE_VERSION

Previously this property was only checked by the rpi-eeprom-update script. However, now that self-update is enabled the bootloader will also check this property. If set to 1, this overrides ENABLE_SELF_UPDATE to stop automatic updates. To disable FREEZE_VERSION you will have to use SD card boot with recovery.bin.

Custom EEPROM update scripts must also check this flag.

Default: 0

HTTP_HOST

If network install or HTTP boot is initiated, boot.img and boot.sig are downloaded from this server.

Invalid host names will be ignored. They should only contain lower case alphanumeric characters and - or ..
If HTTP_HOST is set then HTTPS is disabled and plain HTTP used instead.
You can specify an IP address to avoid the need for a DNS lookup.
Don`t include the HTTP scheme or any forward slashes in the hostname.

Default: fw-download-alias1.raspberrypi.com

HTTP_PORT

You can use this property to change the port used for network install and HTTP boot. HTTPS is enabled when using the default host fw-download-alias1.raspberrypi.com. If HTTP_HOST is changed then HTTPS is disabled and plain HTTP will be used instead.

When HTTPS is disabled, plain HTTP will still be used even if HTTP_PORT is changed to 443.

Default: 443 if HTTPS is enabled otherwise 80

HTTP_PATH

The path used for network install and HTTP boot.

Case-sensitive.
Use forward (Linux) slashes for the path separator.
Leading and trailing forward slashes are not required.

If HTTP_HOST is not set, HTTP_PATH is ignored and the URL will be https://fw-download-alias1.raspberrypi.com:443/net_install/boot.img. If HTTP_HOST is set the URL will be http://<HTTP_HOST>:<HTTP_PORT>/<HTTP_PATH>/boot.img

Default: net_install

IMAGER_REPO_URL

The embedded Raspberry Pi Imager application is configured with a json file downloaded at startup.

You can change the URL of the json file used by the embedded Raspberry Pi Imager application to get it to offer your own images.
You can test this with the standard Raspberry Pi Imager application by passing the URL via the --repo argument.

Default: http://downloads.raspberrypi.org/os_list_imagingutility_v3.json

NET_INSTALL_ENABLED

When network install is enabled, the bootloader displays the network install screen on boot if it detects a keyboard.

To enable network install, add NET_INSTALL_ENABLED=1, or to disable network install add NET_INSTALL_ENABLED=0.

This setting is ignored and network install is disabled if DISABLE_HDMI=1 is set.

In order to detect the keyboard, network install must initialise the USB controller and enumerate devices. This increases boot time by approximately 1 second so it may be advantageous to disable network install in some embedded applications.

Default: 1 on Raspberry Pi 4 and Raspberry Pi 400, and 0 on Compute Module 4.

NET_INSTALL_KEYBOARD_WAIT

If network install is enabled, the bootloader attempts to detect a keyboard and the SHIFT key to initiate network install. You can change the length of this wait in milliseconds with this property.

Setting this to 0 disables the keyboard wait, although network install can still be initiated if no boot files are found and USB boot-mode 4 is in BOOT_ORDER.

	
Note

	
Testing suggests keyboard and SHIFT detection takes at least 750ms.

Default: 900

NETCONSOLE - advanced logging

NETCONSOLE duplicates debug messages to the network interface. The IP addresses and ports are defined by the NETCONSOLE string.

	
Note

	
NETCONSOLE blocks until the ethernet link is established or a timeout occurs. The timeout value is DHCP_TIMEOUT although DHCP is not attempted unless network boot is requested.

Format

See https://wiki.archlinux.org/index.php/Netconsole

 Copy to Clipboard

src_port@src_ip/dev_name,dst_port@dst_ip/dst_mac
E.g. /,6666@/

In order to simplify parsing, the bootloader requires every field separator to be present. The source IP address must be specified but the following fields may be left blank and assigned default values.

	
src_port - 6665

	
dev_name - "" (the device name is always ignored)

	
dst_port - 6666

	
dst_ip - 255.255.255.255

	
dst_mac - 00:00:00:00:00

One way to view the data is to connect the test Raspberry Pi 4 to another Raspberry Pi running WireShark and select “udp.srcport == 6665” as a filter and select Analyze → Follow → UDP stream to view as an ASCII log.

NETCONSOLE should not be enabled by default because it may cause network problems. It can be enabled on demand via a GPIO filter:

 Copy to Clipboard

Enable debug if GPIO 7 is pulled low
[gpio7=0]
/,6666@/

Default: "" (not enabled)

Max length: 32 characters

PARTITION

The PARTITION option may be used to specify the boot partition number, if it has not explicitly been set by the reboot command (e.g. sudo reboot N) or by boot_partition=N in autoboot.txt.
This could be used to boot from a rescue partition if the user presses a button.

 Copy to Clipboard

Boot from partition 2 if GPIO 7 is pulled low
[gpio7=0]
PARTITION=2

Default: 0

PSU_MAX_CURRENT

Raspberry Pi 5 only.

If set, this property instructions the firmware to skip USB power-delivery negotiation and assume that it is connected to a power supply with the given current rating.
Typically, this would either be set to 3000 or 5000 i.e. low or high-current capable power supply.

Default: ""

USB_MSD_EXCLUDE_VID_PID

A list of up to four VID/PID pairs specifying devices which the bootloader should ignore. If this matches a HUB then the HUB won’t be enumerated, causing all downstream devices to be excluded.
This is intended to allow problematic (e.g. very slow to enumerate) devices to be ignored during boot enumeration. This is specific to the bootloader and is not passed to the OS.

The format is a comma-separated list of hexadecimal values with the VID as most significant nibble. Spaces are not allowed.
E.g. 034700a0,a4231234

Default: ""

USB_MSD_DISCOVER_TIMEOUT

If no USB mass storage devices are found within this timeout then USB-MSD is stopped and the next boot-mode is selected.

Minimum: 5000 (5 seconds)

Default: 20000 (20 seconds)

USB_MSD_LUN_TIMEOUT

How long to wait in milliseconds before advancing to the next LUN e.g. a multi-slot SD-CARD reader. This is still being tweaked but may help speed up boot if old/slow devices are connected as well as a fast USB-MSD device containing the OS.

Minimum: 100

Default: 2000 (2 seconds)

USB_MSD_PWR_OFF_TIME

Raspberry Pi 4 only.

When the Pi is rebooted power USB power is switched off by the hardware. A short power off time can
cause problems with some USB devices so this parameter may be used to force a longer power off
as though the cable was physically removed.

On Pi4 v1.3 and older the configurable/long power off requires the XHCI controller to be enabled
so there is actually a short power off followed by a longer configurable power off. The longer
configurable power off may be skipped by setting this parameter to zero.

On newer revisions the hardware ensures that USB power is off from reboot and the bootloader
only enables power after this timeout has elapsed. This is happens after memory is initialised
ensuring that USB power is off for at least two seconds. Therefore, this parameter generally
has no effect on newer hardware revisions.

Minimum: 0

Maximum: 5000

Default: 1000 (1 second)

USB_MSD_STARTUP_DELAY

If defined, delays USB enumeration for the given timeout after the USB host controller has initialised. If a USB hard disk drive takes a long time to initialise and triggers USB timeouts then this delay can be used to give the driver additional time to initialise. It may also be necessary to increase the overall USB timeout (USB_MSD_DISCOVER_TIMEOUT).

Minimum: 0

Maximum: 30000 (30 seconds)

Default: 0

VL805

Compute Module 4 only.

If the VL805 property is set to 1 then the bootloader will search for a VL805 PCIe XHCI controller and attempt to initialise it with VL805 firmware embedded in the bootloader EEPROM. This enables industrial designs to use VL805 XHCI controllers without providing a dedicated SPI EEPROM for the VL805 firmware.

	
On Compute Module 4 the bootloader never writes to the dedicated VL805 SPI EEPROM. This option just configures the controller to load the firmware from SDRAM.

	
Do not use this option if the VL805 XHCI controller has a dedicated EEPROM. It will fail to initialise because the VL805 ROM will attempt to use a dedicated SPI EEPROM if fitted.

	
The embedded VL805 firmware assumes the same USB configuration as Raspberry Pi 4B (two USB 3.0 ports and four USB 2.0 ports). There is no support for loading alternate VL805 firmware images, a dedicated VL805 SPI EEPROM should be used instead for such configurations.

Default: 0

XHCI_DEBUG

This property is a bit-field which controls the verbosity of USB debug messages for mass storage boot-mode. Enabling all of these messages generates a huge amount of log data which will slow down booting and may even cause boot to fail. For verbose logs it’s best to use NETCONSOLE.

	Value	Log
	0x1
	USB descriptors

	0x2
	Mass storage mode state machine

	0x4
	Mass storage mode state machine - verbose

	0x8
	All USB requests

	0x10
	Device and hub state machines

	0x20
	All xHCI TRBs (VERY VERBOSE)

	0x40
	All xHCI events (VERY VERBOSE)

To combine values, add them together. For example:

 Copy to Clipboard

Enable mass storage and USB descriptor logging
XHCI_DEBUG=0x3

Default: 0x0 (no USB debug messages enabled)

[config.txt] section

After reading config.txt the GPU firmware start4.elf reads the bootloader EEPROM config and checks for a section called [config.txt]. If the [config.txt] section exists then the contents from the start of this section to the end of the file is appended in memory, to the contents of the config.txt file read from the boot partition. This can be used to automatically apply settings to every operating system, for example, dtoverlays.

	
Warning

	
If an invalid configuration which causes boot to fail is specified, then the bootloader EEPROM will have to be re-flashed.

Configuration Properties in config.txt

Raspberry Pi 5 requires a config.txt file to be present to indicate that the partition is bootable.

boot_ramdisk

If this property is set to 1 then the bootloader will attempt load a ramdisk file called boot.img containing the boot filesystem. Subsequent files (e.g. start4.elf) are read from the ramdisk instead of the original boot file system.

The primary purpose of boot_ramdisk is to support secure-boot, however, unsigned boot.img files can also be useful to Network Boot or RPIBOOT configurations.

	
The maximum size for a ramdisk file is 96MB.

	
boot.img files are raw disk .img files. The recommended format is a plain FAT32 partition with no MBR.

	
The memory for the ramdisk filesystem is released before the operating system is started.

	
If TRYBOOT is selected then the bootloader will search for tryboot.img instead of boot.img.

	
See also autoboot.txt.

For more information about secure-boot and creating boot.img files please see USBBOOT.

Default: 0

boot_load_flags

Experimental property for custom firmware (bare metal).

Bit 0 (0x1) indicates that the .elf file is custom firmware. This disables any compatibility checks (e.g. is USB MSD boot supported) and resets PCIe before starting the executable.

Not relevant on Raspberry Pi 5 because there is no start.elf file.

Default: 0x0

uart_2ndstage

If uart_2ndstage is 1 then enable debug logging to the UART. This option also automatically enables UART logging in start.elf. This is also described on the Boot options page.

The BOOT_UART property also enables bootloader UART logging but does not enable UART logging in start.elf unless uart_2ndstage=1 is also set.

Default: 0

erase_eeprom

If erase_eeprom is set to 1 then recovery.bin will erase the entire SPI EEPROM instead of flashing the bootloader image. This property has no effect during a normal boot.

Default: 0

eeprom_write_protect

Configures the EEPROM write status register. This can be set either to mark the entire EEPROM as write-protected, or to clear write-protection.

This option must be used in conjunction with the EEPROM /WP pin which controls updates to the EEPROM Write Status Register. Pulling /WP low (CM4 EEPROM_nWP or on a Raspberry Pi 4 TP5) does NOT write-protect the EEPROM unless the Write Status Register has also been configured.

See the Winbond W25x40cl or Winbond W25Q16JV datasheets for further details.

eeprom_write_protect settings in config.txt for recovery.bin.

	Value	Description
	1
	Configures the write protect regions to cover the entire EEPROM.

	0
	Clears the write protect regions.

	-1
	Do nothing.

	
Note

	
flashrom does not support clearing of the write-protect regions and will fail to update the EEPROM if write-protect regions are defined.

On Raspberry Pi 5 /WP is pulled low by default and consequently write-protect is enabled as soon as the Write Status Register is configured. To clear write-protect pull /WP high by connecting TP14 and TP1.

Default: -1

os_check

On Raspberry Pi 5 the firmware automatically checks for a compatible Device Tree file before attempting to boot from the current partition. Otherwise, older non-compatible kernels would be loaded and then hang.
To disable this check (e.g. for bare-metal development), set os_check=0 in config.txt

Default: 1

bootloader_update

This option may be set to 0 to block self-update without requiring the EEPROM configuration to be updated. This is sometimes useful when updating multiple Raspberry Pis via network boot because this option can be controlled per Raspberry Pi (e.g. via a serial number filter in config.txt).

Default: 1

Secure Boot configuration properties in config.txt

How to use Raspberry Pi Secure Boot

How to use Raspberry Pi Secure Boot

This whitepaper describes how to implement secure boot on devices based on Raspberry Pi 4. For an overview of our approach to implementing secure boot implementation, please see the Raspberry Pi 4 Boot Security whitepaper. The secure boot system is intended for use with buildroot-based OS images; using it with Raspberry Pi OS is not recommended or supported.

The following config.txt properties are used to program the secure-boot OTP settings. These changes are irreversible and can only be programmed via RPIBOOT when flashing the bootloader EEPROM image. This ensures that secure-boot cannot be set remotely or by accidentally inserting a stale SD card image.

For more information about enabling secure-boot please see the Secure Boot readme and the Secure Boot tutorial in the USBBOOT repo.

program_pubkey

If this property is set to 1 then recovery.bin will write the hash of the public key in the EEPROM image to OTP. Once set, the bootloader will reject EEPROM images signed with different RSA keys or unsigned images.

Default: 0

revoke_devkey

If this property is set to 1 then recovery.bin will write a value to OTP that prevents the ROM from loading old versions of the second stage bootloader which do not support secure-boot. This prevents secure-boot from being turned off by reverting to an older release of the bootloader.

Default: 0

program_rpiboot_gpio

Since there is no dedicated nRPIBOOT jumper on Raspberry Pi 4B or Raspberry Pi 400, an alternative GPIO must be used to select RPIBOOT mode by pulling the GPIO low. Only one GPIO may be selected and the available options are 2, 4, 5, 7, 8. This property does not depend on secure-boot, but verify that this GPIO configuration does not conflict with any HATs which might pull the GPIO low during boot.

Since for safety this property can only be programmed via RPIBOOT, the bootloader EEPROM must first be cleared using erase_eeprom. This causes the BCM2711 ROM to failover to RPIBOOT mode, which then allows this option to be set.

Default: ``

program_jtag_lock

If this property is set to 1 then recovery.bin will program an OTP value that prevents VideoCore JTAG from being used. This option requires that program_pubkey and revoke_devkey are also set. This option can prevent failure analysis, and should only be set after the device has been fully tested.

Default: 0

USB boot modes

Edit this on GitHub

	
Warning

	
By default, Raspberry Pi boots from an SD card. This is the recommended method for new and inexperienced users.

There are two separate boot modes for USB: USB device boot and USB host boot.

The choice between the two boot modes is made by the firmware at boot time when it reads the OTP bits. There are two bits to control USB boot. The first enables USB device boot and is enabled by default; the second enables USB host boot. If the USB host boot mode bit is set, then the processor reads the OTGID pin to decide whether to boot as a host (driven to zero as on any Raspberry Pi Model B/B+) or as a device (left floating). The Raspberry Pi Zero has access to this pin through the OTGID pin on the USB connector, and the Compute Module has access to this pin on the edge connector.

There are also OTP bits that allow certain GPIO pins to be used for selecting which boot modes the Raspberry Pi should attempt to use.

	
Note

	
USB boot modes only available on certain models.

USB device boot mode

	
Note

	
Device boot is available on Raspberry Pi Compute Module, Compute Module 3, Raspberry Pi Zero, Zero W, A, A+, and 3A+ only.

When this boot mode is activated (usually after a failure to boot from the SD card), the Raspberry Pi puts its USB port into device mode and awaits a USB reset from the host. Example code showing how the host needs to talk to the Raspberry Pi can be found on Github.

The host first sends a structure to the device down control endpoint 0. This contains the size and signature for the boot (security is not enabled, so no signature is required). Secondly, code is transmitted down endpoint 1 (bootcode.bin). Finally, the device will reply with a success code of:

	
0 - Success

	
0x80 - Failed

USB host boot mode

	
Note

	
Host boot is available on Raspberry Pi 3B, 3B+, 3A+, and 2B v1.2 only. Raspberry Pi 3A+ only supports mass storage boot, not network boot.

The USB host boot mode follows this sequence:

	
Enable the USB port and wait for D+ line to be pulled high indicating a USB 2.0 device (we only support USB2.0)

	
If the device is a hub:

	
Enable power to all downstream ports of the hub

	
For each port, loop for a maximum of two seconds (or five seconds if program_usb_boot_timeout=1 has been set)

	
Release from reset and wait for D+ to be driven high to indicate that a device is connected

	
If a device is detected:

	
Send "Get Device Descriptor"

	
If VID == SMSC && PID == 9500

	
Add device to Ethernet device list

	
If class interface == mass storage class

	
Add device to mass storage device list

	
Else

	
Enumerate single device

	
Go through mass storage device list

	
Boot from mass storage device

	
Go through Ethernet device list

	
Boot from Ethernet

USB mass storage boot

Edit this on GitHub

	
Note

	
Available on Raspberry Pi 2B v1.2, 3A+, 3B, 3B+, 4B, 400 and Zero 2 W, and Raspberry Pi Compute Module 3, 3+ and 4 only.

You may wish to boot your Raspberry Pi from a USB mass storage device such as a flash drive or a USB hard disk. When attaching USB devices, particularly hard disks and SSDs, be mindful of their power requirements. If you plan to attach more than one SSD or hard disk to the Raspberry Pi, this will normally require external power - either a powered hard disk enclosure, or a powered USB hub.

	
Note

	
Models prior to Raspberry Pi 4B have known issues which prevent booting with some USB devices.

Raspberry Pi 4B and Raspberry Pi 400

The bootloader in Raspberry Pi 400 and newer Raspberry Pi 4B boards supports USB boot by default, although the BOOT_ORDER bootloader configuration may need to be modified. On earlier Raspberry Pi 4B boards, or to select alternate boot modes, the bootloader must be updated.

See:

	
Instructions for changing the boot mode via the Raspberry Pi Imager

	
Instructions for changing the boot mode via raspi-config

	
The bootloader configuration page for other boot configuration options

Compute Module 4

Please see the Flashing the Compute Module eMMC for bootloader update instructions.

Raspberry Pi 3B+

The Raspberry Pi 3B+ supports USB mass storage boot out of the box.

Raspberry Pi 2B, 3A+, 3B, CM3, CM3+, Zero 2 W

On Raspberry Pi 2B v1.2, 3A+, 3B, Zero 2 W, and Compute Module 3 and 3+, you must first enable USB host boot mode. This is to allow USB mass storage boot, and network boot.

	
Note

	
Network boot is not supported on Raspberry Pi 3A+ or Zero 2 W.

To enable USB host boot mode, the Raspberry Pi needs to be booted from an SD card with a special option to set the USB host boot mode bit in the one-time programmable (OTP) memory. Once this bit has been set, the SD card is no longer required.

	
Warning

	
Any change you make to the OTP is permanent and cannot be undone.

+
On Raspberry Pi 3A+, setting the OTP bit to enable USB host boot mode will permanently prevent that Raspberry Pi from booting in USB device mode.

You can use any SD card running Raspberry Pi OS to program the OTP bit.

Enable USB host boot mode:

 Copy to Clipboard

echo program_usb_boot_mode=1 | sudo tee -a /boot/firmware/config.txt

This adds program_usb_boot_mode=1 to the end of /boot/firmware/config.txt.

Although the option is named program_usb_boot_mode, it only enables USB host boot mode. USB device boot mode is only available on certain models of Raspberry Pi - see USB device boot mode.

Reboot the Raspberry Pi with sudo reboot and check that the OTP has been programmed:

 Copy to Clipboard

vcgencmd otp_dump | grep 17:
17:3020000a

Check that the output 0x3020000a is shown. If it is not, then the OTP bit has not been successfully programmed. In this case, go through the programming procedure again. If the bit is still not set, this may indicate a fault in the Raspberry Pi hardware itself.

If you wish, you can remove the program_usb_boot_mode line from config.txt, so if you put the SD card into another Raspberry Pi, it won’t program USB host boot mode. Make sure there is no blank line at the end of config.txt.

You can now boot from a USB mass storage device in the same way as booting from an SD card. See the following section for further information.

Booting from USB mass storage

The procedure is the same as for SD cards - simply image the USB storage device with the operating system image.

After preparing the storage device, connect the drive and power up the Raspberry Pi, being aware of the extra USB power requirements of the external drive.

After five to ten seconds, the Raspberry Pi should begin booting and show the rainbow splash screen on an attached display. Make sure that you do not have an SD card inserted in the Raspberry Pi, since if you do, it will boot from that first.

See the boot modes documentation for the boot sequence and alternative boot modes (network, USB device, GPIO or SD boot).

Known issues

	
Note

	
These do not apply to Raspberry Pi 4 Model B.

	
The default timeout for checking bootable USB devices is two seconds. Some flash drives and hard disks power up too slowly. It is possible to extend this timeout to five seconds (add a new file timeout to the SD card), but note that some devices take even longer to respond.

	
Some flash drives have a very specific protocol requirement that is not handled by the bootcode and may thus be incompatible.

Special bootcode.bin-only boot mode

	
Important

	
This does not apply to Raspberry Pi 4 Model B.

If you are unable to use a particular USB device to boot your Raspberry Pi, an alternative (available for the Raspberry Pi 2B v1.2, 3A+, 3B and 3B+) is to use the special bootcode.bin-only boot mode. The Raspberry Pi will still boot from the SD card, but bootcode.bin is the only file read from it.

Hardware compatibility

Before attempting to boot from a USB mass storage device it is advisable to verify that the device works correctly under Linux. Boot using an SD card and plug in the USB mass storage device. This should appears as a removable drive. This is especially important with USB SATA adapters, which may be supported by the bootloader in mass storage mode, but fail if Linux selects USB Attached SCSI-UAS mode.

Spinning hard disk drives nearly always require a powered USB hub. Even if everything appears to work, you are likely to encounter intermittent failures without a powered USB hub.

Multiple bootable drives

When searching for a bootable partition, the bootloader scans all USB mass storage devices in parallel and will select the first to respond. If the boot partition does not contain a suitable start.elf file, the next available device is selected. There is no method for specifying the boot device according to the USB topology because this would slow down boot and adds unnecessary and hard to support configuration complexity.

	
Note

	
The config.txt file conditional filters can be used to select alternate firmware in complex device configurations.

Network booting

Edit this on GitHub

This section describes how network booting works on Raspberry Pi 3B, 3B+ and 2B v1.2.

On Pi 4 and Pi 5, network booting is implemented in the second stage bootloader in the EEPROM. For more information, see Raspberry Pi 4 bootloader configuration.

We also have a tutorial about setting up a network boot system.

Network booting works only for the wired adapter built into the above models of Raspberry Pi. Booting over wireless LAN is not supported, nor is booting from any other wired network device.

Network boot flow

To network boot, the boot ROM does the following:

	
Initialise on-board Ethernet device (Microchip LAN9500 or LAN7500)

	
Send DHCP request (with Vendor Class identifier DHCP option 60 set to PXEClient:Arch:00000:UNDI:002001)

	
Receive DHCP reply

	
(optional) Receive DHCP proxy reply

	
ARP to tftpboot server

	
ARP reply includes tftpboot server ethernet address

	
TFTP RRQ bootcode.bin

	
File not found: Server replies with TFTP error response with textual error message

	
File exists: Server will reply with the first block (512 bytes) of data for the file with a block number in the header

	
Raspberry Pi replies with TFTP ACK packet containing the block number, and repeats until the last block which is not 512 bytes

	
TFTP RRQ bootsig.bin

	
This will normally result in an error file not found. This is to be expected, and TFTP boot servers should be able to handle it.

From this point the bootcode.bin code continues to load the system. The first file it will try to access is <serial_number>/start.elf. If this does not result in an error then any other files to be read will be prepended with the serial_number. This is useful because it enables you to create separate directories with separate start.elf / kernels for your Raspberry Pis.

To get the serial number for the device you can either try this boot mode and see what file is accessed using tcpdump / wireshark, or you can run a standard Raspberry Pi OS SD card and cat /proc/cpuinfo.

If you put all your files into the root of your TFTP directory then all following files will be accessed from there.

Debugging network boot mode

The first thing to check is that the OTP bit is correctly programmed. To do this, you need to add program_usb_boot_mode=1 to config.txt and reboot (with a standard SD card that boots correctly into Raspberry Pi OS). Once you’ve done this, you should be able to do:

 Copy to Clipboard

$ vcgencmd otp_dump | grep 17:

If row 17 contains 3020000a then the OTP is correctly programmed. You should now be able to remove the SD card, plug in Ethernet, and then the Ethernet LEDs should light up around 5 seconds after the Raspberry Pi powers up.

To capture the Ethernet packets on the server, use tcpdump on the tftpboot server (or DHCP server if they are different). You will need to capture the packets there otherwise you will not be able to see packets that get sent directly because network switches are not hubs!

 Copy to Clipboard

$ sudo tcpdump -i eth0 -w dump.pcap

This will write everything from eth0 to a file named dump.pcap. You can then post-process or upload the packets to cloudshark for communication.

DHCP request / reply

As a minimum you should see a DHCP request and reply which looks like the following:

 Copy to Clipboard

6:44:38.717115 IP (tos 0x0, ttl 128, id 0, offset 0, flags [none], proto UDP (17), length 348)
 0.0.0.0.68 > 255.255.255.255.67: [no cksum] BOOTP/DHCP, Request from b8:27:eb:28:f6:6d, length 320, xid 0x26f30339, Flags [none] (0x0000)
	 Client-Ethernet-Address b8:27:eb:28:f6:6d
	 Vendor-rfc1048 Extensions
	 Magic Cookie 0x63825363
	 DHCP-Message Option 53, length 1: Discover
	 Parameter-Request Option 55, length 12:
	 Vendor-Option, Vendor-Class, BF, Option 128
	 Option 129, Option 130, Option 131, Option 132
	 Option 133, Option 134, Option 135, TFTP
	 ARCH Option 93, length 2: 0
	 NDI Option 94, length 3: 1.2.1
	 GUID Option 97, length 17: 0.68.68.68.68.68.68.68.68.68.68.68.68.68.68.68.68
	 Vendor-Class Option 60, length 32: "PXEClient:Arch:00000:UNDI:002001"
	 END Option 255, length 0
16:44:41.224619 IP (tos 0x0, ttl 64, id 57713, offset 0, flags [none], proto UDP (17), length 372)
 192.168.1.1.67 > 192.168.1.139.68: [udp sum ok] BOOTP/DHCP, Reply, length 344, xid 0x26f30339, Flags [none] (0x0000)
	 Your-IP 192.168.1.139
	 Server-IP 192.168.1.1
	 Client-Ethernet-Address b8:27:eb:28:f6:6d
	 Vendor-rfc1048 Extensions
	 Magic Cookie 0x63825363
	 DHCP-Message Option 53, length 1: Offer
	 Server-ID Option 54, length 4: 192.168.1.1
	 Lease-Time Option 51, length 4: 43200
	 RN Option 58, length 4: 21600
	 RB Option 59, length 4: 37800
	 Subnet-Mask Option 1, length 4: 255.255.255.0
	 BR Option 28, length 4: 192.168.1.255
	 Vendor-Class Option 60, length 9: "PXEClient"
	 GUID Option 97, length 17: 0.68.68.68.68.68.68.68.68.68.68.68.68.68.68.68.68
	 Vendor-Option Option 43, length 32: 6.1.3.10.4.0.80.88.69.9.20.0.0.17.82.97.115.112.98.101.114.114.121.32.80.105.32.66.111.111.116.255
	 END Option 255, length 0

`Vendor-Option Option 43` contains the important part of the reply. This must contain the string "Raspberry Pi Boot". Due to a bug in the boot ROM, you may need to add three spaces to the end of the string.

TFTP file read

When the Vendor Option is correctly specified, you’ll see a subsequent TFTP RRQ packet being sent. RRQs can be replied to by either the first block of data or an error saying file not found. In a couple of cases they even receive the first packet and then the transmission is aborted by the Raspberry Pi (this happens when checking whether a file exists). The example below is just three packets: the original read request, the first data block (which is always 516 bytes containing a header and 512 bytes of data, although the last block is always less than 512 bytes and may be zero length), and the third packet (the ACK which contains a frame number to match the frame number in the data block).

 Copy to Clipboard

16:44:41.224964 IP (tos 0x0, ttl 128, id 0, offset 0, flags [none], proto UDP (17), length 49)
 192.168.1.139.49152 > 192.168.1.1.69: [no cksum] 21 RRQ "bootcode.bin" octet
16:44:41.227223 IP (tos 0x0, ttl 64, id 57714, offset 0, flags [none], proto UDP (17), length 544)
 192.168.1.1.55985 > 192.168.1.139.49152: [udp sum ok] UDP, length 516
16:44:41.227418 IP (tos 0x0, ttl 128, id 0, offset 0, flags [none], proto UDP (17), length 32)
 192.168.1.139.49152 > 192.168.1.1.55985: [no cksum] UDP, length 4

Known problems

There are a number of known problems with the Ethernet boot mode. Since the implementation of the boot modes is in the chip itself, there are no workarounds other than to use an SD card with just the bootcode.bin file.

DHCP requests time out after five tries

The Raspberry Pi will attempt a DHCP request five times with five seconds in between, for a total period of 25 seconds. If the server is not available to respond in this time, then the Raspberry Pi will drop into a low-power state. There is no workaround for this other than bootcode.bin on an SD card.

TFTP server on separate subnet not supported

Fixed in Raspberry Pi 3 Model B+ (BCM2837B0).

DHCP relay broken

The DHCP check also checked if the hops value was 1, which it wouldn’t be with DHCP relay.

Fixed in Raspberry Pi 3 Model B+.

Raspberry Pi boot string

The "Raspberry Pi Boot " string in the DHCP reply requires the extra three spaces due to an error calculating the string length.

Fixed in Raspberry Pi 3 Model B+.

DHCP UUID constant

The DHCP UUID is set to be a constant value.

Fixed in Raspberry Pi 3 Model B+; the value is set to the 32-bit serial number.

ARP check can fail to respond in the middle of TFTP transaction

The Raspberry Pi will only respond to ARP requests when it is in the initialisation phase; once it has begun transferring data, it’ll fail to continue responding.

Fixed in Raspberry Pi 3 Model B+.

DHCP request/reply/ack sequence not correctly implemented

At boot time, Raspberry Pi broadcasts a DHCPDISCOVER packet. The DHCP server replies with a DHCPOFFER packet. The Raspberry Pi then continues booting without doing a DHCPREQUEST or waiting for DHCPACK. This may result in two separate devices being offered the same IP address and using it without it being properly assigned to the client.

Different DHCP servers have different behaviours in this situation. dnsmasq (depending upon settings) will hash the MAC address to determine the IP address, and ping the IP address to make sure it isn’t already in use. This reduces the chances of this happening because it requires a collision in the hash.

GPIO boot mode

Edit this on GitHub

	
Note

	
GPIO boot mode is only available on the Raspberry Pi 3A+, 3B, 3B+, Compute Module 3 and 3+.

Earlier Raspberry Pis can be configured to allow the boot mode to be selected at power-on using hardware attached to the GPIO connector. This is done by setting bits in the OTP memory of the SoC. Once the bits are set, they permanently allocate five GPIOs to allow this selection to be made. Once the OTP bits are set, they cannot be unset. You should think carefully about enabling this, since those five GPIO lines will always control booting. Although you can use the GPIOs for some other function once the Raspberry Pi has booted, you must set them up so that they enable the desired boot modes when the Raspberry Pi boots.

To enable GPIO boot mode, add the following line to the config.txt file:

 Copy to Clipboard

program_gpio_bootmode=n

Where n is the bank of GPIOs which you wish to use. Then reboot the Raspberry Pi once to program the OTP with this setting. Bank 1 is GPIOs 22-26, bank 2 is GPIOs 39-43. Unless you have a Compute Module, you must use bank 1: the GPIOs in bank 2 are only available on the Compute Module. Because of the way the OTP bits are arranged, if you first program GPIO boot mode for bank 1, you then have the option of selecting bank 2 later. The reverse is not true: once bank 2 has been selected for GPIO boot mode, you cannot select bank 1.

Once GPIO boot mode is enabled, the Raspberry Pi will no longer boot. You must pull up at least one boot-mode GPIO pin in order for the Raspberry Pi to boot.

Pin assignments

Raspberry Pi 3B and Compute Module 3

	Bank 1	Bank 2	boot type
	22
	39
	SD0

	23
	40
	SD1

	24
	41
	NAND (no Linux support at present)

	25
	42
	SPI (no Linux support at present)

	26
	43
	USB

USB in the table above selects both USB device boot mode and USB host boot mode. In order to use a USB boot mode, it must be enabled in the OTP memory. For more information, see USB device boot and USB host boot.

Later Raspberry Pi 3B (BCM2837B0 with the metal lid), Raspberry Pi 3A+, 3B+ and Compute Module 3+

	Bank 1	Bank 2	boot type
	20
	37
	SD0

	21
	38
	SD1

	22
	39
	NAND (no Linux support at present)

	23
	40
	SPI (no Linux support at present)

	24
	41
	USB device

	25
	42
	USB host - mass storage device

	26
	43
	USB host - Ethernet

	
Note

	
The various boot modes are attempted in the numerical order of the GPIO lines, i.e. SD0, then SD1, then NAND and so on.

Boot flow

SD0 is the Broadcom SD card/MMC interface. When the boot ROM within the SoC runs, it always connects SD0 to the built-in microSD card slot. On Compute Modules with an eMMC device, SD0 is connected to that; on the Compute Module Lite SD0 is available on the edge connector and connects to the microSD card slot in the CMIO carrier board. SD1 is the Arasan SD card/MMC interface which is also capable of SDIO. All Raspberry Pi models with built-in wireless LAN use SD1 to connect to the wireless chip via SDIO.

The default pull resistance on the GPIO lines is 50KΩ, as documented on page 102 of the BCM2835 ARM peripherals datasheet. A pull resistance of 5KΩ is recommended to pull a GPIO line up: this will allow the GPIO to function but not consume too much power.

NVMe SSD boot

Edit this on GitHub

NVMe (non-volatile memory express) is a standard for accessing solid state drives (SSDs) via a PCIe bus. You can connect these drives via the PCIe slot on a Compute Module 4 (CM4) IO board, allowing a CM4 to boot from SSD.

Required hardware

You need an NVMe M.2 SSD. You cannot plug an M.2 SSD directly into the PCIe slot on the IO board; an adapter is needed. Be careful to get the correct type: a suitable adapter can be found online by searching for "PCI-E 3.0 ×1 lane to M.2 NGFF M-Key SSD NVMe PCI Express adapter card".

The latest version of Raspberry Pi OS supports booting from NVMe drives. To check that your NVMe drive is connected correctly, boot Raspberry Pi OS from another drive and run ls -l /dev/nvme*. Example output is shown below.

 Copy to Clipboard

crw------- 1 root root 245, 0 Mar 9 14:58 /dev/nvme0
brw-rw---- 1 root disk 259, 0 Mar 9 14:58 /dev/nvme0n1

If you need to connect the NVMe drive to a PC or Mac, you can use a USB adaptor. Search for "NVMe PCIe M key solid state drive external enclosure". The enclosure must support M key SSDs.

Required software

To boot from NVMe you need a version of the bootloader later than July 2021, along with a recent version of the VideoCore firmware and Raspberry Pi OS Linux kernel. The latest Raspberry Pi OS release has everything you need, so you can use Raspberry Pi Imager to install the software to your SSD.

Bootloader

You might need to use rpiboot to update the CM4 bootloader. Instructions for building rpiboot and configuring the IO board to switch the ROM to usbboot mode are in the USB boot GitHub repository.

Remember to add the NVMe boot mode 6 to BOOT_ORDER in recovery/boot.conf.

If you are using CM4 lite, remove the SD card and the board will boot from the NVMe disk. For versions of CM4 with an eMMC, make sure you have set NVMe first in the boot order.

NVMe BOOT_ORDER

This boot behaviour is controlled via the BOOT_ORDER setting in the EEPROM configuration: we have added a new boot mode 6 for NVMe. See Raspberry Pi bootloader configuration.

Below is an example of UART output when the bootloader detects the NVMe drive:

 Copy to Clipboard

Boot mode: SD (01) order f64
Boot mode: USB-MSD (04) order f6
Boot mode: NVME (06) order f
VID 0x144d MN Samsung SSD 970 EVO Plus 250GB
NVME on

It will then find a FAT partition and load start4.elf:

 Copy to Clipboard

Read start4.elf bytes 2937840 hnd 0x00050287 hash ''

It will then load the kernel and boot the OS:

 Copy to Clipboard

MESS:00:00:07.096119:0: brfs: File read: /mfs/sd/kernel8.img
MESS:00:00:07.098682:0: Loading 'kernel8.img' to 0x80000 size 0x1441a00
MESS:00:00:07.146055:0:[0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd083]

In Linux the SSD appears as /dev/nvme0 and the "namespace" as /dev/nvme0n1. There will be two partitions /dev/nvme0n1p1 (FAT) and /dev/nvme0n1p2 (EXT4). Use lsblk to check the partition assignments:

 Copy to Clipboard

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
nvme0n1 259:0 0 232.9G 0 disk
├─nvme0n1p1 259:1 0 256M 0 part /boot/firmware
└─nvme0n1p2 259:2 0 232.6G 0 part /

Troubleshooting

If the boot process fails, please file an issue on the rpi-eeprom GitHub repository, being sure to attach a copy of the console and anything displayed on the screen during boot.

HTTP boot

Edit this on GitHub

The network install feature uses HTTP over Ethernet to boot the Raspberry Pi into embedded Raspberry Pi Imager.

In addition to network install, you can explicitly boot your device with files downloaded via HTTP with boot-mode 7. You can still use this even if network install on boot is disabled.

You could, for example, add this to your BOOT_ORDER as a fall-back boot method, or put it behind a GPIO conditional to initiate HTTP boot from your own server when a GPIO pin is pulled low.

For example, if you added the following to your EEPROM config and GPIO 8 (which has a default state of 1 or HIGH) were to be pulled low, the files http://downloads.raspberrypi.org:80/net_install/boot.img and http://downloads.raspberrypi.org:80/net_install/boot.sig would be downloaded. If network install on boot were enabled, it would use the same URL. If GPIO 8 were not pulled low the behaviour would be unchanged.

 Copy to Clipboard

[gpio8=0]
BOOT_ORDER=0xf7
HTTP_HOST=downloads.raspberrypi.org
NET_INSTALL_ENABLED=0

HTTP in the BOOT_ORDER will be ignored if secure boot is enabled and HTTP_HOST is not set.

Requirements

To use HTTP boot, update the bootloader to a bootloader dated 10th March 2022 or later. HTTP boot only works over Ethernet, so you need to connect your Raspberry Pi to your network via an Ethernet cable, e.g. to a socket on the back of your router.

Keys

All HTTP downloads must be signed. The bootloader includes a public key for the files on the default host fw-download-alias1.raspberrypi.com. This key will be used to verify the network install image, unless you set HTTP_HOST and include a public key in the EEPROM. This allows you to host the Raspberry Pi network install images on your own server.

	
Warning

	
Using your own network install image will require you to sign the image and add your public key to the EEPROM. If you then apply a public EEPROM update, your key will be lost and will need to be re-added.

USBBOOT has all the tools needed to program public keys.

 Copy to Clipboard

Add your PUBLIC key to the eeprom. boot.conf contains your modifications
rpi-eeprom-config -c boot.conf -p mypubkey.pem -o pieeprom.upd pieeprom.original.bin

Generate signature for your eeprom
rpi-eeprom-digest -i pieeprom.upd -o pieeprom.sig

Sign the network install image with your PRIVATE key
Put boot.img and boot.sig on your web server
rpi-eeprom-digest -i boot.img -o boot.sig -k myprivkey.pem

Secure boot

If secure boot is enabled, then the Raspberry Pi can only run code signed by the customer’s private key. So if you want to use network install or HTTP boot mode with secure boot, you must sign boot.img and generate boot.sig with your own key and host these files somewhere for download. The public key in the EEPROM will be used to verify the image.

If secure boot is enabled and HTTP_HOST is not set, then network install and HTTP boot will be disabled.

For more information about secure boot see USBBOOT.

Parallel Display Interface

Edit this on GitHub

Using a DPI Display on the Raspberry Pi

Using a DPI Display on the Raspberry Pi

Display Parallel Interface (DPI) displays can be connected to Raspberry Pi devices via the 40-pin general-purpose input/output (GPIO) connector as an alternative to using the dedicated Display Serial Interface (DSI) or High-Definition Multimedia Interface (HDMI) ports.

An up-to-24-bit parallel RGB interface is available on all Raspberry Pi boards with the 40 way header and the Compute Modules. This interface allows parallel RGB displays to be attached to the Raspberry Pi GPIO either in RGB24 (8 bits for red, green and blue) or RGB666 (6 bits per colour) or RGB565 (5 bits red, 6 green, and 5 blue).

This interface is controlled by the GPU firmware and can be programmed by a user via special config.txt parameters and by enabling the correct Linux Device Tree overlay.

GPIO pins

One of the alternate functions selectable on bank 0 of the Raspberry Pi GPIO is DPI (Display Parallel Interface) which is a simple clocked parallel interface (up to 8 bits of R, G and B; clock, enable, hsync, and vsync). This interface is available as alternate function 2 (ALT2) on GPIO bank 0:

	GPIO	ALT2
	GPIO0
	PCLK

	GPIO1
	DE

	GPIO2
	LCD_VSYNC

	GPIO3
	LCD_HSYNC

	GPIO4
	DPI_D0

	GPIO5
	DPI_D1

	GPIO6
	DPI_D2

	GPIO7
	DPI_D3

	GPIO8
	DPI_D4

	GPIO9
	DPI_D5

	GPIO10
	DPI_D6

	GPIO11
	DPI_D7

	GPIO12
	DPI_D8

	GPIO13
	DPI_D9

	GPIO14
	DPI_D10

	GPIO15
	DPI_D11

	GPIO16
	DPI_D12

	GPIO17
	DPI_D13

	GPIO18
	DPI_D14

	GPIO19
	DPI_D15

	GPIO20
	DPI_D16

	GPIO21
	DPI_D17

	GPIO22
	DPI_D18

	GPIO23
	DPI_D19

	GPIO24
	DPI_D20

	GPIO25
	DPI_D21

	GPIO26
	DPI_D22

	GPIO27
	DPI_D23

	
Note

	
There are various ways that the colour values can be presented on the DPI output pins in either 565, 666, or 24-bit modes (see the following table and the output_format part of the dpi_output_format parameter below):

	Mode
	RGB bits
	GPIO

	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4

	1
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	2
	565
	-
	-
	-
	-
	-
	-
	-
	-
	7
	6
	5
	4
	3
	7
	6
	5
	4
	3
	2
	7
	6
	5
	4
	3

	3
	565
	-
	-
	-
	7
	6
	5
	4
	3
	-
	-
	7
	6
	5
	4
	3
	2
	-
	-
	-
	7
	6
	5
	4
	3

	4
	565
	-
	-
	7
	6
	5
	4
	3
	-
	-
	-
	7
	6
	5
	4
	3
	2
	-
	-
	7
	6
	5
	4
	3
	-

	5
	666
	-
	-
	-
	-
	-
	-
	7
	6
	5
	4
	3
	2
	7
	6
	5
	4
	3
	2
	7
	6
	5
	4
	3
	2

	6
	666
	-
	-
	7
	6
	5
	4
	3
	2
	-
	-
	7
	6
	5
	4
	3
	2
	-
	-
	7
	6
	5
	4
	3
	2

	7
	888
	7
	6
	5
	4
	3
	2
	1
	0
	7
	6
	5
	4
	3
	2
	1
	0
	7
	6
	5
	4
	3
	2
	1
	0

Disable other GPIO peripherals

All other peripheral overlays that use conflicting GPIO pins must be disabled. In config.txt, take care to comment out or invert any dtparams that enable I2C or SPI:

 Copy to Clipboard

dtparam=i2c_arm=off
dtparam=spi=off

Configure a display

The Kernel Mode Setting (KMS) generic display interface enables output to arbitrary displays, as long as you have an appropriate driver.

Auto detect

Auto detect allows your Raspberry Pi to connect with a display without a manually configured device tree overlay.
Auto detection is enabled by default. You can enable display auto detect by adding the following line to config.txt:

 Copy to Clipboard

`display_auto_detect=1`

Replace the 1 with a 0 to disable auto detect.
When you connect the official Raspberry Pi display with auto detect enabled, KMS determines the display model automatically and configures the appropriate display settings.

Manually configure a display

	
Note

	
In Raspberry Pi OS Bookworm or later, the dpi_output_format and dpi_timings entries in config.txt previously used to set up DPI have been superseded by the vc4-kms-dpi-generic overlay.

To use any display other than the official Raspberry Pi display, you must specify a dtoverlay entry in config.txt. The panel manufacturer should configure timings for your display in Linux kernel code and provide an overlay to enable those settings. See the Adafruit Kippah display entry for an example. The following example demonstrates how to set a dtoverlay entry for the Kippah display in your /boot/firmware/config.txt file:

 Copy to Clipboard

dtoverlay=vc4-kms-kippah-7inch-overlay

Display timings are usually defined in the kernel, but you can also define them in the provided panel-dpi driver. If your panel lacks a defined overlay in kernel code, you can use the panel-dpi driver to define display timings as parameters. This enables you to manually configure a device tree entry for any display.

The following example demonstrates how you can define timings using device tree parameters:

 Copy to Clipboard

dtoverlay=vc4-kms-v3d
dtoverlay=vc4-kms-dpi-generic,hactive=480,hfp=26,hsync=16,hbp=10
dtparam=vactive=640,vfp=25,vsync=10,vbp=16
dtparam=clock-frequency=32000000,rgb666-padhi

	
Note

	
Device tree line length must not exceed 80 characters. When a setting requires a line longer than 80 characters, split the assignment of that parameter across multiple lines.

Parameter display tree definitions support the following options:

	Option	Description
	clock-frequency
	Display clock frequency (Hz)

	hactive
	Horizontal active pixels

	hfp
	Horizontal front porch

	hsync
	Horizontal sync pulse width

	hbp
	Horizontal back porch

	vactive
	Vertical active lines

	vfp
	Vertical front porch

	vsync
	Vertical sync pulse width

	vbp
	Vertical back porch

	hsync-invert
	Horizontal sync active low

	vsync-invert
	Vertical sync active low

	de-invert
	Data Enable active low

	pixclk-invert
	Negative edge pixel clock

	width-mm
	Defines the screen width in millimetres

	height-mm
	Defines the screen height in millimetres

	rgb565
	Change to RGB565 output on GPIOs 0-19

	rgb666-padhi
	Change to RGB666 output on GPIOs 0-9, 12-17, and 20-25

	rgb888
	Change to RGB888 output on GPIOs 0-27

	bus-format
	Override the bus format for a MEDIA_BUS_FMT_* value, also overridden by rgbXXX overrides

	backlight-gpio
	Defines a GPIO to be used for backlight control (default value: none)

General Purpose I/O (GPIO)

Edit this on GitHub

General Purpose I/O (GPIO) pins can be configured as either general-purpose input, general-purpose output, or as one of up to six special alternate settings, the functions of which are pin-dependent.

There are three GPIO banks on BCM2835. Each of the three banks has its own VDD input pin. On Raspberry Pi, all GPIO banks are supplied from 3.3V.

	
Warning

	
Connection of a GPIO to a voltage higher than 3.3V will likely destroy the GPIO block within the SoC.

A selection of pins from Bank 0 is available on the P1 header on Raspberry Pi.

GPIO pads

The GPIO connections on the BCM2835 package are sometimes referred to in the peripherals data sheet as "pads" — a semiconductor design term meaning "chip connection to outside world".

The pads are configurable CMOS push-pull output drivers/input buffers. Register-based control settings are available for:

	
Internal pull-up / pull-down enable/disable

	
Output drive strength

	
Input Schmitt-trigger filtering

Power-on states

All GPIO pins revert to general-purpose inputs on power-on reset. The default pull states are also applied, which are detailed in the alternate function table in the Arm peripherals datasheet. Most GPIOs have a default pull applied.

Interrupts

Each GPIO pin, when configured as a general-purpose input, can be configured as an interrupt source to the Arm. Several interrupt generation sources are configurable:

	
Level-sensitive (high/low)

	
Rising/falling edge

	
Asynchronous rising/falling edge

Level interrupts maintain the interrupt status until the level has been cleared by system software (e.g. by servicing the attached peripheral generating the interrupt).

The normal rising/falling edge detection has a small amount of synchronisation built into the detection. At the system clock frequency, the pin is sampled with the criteria for generation of an interrupt being a stable transition within a three-cycle window, i.e. a record of 1 0 0 or 0 1 1. Asynchronous detection bypasses this synchronisation to enable the detection of very narrow events.

Alternative functions

Almost all of the GPIO pins have alternative functions. Peripheral blocks internal to the SoC can be selected to appear on one or more of a set of GPIO pins, for example the I2C buses can be configured to at least three separate locations. Pad control, such as drive strength or Schmitt filtering, still applies when the pin is configured as an alternate function.

Voltage specifications

The table below gives the various voltage specifications for the GPIO pins for BCM2835, BCM2836, BCM2837 and RP3A0-based products (e.g. Raspberry Pi Zero or Raspberry Pi 3+). For information about Compute Modules you should see the relevant datasheets.

	Symbol	Parameter	Conditions  	Min	Typical	Max	Unit
	VIL
	Input Low Voltage
	-
	-
	-
	0.9
	V

	VIH
	Input high voltagea
	-
	1.6
	-
	-
	V

	IIL
	Input leakage current
	TA = +85◦C
	-
	-
	5
	µA

	CIN
	Input capacitance
	-
	-
	5
	-
	pF

	VOL
	Output low voltageb
	IOL = -2mA
	-
	-
	0.14
	V

	VOH
	Output high voltageb
	IOH = 2mA
	3.0
	-
	-
	V

	IOL
	Output low currentc
	VO = 0.4V
	18
	-
	-
	mA

	IOH
	Output high currentc
	VO = 2.3V
	17
	-
	-
	mA

	RPU
	Pullup resistor
	-
	50
	-
	65
	kΩ

	RPD
	Pulldown resistor
	-
	50
	-
	65
	kΩ

a Hysteresis enabled

b Default drive strength (8mA)

c Maximum drive strength (16mA)

The table below gives the voltage specifications for the GPIO pins on BCM2711-based products (e.g. Raspberry Pi 4 and Raspberry Pi 400). For information about Compute Modules you should see the relevant datasheets.

	Symbol	Parameter	Conditions  	Min	Typical	Max	Unit
	VIL
	Input Low Voltage
	-
	-
	-
	0.8
	V

	VIH
	Input high voltagea
	-
	2.0
	-
	-
	V

	IIL
	Input leakage current
	TA = +85◦C
	-
	-
	10
	µA

	VOL
	Output low voltageb
	IOL = -4mA
	-
	-
	0.4
	V

	VOH
	Output high voltageb
	IOH = 4mA
	2.6
	-
	-
	V

	IOL
	Output low currentc
	VO = 0.4V
	7
	-
	-
	mA

	IOH
	Output high currentc
	VO = 2.6V
	7
	-
	-
	mA

	RPU
	Pullup resistor
	-
	33
	-
	73
	kΩ

	RPD
	Pulldown resistor
	-
	33
	-
	73
	kΩ

a Hysteresis enabled

b Default drive strength (4mA)

c Maximum drive strength (8mA)

GPIO pads control

Edit this on GitHub

GPIO drive strengths do not indicate a maximum current, but a maximum current under which the pad will still meet the specification. You should set the GPIO drive strengths to match the device being attached in order for the device to work correctly.

How drive strength is controlled

Inside the pad are a number of drivers in parallel. If the drive strength is set low (0b000), most of these are tri-stated so they do not add anything to the output current. If the drive strength is increased, more and more drivers are put in parallel. The diagram shows that behaviour.

	
Warning

	
For Raspberry Pi 4, Raspberry Pi 400 and Compute Module 4 the current level is half the value shown in the diagram.

What does the current value mean?

	
Note

	
The current value specifies the maximum current under which the pad will still meet the specification.

+
Current value is not the current that the pad will deliver, and is not a current limit.

The pad output is a voltage source:

	
If set high, the pad will try to drive the output to the rail voltage (3.3V)

	
If set low, the pad will try to drive the output to ground (0V)

The pad will try to drive the output high or low. Success will depend on the requirements of what is connected. If the pad is shorted to ground, it will not be able to drive high. It will try to deliver as much current as it can, and the current is only limited by the internal resistance.

If the pad is driven high and it is shorted to ground, in due time it will fail. The same holds true if you connect it to 3.3V and drive it low.

Meeting the specification is determined by the guaranteed voltage levels. Because the pads are digital, there are two voltage levels, high and low. The I/O ports have two parameters which deal with the output level:

	
VOL, the maximum low-level voltage (0.14V at 3.3V VDD IO)

	
VOH, the minimum high-level voltage (3.0V at 3.3V VDD IO)

VOL=0.14V means that if the output is Low, it will be <= 0.14V.
VOH=3.0V means that if the output is High, it will be >= 3.0V.

As an example, a drive strength of 16mA means that if you set the pad high, you can draw up to 16mA, and the output voltage is guaranteed to be >=VOH. This also means that if you set a drive strength of 2mA and you draw 16mA, the voltage will not be VOH but lower. In fact, it may not be high enough to be seen as high by an external device.

There is more information on the physical characteristics of the GPIO pins.

	
Note

	
On the Compute Module devices, it is possible to change the VDD IO from the standard 3.3V. In this case, VOL and VOH will change according to the table in the GPIO section.

Why can’t I set all my pads to the maximum current?

	
The Raspberry Pi 3.3V supply was designed with a maximum current of ~3mA per GPIO pin. If you load each pin with 16mA, the total current is 272mA. The 3.3V supply will collapse under that level of load.

	
Big current spikes will happen, especially if you have a capacitive load. Spikes will bounce around all the other pins near them. This is likely to cause interference with the SD card, or even the SDRAM behaviour.

What is a safe current?

All the electronics of the pads are designed for 16mA. This is a safe value under which you will not damage the device. Even if you set the drive strength to 2mA and then load it so 16mA comes out, this will not damage the device. Other than that, there is no guaranteed maximum safe current.

GPIO addresses

	
0x 7e10 002c PADS (GPIO 0-27)

	
0x 7e10 0030 PADS (GPIO 28-45)

	
0x 7e10 0034 PADS (GPIO 46-53)

	Bits	Field name	Description	Type	Reset
	31:24
	PASSWRD
	Must be 0x5A when writing; accidental write protect password
	W
	0

	23:5
		Reserved - Write as 0, read as don’t care
		
	4
	SLEW
	Slew rate; 0 = slew rate limited; 1 = slew rate not limited
	RW
	0x1

	3
	HYST
	Enable input hysteresis; 0 = disabled; 1 = enabled
	RW
	0x1

	2:0
	DRIVE
	Drive strength, see breakdown list below
	RW
	0x3

Beware of Simultaneous Switching Outputs (SSO) limitations which are device-dependent as well as dependent on the quality and layout of the PCB, the amount and quality of the decoupling capacitors, the type of load on the pads (resistance, capacitance), and other factors beyond the control of Raspberry Pi.

Drive strength list

	
0 = 2mA

	
1 = 4mA

	
2 = 6mA

	
3 = 8mA

	
4 = 10mA

	
5 = 12mA

	
6 = 14mA

	
7 = 16mA

Industrial use of the Raspberry Pi

Edit this on GitHub

Raspberry Pi is often used as part of another product. This documentation describes some extra facilities available to use other capabilities of your Raspberry Pi.

One-time programmable settings

Using the one-time programmable memory on Raspberry Pi single-board computers

Using the one-time programmable memory on Raspberry Pi single-board computers

All Raspberry Pi single-board computers (SBCs) have an inbuilt area of one-time programmable (OTP) memory, which is actually part of the main system on a chip (SoC). As its name implies, OTP memory can be written to (i.e. a binary 0 can be changed to a 1) only once. Once a bit has been changed to 1, it can never be returned to 0. One way of looking at the OTP is to consider each bit as a fuse. Programming it involves deliberately blowing the fuse — an irreversible process, as you cannot get inside the chip to replace it!

This whitepaper assumes that the Raspberry Pi is running the Raspberry Pi operating system (OS), and is fully up-to-date with the latest firmware and kernels.

There are a number of OTP values that can be used. To see a list of all the OTP values, you can use:

 Copy to Clipboard

vcgencmd otp_dump

Some interesting lines from this dump are:

	
28 - Serial number

	
29 - Ones complement of serial number

	
30 - Board revision number

Also, from 36 to 43 (inclusive), there are eight rows of 32 bits available for the customer.

	
Note

	
On BCM2712 devices these numbers are different. Row 31 is the serial number and row 32 is the board revision number. The customer rows are 77 to 84 inclusive.

Some of these rows can be programmed with vcmailbox. This is a Linux driver interface to the firmware which will handle the programming of the rows. To do this, please refer to the documentation, and the vcmailbox example application.

The vcmailbox application can be used directly from the command line on Raspberry Pi OS. An example usage would be:

 Copy to Clipboard

vcmailbox 0x00010004 8 8 0 0

…which will return something like:

 Copy to Clipboard

0x00000020 0x80000000 0x00010004 0x00000008 0x800000008 0xnnnnnnnn 0x00000000 0x00000000

The above uses the mailbox property interface GET_BOARD_SERIAL with a request size of 8 bytes and response size of 8 bytes (sending two integers for the request 0, 0). The response to this will be two integers (0x00000020 and 0x80000000) followed by the tag code, the request length, the response length (with the 31st bit set to indicate that it is a response) then the 64-bit serial number (where the MS 32 bits are always 0).

Write and read customer OTP values

	
Warning

	
The OTP values are one-time programmable. Once a bit has been changed from 0 to 1, it can’t be changed back.

To set the customer OTP values you will need to use the SET_CUSTOMER_OTP (0x38021) tag as follows:

 Copy to Clipboard

vcmailbox 0x00038021 [8 + number * 4] [8 + number * 4] [start_num] [number] [value] [value] [value] ...

	
start_num = the first row to program from 0-7

	
number = number of rows to program

	
value = each value to program

So, to program OTP customer rows 4, 5, and 6 to 0x11111111, 0x22222222, 0x33333333 respectively, you would use:

 Copy to Clipboard

vcmailbox 0x00038021 20 20 4 3 0x11111111 0x22222222 0x33333333

This will then program rows 40, 41, and 42.

To read the values back, you can use:

 Copy to Clipboard

vcmailbox 0x00030021 20 20 4 3 0 0 0

This should display:

 Copy to Clipboard

0x0000002c 0x80000000 0x00030021 0x00000014 0x80000014 0x00000000 0x00000003 0x11111111 0x22222222 0x33333333

If you’d like to integrate this functionality into your own code, you should be able to achieve this by using the vcmailbox.c code as an example.

Locking OTP on non-BCM2712 devices

It is possible to lock the OTP changes to avoid them being edited again.

This can be done using a special argument with the OTP write mailbox:

 Copy to Clipboard

vcmailbox 0x00038021 8 8 0xffffffff 0xaffe0000

Once locked, the customer OTP values can no longer be altered. Note that this locking operation is irreversible.

Locking OTP on BCM2712 devices

The customer region can be marked as read only with the following command.

 Copy to Clipboard

vcmailbox 0x00030086 4 4 0

OTP is only locked until the device is reset, so OTP locks need to be reapplied on every boot.

Making customer OTP bits unreadable on non-BCM2712 devices

It is possible to prevent the customer OTP bits from being read at all. This can be done using a special argument with the OTP write mailbox:

 Copy to Clipboard

vcmailbox 0x00038021 8 8 0xffffffff 0xaffebabe

This operation is unlikely to be useful for the vast majority of users, and is irreversible.

Customer MAC addresses on BCM2712 devices

On BCM2712 devices the Ethernet, Wi-Fi and Bluetooth MAC addresses are set in OTP memory. These values can change with customer values.

Get customer mac address vcmailbox 0x00030082/3/4 6 6 0 0, where 2 is Ethernet, 3 is Wi-Fi and 4 is Bluetooth.

Example…

 Copy to Clipboard

vcmailbox 0x00030083 6 6 0 0
0x00000020 0x80000000 0x00030083 0x00000006 0x80000006 0xddccbbaa 0x0000ffee 0x00000000

In order to set a customer MAC address, it has to be sent as two 32 words with the bytes in the right order. You can run a command to check it’s formatted properly.

Example…

 Copy to Clipboard

vcmailbox 0x00030085 6 6 0x44332211 0x6655

Check the log to see if the MAC address is what’s expected.

 Copy to Clipboard

sudo vclog -m
1057826.701: read mac address 11:22:33:44:55:66

A multicast address is not considered valid. The least significant bit in the most significant octet of a MAC address is the multicast bit, so make sure this is not set.

You can then set the customer mac with the command vcmailbox 0x00038082/3/4 6 6 <row1> <row0>

Example…

 Copy to Clipboard

vcmailbox 0x00038082 6 6 0x44332211 0x6655

If a customer MAC address is set to ff:ff:ff:ff:ff:ff, then it’s ignored.

Device-specific private key

	
Note

	
This is not yet implemented for BCM2712 devices

Eight rows of OTP (256 bits) are available for use as a device-specific private key. This is intended to support file-system encryption.

These rows can be programmed and read using similar vcmailbox commands to those used for managing customer OTP rows. If
secure-boot / file-system encryption is not required, then the device private key rows can be used to store general-purpose information.

	
The device private key rows can only be read via the vcmailbox command which requires access to /dev/vcio which is restricted to the video group on Raspberry Pi OS.

	
Raspberry Pi computers do not have a hardware protected key store. It is recommended that this feature is used in conjunction with Secure Boot in order to restrict access to this data.

	
Raspberry Pi OS does not support an encrypted root-filesystem.

See Cryptsetup for more information about open-source disk encryption.

Key programming script rpi-otp-private-key

The rpi-otp-private-key script wraps the device private key vcmailbox APIs in order to make it easier to read/write a key in the same format as OpenSSL.

Read the key as a 64-byte hex number:

 Copy to Clipboard

rpi-otp-private-key

Example output:

 Copy to Clipboard

f8dbc7b0a4fcfb1d706e298ac9d0485c2226ce8df7f7596ac77337bd09fbe160

Writes a 64-byte randomly generated number to the device private key.

WARNING: This operation cannot be undone.

 Copy to Clipboard

rpi-otp-private-key -w $(openssl rand -hex 32)

Mailbox API for reading/writing the key.

Read all of the rows.

 Copy to Clipboard

vcmailbox 0x00030081 40 40 0 8 0 0 0 0 0 0 0 0

Example output:

 Copy to Clipboard

0x00000040 0x80000000 0x00030081 0x00000028 0x80000028 0x00000000 0x00000008 0xf8dbc7b0 0xa4fcfb1d 0x706e298a 0xc9d0485c 0x2226ce8d 0xf7f7596a 0xc77337bd 0x09fbe160 0x00000000

Write all of the row (replace the trailing eight zeros with the key data):

 Copy to Clipboard

vcmailbox 0x00038081 40 40 0 8 0 0 0 0 0 0 0 0

Write the key shown in the previous example:

 Copy to Clipboard

vcmailbox 0x38081 40 40 0 8 0xf8dbc7b0 0xa4fcfb1d 0x706e298a 0xc9d0485c 0x2226ce8d 0xf7f7596a 0xc77337bd 0x09fbe160

OTP register and bit definitions

Edit this on GitHub

All SoCs used by the Raspberry Pi range have a inbuilt one-time programmable (OTP) memory block. A few locations have factory-programmed data.

OTP memory size:

	
non-BCM2712 devices: 66 32-bit values

	
BCM2712 devices: 192 32-bit values

The vcgencmd to display the contents of the OTP is:

 Copy to Clipboard

vcgencmd otp_dump

OTP registers on non-BCM2712 devices

This list contains the publicly available information on the registers. If a register or bit is not defined here, then it is not public.

17 — bootmode register

	
Bit 1: sets the oscillator frequency to 19.2MHz

	
Bit 3: enables pull ups on the SDIO pins

	
Bit 19: enables GPIO bootmode

	
Bit 20: sets the bank to check for GPIO bootmode

	
Bit 21: enables booting from SD card

	
Bit 22: sets the bank to boot from

	
Bit 28: enables USB device booting

	
Bit 29: enables USB host booting (ethernet and mass storage)

	
Note

	
On BCM2711 the bootmode is defined by the bootloader EEPROM configuration instead of OTP.

18 — copy of bootmode register

28 — serial number

29 — ~(serial number)

30 — revision code 1

33 — board revision extended - the meaning depends on the board model.

This is available via device-tree in /proc/device-tree/chosen/rpi-boardrev-ext and for testing purposes this OTP value can be temporarily overridden by setting board_rev_ext in config.txt.

	
Compute Module 4

	
Bit 30: Whether the Compute Module has a Wi-Fi module fitted

	
0 - Wi-Fi

	
1 - No Wi-Fi

	
Bit 31: Whether the Compute Module has an EMMC module fitted

	
0 - EMMC

	
1 - No EMMC (Lite)

	
Raspberry Pi 400

	
Bits 0-7: The default keyboard country code used by piwiz

36-43 — customer OTP values

45 — MPG2 decode key

46 — WVC1 decode key

47-54 — SHA256 of RSA public key for secure-boot

55  — secure-boot flags (reserved for use by the bootloader)

56-63 — 256-bit device-specific private key

64-65 — MAC address; if set, system will use this in preference to the automatically generated address based on the serial number

66 — advanced boot register (not BCM2711)

	
Bits 0-6: GPIO for ETH_CLK output pin

	
Bit 7: enables ETH_CLK output

	
Bits 8-14: GPIO for LAN_RUN output pin

	
Bit 15: enables LAN_RUN output

	
Bit 24: extends USB HUB timeout parameter

	
Bit 25: ETH_CLK frequency:

	
0 - 25MHz

	
1 - 24MHz

1Also contains bits to disable overvoltage, OTP programming, and OTP reading.

OTP Registers on BCM2712 devices

This list contains the publicly available information on the registers. If a register or bit is not defined here, then it is not public.

22 — bootmode register

	
Bit 1: Boot from SD card

	
Bits 2-4: Booting from SPI EEPROM (and which GPIOs)

	
Bit 10: Disable booting from SD card

	
Bit 11: Disable booting from SPI

	
Bit 12: Disable booting from USB

23 — copy of bootmode register

29 — advanced boot mode

	
Bits 0-7: GPIO for SD card detect

	
Bits 8-15: GPIO to use for RPIBOOT

31 — lower 32 bits of serial number

32 — board revision

33 — board attributes - the meaning depends on the board model.

This is available via device-tree in /proc/device-tree/chosen/rpi-boardrev-ext

35 — upper 32 bits of serial number

The full 64 bit serial number is available in /proc/device-tree/serial-number

50-51 — Ethernet MAC address

This is passed to the operating system in the Device Tree, e.g. /proc/device-tree/axi/pcie@120000/rp1/ethernet@100000/local-mac-address

52-53 — Wi-Fi MAC address

This is passed to the operating system in the Device Tree, e.g. /proc/device-tree/axi/mmc@1100000/wifi@1/local-mac-address

54-55 — Bluetooth MAC address

This is passed to the operating system in the Device Tree, e.g. /proc/device-tree/soc/serial@7d50c000/bluetooth/local-bd-address

77-84 — customer OTP values

86 — board country - The default keyboard country code used by piwiz

If set, this is available via Device Tree in /proc/device-tree/chosen/rpi-country-code

87-88 — customer Ethernet MAC address

Overrides OTP rows 50-51 if set

89-90 — customer Wi-Fi MAC address

Overrides OTP rows 52-53 if set

89-90 — customer Bluetooth MAC address

Overrides OTP rows 54-55 if set

109-114 — Factory device UUID

Currently a 16-digit numerical id which should match the bar code on the device. Padded with zero characters and c40 encoded.

This is available via device-tree in /proc/device-tree/chosen/rpi-duid.

Raspberry Pi connector for PCIe

Edit this on GitHub

Raspberry Pi connector for PCIe

Raspberry Pi 5 has an FPC connector on the right-hand side of the board. This connector breaks out a PCIe Gen 2.0 ×1 interface for fast peripherals.

To connect a PCIe HAT+ device, connect it to your Raspberry Pi. Your Raspberry Pi should automatically detect the device. To connect a non-HAT+ device, connect it to your Raspberry Pi, then manually enable PCIe.

For more information about the PCIe FPC connector pinout and other details needed to create third-party devices, accessories, and HATs, see the Raspberry Pi Connector for PCIe standards document. It should be read alongside the Raspberry Pi HAT+ Specification.

	
Note

	
Enumeration of PCIe devices behind a switch is not currently supported.

Enable PCIe

By default, the PCIe connector is not enabled unless connected to a HAT+ device. To enable the connector, add the following line to /boot/firmware/config.txt:

 Copy to Clipboard

dtparam=pciex1

Reboot with sudo reboot for the configuration changes to take effect.

	
Note

	
You can also use the alias nvme.

Boot from PCIe

By default, Raspberry Pi devices do not boot from PCIe storage. To enable boot from PCIe, change the BOOT_ORDER in the bootloader configuration. Edit the EEPROM configuration with the following command:

 Copy to Clipboard

$ sudo rpi-eeprom-config --edit

Replace the BOOT_ORDER line with the following line:

 Copy to Clipboard

BOOT_ORDER=0xf416

To boot from a non-HAT+ device, also add the following line:

 Copy to Clipboard

PCIE_PROBE=1

After saving your changes, reboot your Raspberry Pi with sudo reboot to update the EEPROM.

PCIe Gen 3.0

	
Warning

	
The Raspberry Pi 5 is not certified for Gen 3.0 speeds. PCIe Gen 3.0 connections may be unstable.

The connection is certified for Gen 2.0 speeds (5 GT/sec), but you can force Gen 3.0 (10 GT/sec) speeds. To enable PCIe Gen 3.0 speeds, add the following line to /boot/firmware/config.txt:

 Copy to Clipboard

dtparam=pciex1_gen=3

Reboot your Raspberry Pi with sudo reboot for these settings to take effect.

Power button

Edit this on GitHub

	
Note

	
This section only applies to Raspberry Pi models with a power button, such as the Raspberry Pi 5.

When you plug your Raspberry Pi into power for the first time, it will automatically turn on and boot into the operating system without having to push the button.

If you run Raspberry Pi Desktop, you can initiate a clean shutdown by briefly pressing the power button. A window will appear asking whether you want to shutdown, reboot, or logout.

Select an option or press the power button again to initiate a clean shutdown.

	
Note

	
If you run Raspberry Pi Desktop, you can press the power button twice in quick succession to shut down. If you run Raspberry Pi OS Lite without a desktop, press the power button a single time to initiate a shutdown.

Restart

If the Raspberry Pi board is turned off, but still connected to power, pressing the power button restarts the board.

	
Note

	
Resetting the Power Management Integrated Circuit (PMIC) can also restart the board. Connecting a HAT can reset the PMIC. Always disconnect your device from the power supply before connecting a HAT.

Hard shutdown

To force a hard shutdown, press and hold the power button.

Add your own power button

The J2 jumper

The J2 jumper is located between the RTC battery connector and the board edge. This breakout allows you to add your own power button to Raspberry Pi 5 by adding a Normally Open (NO) momentary switch bridging the two pads. Briefly closing this switch will perform the same actions as the onboard power button.

Power supply

Edit this on GitHub

The power supply requirements differ by Raspberry Pi model. All models require a 5.1V supply, but the current required generally increases according to model. All models up to the Raspberry Pi 3 require a micro USB power connector, while Raspberry Pi 4, Raspberry Pi 400, and Raspberry Pi 5 use a USB-C connector.

The current consumed by each Raspberry Pi depends on the peripherals connected.

Recommended power supplies

For Raspberry Pi 1, Raspberry Pi 2, and Raspberry Pi 3, we recommend the 2.5A micro USB supply. For Raspberry Pi 4 and Raspberry Pi 400, we recommend the 3A USB-C Supply for Raspberry Pi 4. For Raspberry Pi 5, we recommend the 27W USB-C Power Supply.

	
Note

	
No Raspberry Pi models support USB-PPS.

	
Note

	
If you use a third-party USB-PD multi-port power supply, plugging an additional device into the supply when your Raspberry Pi is connected causes a renegotiation between the supply and the Raspberry Pi. If the Raspberry Pi is powered, this happens seamlessly. If the Raspberry Pi is powered down, this renegotiation may cause the Raspberry Pi to boot.

Power over Ethernet (PoE) connector

The Ethernet jack on Raspberry Pi 5 is PoE+ capable, supporting the IEEE 802.3at-2009 PoE standard. The Raspberry Pi 5 has a 4-pin Power-over-Ethernet (PoE) header block, located between the Ethernet jack and the two MIPI connectors.

Raspberry Pi 5 PoE header

Typical power requirements

	Product	Recommended PSU current capacity	Maximum total USB peripheral current draw	Typical bare-board active current consumption
	Raspberry Pi 1 Model A
	700mA
	500mA
	200mA

	Raspberry Pi 1 Model B
	1.2A
	500mA
	500mA

	Raspberry Pi 1 Model A+
	700mA
	500mA
	180mA

	Raspberry Pi 1 Model B+
	1.8A
	1.2A
	330mA

	Raspberry Pi 2 Model B
	1.8A
	1.2A
	350mA

	Raspberry Pi 3 Model B
	2.5A
	1.2A
	400mA

	Raspberry Pi 3 Model A+
	2.5A
	Limited by PSU, board, and connector ratings only.
	350mA

	Raspberry Pi 3 Model B+
	2.5A
	1.2A
	500mA

	Raspberry Pi 4 Model B
	3.0A
	1.2A
	600mA

	Raspberry Pi 5
	5.0A
	1.6A (600mA if using a 3A power supply)
	800mA

	Raspberry Pi 400
	3.0A
	1.2A
	800mA

	Raspberry Pi Zero
	1.2A
	Limited by PSU, board, and connector ratings only
	100mA

	Raspberry Pi Zero W
	1.2A
	Limited by PSU, board, and connector ratings only.
	150mA

	Raspberry Pi Zero 2 W
	2A
	Limited by PSU, board, and connector ratings only.
	350mA

	
Note

	
The Raspberry Pi 5 provides 1.6A of power to downstream USB peripherals when connected to a power supply capable of 5A at +5V (25W). When connected to any other compatible power supply, the Raspberry Pi 5 restricts downstream USB devices to 600mA of power.

Most Raspberry Pis provide enough current to USB peripherals to power most USB devices, including keyboards, mice, and adapters. However, some devices require additional current, including modems, external disks, and high-powered antenna. To connect a USB device with power requirements that exceed the values specified in the table above, connect it using an externally-powered USB hub.

The power requirements of the Raspberry Pi increase as you make use of the various interfaces on the Raspberry Pi. Combined, the GPIO pins can draw 50mA safely; each pin can individually draw up to 16mA. The HDMI port uses 50mA. The Camera Module requires 250mA. USB keyboards and mice can take as little as 100mA or as much as 1000mA. Check the power rating of the devices you plan to connect to the Raspberry Pi and purchase a power supply accordingly. If you’re not sure, use an externally-powered USB hub.

You can check the status of power output to the USB ports using vcgencmd.

 Copy to Clipboard

vcgencmd get_config usb_max_current_enable

The following table describes the amount of power (in amps) drawn by different Raspberry Pi models during various workloads:

			Raspberry Pi 1B+
	Raspberry Pi 2B
	Raspberry Pi 3B
	Raspberry Pi Zero
	Raspberry Pi 4B

	Boot
	Max
	0.26
	0.40
	0.75
	0.20
	0.85

		Avg
	0.22
	0.22
	0.35
	0.15
	0.7

	Idle
	Avg
	0.20
	0.22
	0.30
	0.10
	0.6

	Video playback (H.264)
	Max
	0.30
	0.36
	0.55
	0.23
	0.85

		Avg
	0.22
	0.28
	0.33
	0.16
	0.78

	Stress
	Max
	0.35
	0.82
	1.34
	0.35
	1.25

		Avg
	0.32
	0.75
	0.85
	0.23
	1.2

	Halt current
				0.10
	0.055
	0.023

	
Note

	
These measurements used a standard Raspberry Pi OS image (current as of 26 Feb 2016, or June 2019 for the Raspberry Pi 4), at room temperature, with the Raspberry Pi connected to a HDMI monitor, USB keyboard, and USB mouse. The Raspberry Pi 3 Model B was connected to a wireless LAN access point, the Raspberry Pi 4 was connected to Ethernet. All these power measurements are approximate and do not take into account power consumption from additional USB devices; power consumption can easily exceed these measurements if multiple additional USB devices or a HAT are connected to the Raspberry Pi.

Extra PMIC features on Raspberry Pi 4 and Compute Module 4

Extra PMIC features on Raspberry Pi 4 and Compute Module 4

A number of different PMIC devices have been used on both Raspberry Pi 4 and CM4. All the PMICs provide extra functionality alongside that of voltage supply. This document describes how to access these features in software.

Decrease Raspberry Pi 5 wattage when turned off

By default, the Raspberry Pi 5 consumes around 1W to 1.4W of power when turned off. This can be decreased by manually editing the EEPROM configuration with sudo rpi-eeprom-config -e. Change the settings to the following:

 Copy to Clipboard

BOOT_UART=1
POWER_OFF_ON_HALT=1
BOOT_ORDER=0xf416

This should drop the power consumption when powered down to around 0.01W.

Power supply warnings

On all models of Raspberry Pi since the Raspberry Pi B+ (2014) except the Zero range, there is low-voltage detection circuitry that will detect if the supply voltage drops below 4.63V (±5%). This will result in an entry being added to the kernel log.

If you see warnings, switch to a higher quality power supply and cable. Low quality power supplies can corrupt storage or cause unpredictable behaviour within the Raspberry Pi.

Voltages can drop for a variety of reasons. You may have plugged in too many high-demand USB devices. The power supply could be inadequate. Or the power supply cable could use wires that are too thin.

Making a more resilient file system

Making a more resilient file system

Raspberry Pi devices are frequently used as data storage and monitoring devices, often in places where sudden power-downs may occur. As with any computing device, power dropouts can cause storage corruption.

This white paper provides some options on how to prevent data corruption under these and other circumstances by selecting appropriate file systems and setups to ensure data integrity.

Power supplies and Raspberry Pi OS

The bootloader passes information about the power supply via device-tree /proc/device-tree/chosen/power. Users will typically not read this directly.

	max_current
	
The max current in mA

	uspd_power_data_objects
	
A dump of the PDOs - debug for advanced users

	usb_max_current_enable
	
Whether the current limiter was set to high or low

	usb_over_current_detected
	
Whether any USB over current occurred during boot before transferring control to the OS

	reset_event
	
The PMIC reset reason e.g. watchdog, over- or under-voltage, over-temperature

The PMIC has built-in ADCs that, among other things, can measure the supply voltage EXT5V_V. Use the following command to view ADC measurements:

 Copy to Clipboard

vcgencmd pmic_read_adc

	
Note

	
You can’t see USB current or anything else connected directly to 5V, because this bypasses the PMIC. You should not expect this to add up to the wattage of the source power supply. However, it can be useful to monitor things like the core voltage.

Back-powering

The USB specification requires that USB devices must not supply current to upstream devices. If a USB device does supply current to an upstream device, then this is called back-powering. Often this happens when a badly-made powered USB hub is connected, and will result in the powered USB hub supplying power to the host Raspberry Pi. This is not recommended since the power being supplied to the Raspberry Pi via the hub will bypass the protection circuitry built into the Raspberry Pi, leaving it vulnerable to damage in the event of a power surge.

Real Time Clock (RTC)

Edit this on GitHub

The Raspberry Pi 5 includes an RTC module. This can be battery powered via the J5 (BAT) connector on the board located to the right of the USB-C power connector.

The J5 battery connector

You can set a wake alarm which will switch the board to a very low-power state (approximately 3mA). When the alarm time is reached, the board will power back on. This can be useful for periodic jobs like time-lapse imagery.

To support the low-power mode for wake alarms, edit the bootloader configuration:

 Copy to Clipboard

$ sudo -E rpi-eeprom-config --edit

adding the following two lines.

 Copy to Clipboard

POWER_OFF_ON_HALT=1
WAKE_ON_GPIO=0

You can test the functionality with:

 Copy to Clipboard

$ echo +600 | sudo tee /sys/class/rtc/rtc0/wakealarm
$ sudo halt

That will halt the board into a very low-power state, then wake and restart after 10 minutes.

The RTC also provides the time on boot e.g. in dmesg, for use cases that lack access to NTP:

 Copy to Clipboard

[1.295799] rpi-rtc soc:rpi_rtc: setting system clock to 2023-08-16T15:58:50 UTC (1692201530)

	
Note

	
The RTC is still usable even when there is no backup battery attached to the J5 connector.

Add a backup battery

Lithium-manganese rechargeable RTC battery

The official battery part is a rechargeable lithium manganese coin cell, with a pre-fitted two-pin JST-SH plug and an adhesive mounting pad. This is suitable for powering the RTC when the main power supply for the board is disconnected. Since the current draw when powered down measures in single-digit µA, the retention time measures in months.

	
Note

	
We do not recommend using a primary (non-rechargeable) lithium cell for the RTC. The RTC backup current consumption is higher than most dedicated RTC modules and will result in a short service life.

	
Warning

	
Do not use a Lithium Ion cell for the RTC.

Enable battery charging

The RTC is equipped with a constant-current (3mA) constant-voltage charger.

Charging of the battery is disabled by default. There are sysfs files that show the charging voltage and limits:

 Copy to Clipboard

/sys/devices/platform/soc/soc:rpi_rtc/rtc/rtc0/charging_voltage:0
/sys/devices/platform/soc/soc:rpi_rtc/rtc/rtc0/charging_voltage_max:4400000
/sys/devices/platform/soc/soc:rpi_rtc/rtc/rtc0/charging_voltage_min:1300000

To charge the battery at a set voltage, add rtc_bbat_vchg to /boot/firmware/config.txt:

 Copy to Clipboard

dtparam=rtc_bbat_vchg=3000000

Reboot with sudo reboot to use the new voltage setting. Check the sysfs files to ensure that the charging voltage was correctly set.

Disable battery charging

To stop charging, remove any lines that contain rtc_bbat_vchg from config.txt.

Serial peripheral interface (SPI)

Edit this on GitHub

Raspberry Pi computers are equipped with a number of SPI buses. SPI can be used to connect a wide variety of peripherals - displays, network controllers (Ethernet, CAN bus), UARTs, etc. These devices are best supported by kernel device drivers, but the spidev API allows userspace drivers to be written in a wide array of languages.

SPI hardware

Raspberry Pi Zero, 1, 2 and 3 have three SPI controllers:

	
SPI0, with two hardware chip selects, is available on the header of all Raspberry Pis; there is also an alternate mapping that is only available on Compute Modules.

	
SPI1, with three hardware chip selects, is available on all Raspberry Pi models except the original Raspberry Pi 1 Model A and Model B.

	
SPI2, also with three hardware chip selects, is only available on Compute Module 1, 3 and 3+.

On the Raspberry Pi 4, 400 and Compute Module 4 there are four additional SPI buses: SPI3 to SPI6, each with two hardware chip selects. These extra SPI buses are available via alternate function assignments on certain GPIO pins. For more information, see the BCM2711 Arm peripherals datasheet.

Chapter 10 in the BCM2835 Arm peripherals datasheet describes the main controller. Chapter 2.3 describes the auxiliary controller.

Pin/GPIO mappings

SPI0

	SPI function
	Header pin
	Broadcom pin name
	Broadcom pin function

	MOSI
	19
	GPIO10
	SPI0_MOSI

	MISO
	21
	GPIO09
	SPI0_MISO

	SCLK
	23
	GPIO11
	SPI0_SCLK

	CE0
	24
	GPIO08
	SPI0_CE0_N

	CE1
	26
	GPIO07
	SPI0_CE1_N

SPI0 alternate mapping (Compute Modules only, except CM4)

	SPI function
	Broadcom pin name
	Broadcom pin function

	MOSI
	GPIO38
	SPI0_MOSI

	MISO
	GPIO37
	SPI0_MISO

	SCLK
	GPIO39
	SPI0_SCLK

	CE0
	GPIO36
	SPI0_CE0_N

	CE1
	GPIO35
	SPI0_CE1_N

SPI1

	SPI function
	Header pin
	Broadcom pin name
	Broadcom pin function

	MOSI
	38
	GPIO20
	SPI1_MOSI

	MISO
	35
	GPIO19
	SPI1_MISO

	SCLK
	40
	GPIO21
	SPI1_SCLK

	CE0
	12
	GPIO18
	SPI1_CE0_N

	CE1
	11
	GPIO17
	SPI1_CE1_N

	CE2
	36
	GPIO16
	SPI1_CE2_N

SPI2 (Compute Modules only, except CM4)

	SPI function
	Broadcom pin name
	Broadcom pin function

	MOSI
	GPIO41
	SPI2_MOSI

	MISO
	GPIO40
	SPI2_MISO

	SCLK
	GPIO42
	SPI2_SCLK

	CE0
	GPIO43
	SPI2_CE0_N

	CE1
	GPIO44
	SPI2_CE1_N

	CE2
	GPIO45
	SPI2_CE2_N

SPI3 (BCM2711 only)

	SPI function
	Header pin
	Broadcom pin name
	Broadcom pin function

	MOSI
	03
	GPIO02
	SPI3_MOSI

	MISO
	28
	GPIO01
	SPI3_MISO

	SCLK
	05
	GPIO03
	SPI3_SCLK

	CE0
	27
	GPIO00
	SPI3_CE0_N

	CE1
	18
	GPIO24
	SPI3_CE1_N

SPI4 (BCM2711 only)

	SPI function
	Header pin
	Broadcom pin name
	Broadcom pin function

	MOSI
	31
	GPIO06
	SPI4_MOSI

	MISO
	29
	GPIO05
	SPI4_MISO

	SCLK
	26
	GPIO07
	SPI4_SCLK

	CE0
	07
	GPIO04
	SPI4_CE0_N

	CE1
	22
	GPIO25
	SPI4_CE1_N

SPI5 (BCM2711 only)

	SPI function
	Header pin
	Broadcom pin name
	Broadcom pin function

	MOSI
	08
	GPIO14
	SPI5_MOSI

	MISO
	33
	GPIO13
	SPI5_MISO

	SCLK
	10
	GPIO15
	SPI5_SCLK

	CE0
	32
	GPIO12
	SPI5_CE0_N

	CE1
	37
	GPIO26
	SPI5_CE1_N

SPI6 (BCM2711 only)

	SPI function
	Header pin
	Broadcom pin name
	Broadcom pin function

	MOSI
	38
	GPIO20
	SPI6_MOSI

	MISO
	35
	GPIO19
	SPI6_MISO

	SCLK
	40
	GPIO21
	SPI6_SCLK

	CE0
	12
	GPIO18
	SPI6_CE0_N

	CE1
	13
	GPIO27
	SPI6_CE1_N

Master modes

Signal name abbreviations

 Copy to Clipboard

SCLK - serial clock
CE - chip enable (often called chip select)
MOSI - master out slave in
MISO - master in slave out
MOMI - master out master in

Standard mode

In Standard SPI mode the peripheral implements the standard three-wire serial protocol (SCLK, MOSI and MISO).

Bidirectional mode

In bidirectional SPI mode the same SPI standard is implemented, except that a single wire is used for data (MOMI) instead of the two used in standard mode (MISO and MOSI). In this mode, the MOSI pin serves as MOMI pin.

Low speed serial interface (LoSSI) mode

The LoSSI standard allows issuing of commands to peripherals (LCD) and to transfer data to and from them. LoSSI commands and parameters are 8 bits long, but an extra bit is used to indicate whether the byte is a command or parameter/data. This extra bit is set high for data and low for a command. The resulting 9-bit value is serialised to the output. LoSSI is commonly used with MIPI DBI type C compatible LCD controllers.

	
Note

	
Some commands trigger an automatic read by the SPI controller, so this mode cannot be used as a multipurpose 9-bit SPI.

Transfer modes

	
Polled

	
Interrupt

	
DMA

Speed

The clock divider (CDIV) field of the CLK register sets the SPI clock speed:

 Copy to Clipboard

SCLK = Core Clock / CDIV

If CDIV is set to 0, the divisor is 65536. The divisor must be a multiple of 2, with odd numbers rounded down. Note that not all possible clock rates are usable because of analogue electrical issues (rise times, drive strengths, etc).

See the Linux driver section for more info.

Chip selects

Setup and hold times related to the automatic assertion and de-assertion of the CS lines when operating in DMA mode are as follows:

	
The CS line will be asserted at least three core clock cycles before the msb of the first byte of the transfer.

	
The CS line will be de-asserted no earlier than one core clock cycle after the trailing edge of the final clock pulse.

SPI software

Linux driver

The default Linux driver is spi-bcm2835.

SPI0 is disabled by default. To enable it, use raspi-config, or ensure the line dtparam=spi=on is not commented out in /boot/firmware/config.txt. By default it uses two chip select lines, but this can be reduced to one using dtoverlay=spi0-1cs. There is also dtoverlay=spi0-2cs; without any parameters it is equivalent to dtparam=spi=on.

To enable SPI1, you can use 1, 2 or 3 chip select lines, adding in each case:

 Copy to Clipboard

dtoverlay=spi1-1cs #1 chip select
dtoverlay=spi1-2cs #2 chip select
dtoverlay=spi1-3cs #3 chip select

…to the /boot/firmware/config.txt file. Similar overlays exist for SPI2, SPI3, SPI4, SPI5 and SPI6.

The driver does not make use of the hardware chip select lines because of some limitations. Instead, it can use an arbitrary number of GPIOs as software/GPIO chip selects. This means you are free to choose any spare GPIO as a CS line, and all of these SPI overlays include that control - see /boot/firmware/overlays/README for details, or run (for example) dtoverlay -h spi0-2cs (dtoverlay -a | grep spi might be helpful to list them all).

Speed

The driver supports all speeds which are even integer divisors of the core clock, although as said above not all of these speeds will support data transfer due to limits in the GPIOs and in the devices attached. As a rule of thumb, anything over 50MHz is unlikely to work, but your mileage may vary.

Supported mode bits

 Copy to Clipboard

SPI_CPOL - clock polarity
SPI_CPHA - clock phase
SPI_CS_HIGH - chip select active high
SPI_NO_CS - 1 device per bus, no Chip select
SPI_3WIRE - bidirectional mode, data in and out pin shared

Bidirectional mode, also called 3-wire mode, is supported by the spi-bcm2835 kernel module. Please note that in this mode, either the tx or rx field of the spi_transfer struct must be a NULL pointer, since only half-duplex communication is possible. Otherwise, the transfer will fail. The spidev_test.c source code does not consider this correctly, and therefore does not work at all in 3-wire mode.

Supported bits per word

	
8 - normal

	
9 - this is supported using LoSSI mode

Transfer modes

Interrupt mode is supported on all SPI buses. SPI0, and SPI3-6 also support DMA transfers.

SPI driver latency

This thread discusses latency problems.

spidev

spidev presents an ioctl-based userspace interface to individual SPI CS lines. Device Tree is used to indicate whether a CS line is going to be driven by a kernel driver module or managed by spidev on behalf of the user; it is not possible to do both at the same time. Note that Raspberry Pi’s own kernels are more relaxed about the use of Device Tree to enable spidev - the upstream kernels print warnings about such usage, and ultimately may prevent it altogether.

Using spidev from C

There is a loopback test program in the Linux documentation that can be used as a starting point. See the Troubleshooting section.

Using spidev from Python

There are several Python libraries that provide access to spidev, including spidev (pip install spidev - see https://pypi.org/project/spidev/) and SPI-Py (https://github.com/lthiery/SPI-Py).

Using spidev from a shell such as bash

 Copy to Clipboard

Write binary 1, 2 and 3
echo -ne "\x01\x02\x03" > /dev/spidev0.0

Other SPI libraries

There are other userspace libraries that provide SPI control by directly manipulating the hardware: this is not recommended.

Troubleshooting

Loopback test

This can be used to test SPI send and receive. Put a wire between MOSI and MISO. It does not test CE0 and CE1.

 Copy to Clipboard

wget https://raw.githubusercontent.com/raspberrypi/linux/rpi-6.1.y/tools/spi/spidev_test.c
gcc -o spidev_test spidev_test.c
./spidev_test -D /dev/spidev0.0
spi mode: 0
bits per word: 8
max speed: 500000 Hz (500 KHz)

FF FF FF FF FF FF
40 00 00 00 00 95
FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
DE AD BE EF BA AD
F0 0D

Some of the content above has been copied from the elinux SPI page, which also borrows from here. Both are covered by the CC-SA licence.

Universal Serial Bus (USB)

Edit this on GitHub

In general, every device supported by Linux can be used with a Raspberry Pi, although there are some limitations for models prior to Raspberry Pi 4.

Maximum power output

As with all computers, the USB ports on the Raspberry Pi supply a limited amount of power. Often problems with USB devices are caused by power issues. To rule out insufficient power as the cause of the problem, connect your USB devices to the Raspberry Pi using a powered hub.

	Model	Max power output of USB ports
	Raspberry Pi Zero, 1
	500mA per port1

	Raspberry Pi 2, 3, 4
	1200mA total across all ports

	Raspberry Pi 5
	600mA if using a 3A supply, 1600mA if using a 5A supply

	
For the original Raspberry Pi 1 Model B the limit is 100mA per port.

Raspberry Pi 5

The Raspberry Pi 5 requires a good quality USB-C power supply capable of delivering 3A at +5V (15W) in order to boot. However, using such a supply will restrict current draw to peripherals. If you are using a power supply that cannot provide 5A at +5V on first boot you will be warned by the operating system that the current draw to peripherals will be restricted to 600mA.

For users who wish to drive high-power peripherals like hard drives and SSDs, while retaining margin for peak workloads, a USB-PD enabled power supply capable of supplying a 5A at +5V (25W) should be used. If the Raspberry Pi 5 firmware detects such a supply, it increases the USB current limit for peripherals to 1.6A, providing 5W of extra power for downstream USB devices, and 5W of extra onboard power budget.

	
Note

	
The power budget is shared between the USB ports and the fan header.

Raspberry Pi 4

Raspberry Pi 4 offers two USB 3.0 ports and two USB 2.0 ports which are connected to a VL805 USB controller. The USB 2.0 lines on all four ports are connected to a single USB 2.0 hub within the VL805. This limits the total available bandwidth for USB 1.1 and USB 2.0 devices to that of a single USB 2.0 port.

On Raspberry Pi 4, the USB controller used on previous models is located on the USB type C port and is disabled by default.

Raspberry Pi Zero, 1, 2 and 3

Raspberry Pi 1 Model B+, Raspberry Pi 2, and Raspberry Pi 3 boards offer four USB 2.0 ports. Raspberry Pi Zero boards have one micro USB on-the-go (OTG) port.

The USB controller on models prior to Raspberry Pi 4 has only a basic level of support for certain devices, which presents a higher software processing overhead. It also supports only one root USB port: all traffic from connected devices is funnelled down this single bus, which operates at a maximum speed of 480Mbps.

The USB 2.0 specification defines three device speeds - low, full and high. Most mice and keyboards are low speed, most USB sound devices are full speed, and most video devices (webcams or video capture) are high speed.

Generally, there are no issues with connecting multiple high speed USB devices to a Raspberry Pi.

The software overhead incurred when talking to low- and full-speed devices means that there are limitations on the number of simultaneously active low- and full-speed devices. Small numbers of these types of devices connected to a Raspberry Pi will cause no issues.

Known USB issues

Interoperability with USB 3.0 hubs

There is an issue with USB 3.0 hubs in conjunction with the use of full- or low-speed devices, including most mice and keyboards. A bug in most USB 3.0 hub hardware means that the models prior to Raspberry Pi 4 cannot talk to full or low speed devices connected to a USB 3.0 hub.

USB 2.0 high speed devices, including USB 2.0 hubs, operate correctly when connected via a USB 3.0 hub.

Avoid connecting low or full speed devices into a USB 3.0 hub. As a workaround, plug a USB 2.0 hub into the downstream port of the USB 3.0 hub and connect the low-speed device, or use a USB 2.0 hub between the Raspberry Pi and the USB 3.0 hub, then plug low-speed devices into the USB 2.0 hub.

USB 1.1 webcams

Old webcams may be full-speed devices. Because these devices transfer a lot of data and incur additional software overhead, reliable operation is not guaranteed. As a workaround, try to use the camera at a lower resolution.

Esoteric USB sound cards

Expensive audiophile sound cards typically use large amounts of USB bandwidth. Reliable operation with 96kHz/192kHz DACs is not guaranteed. As a workaround, forcing the output stream to be CD quality (44.1kHz/48kHz 16-bit) will reduce the stream bandwidth to reliable levels.

Single TT USB hubs

USB 2.0 and 3.0 hubs have a mechanism for talking to full- or low-speed devices connected to their downstream ports called a transaction translator (TT). This device buffers high speed requests from the host and transmits them at full or low speed to the downstream device. Two configurations of hub are allowed by the USB specification: Single TT (one TT for all ports) and Multi TT (one TT per port). Because of a hardware limitation, if too many full- or low-speed devices are plugged into a single TT hub, the devices may behave unreliably. It is recommended to use a Multi TT hub to interface with multiple full and low speed devices. As a workaround, spread full- and low-speed devices out between the Raspberry Pi’s own USB port and the single TT hub.

Raspberry Pi revision codes

Edit this on GitHub

Each distinct Raspberry Pi model revision has a unique revision code. You can look up a Raspberry Pi’s revision code by running:

 Copy to Clipboard

cat /proc/cpuinfo

The last three lines show the hardware type, the revision code, and the Raspberry Pi’s unique serial number. For example:

 Copy to Clipboard

Hardware : BCM2835
Revision : a02082
Serial : 00000000765fc593

	
Note

	
All Raspberry Pi computers report BCM2835, even those with BCM2836, BCM2837, BCM2711, and BCM2712 processors. You should not use this string to detect the processor. Decode the revision code using the information below, or cat /sys/firmware/devicetree/base/model.

Old-style revision codes

The first set of Raspberry Pi models were given sequential hex revision codes from 0002 to 0015:

	Code	Model	Revision	RAM	Manufacturer
	0002
	B
	1.0
	256MB
	Egoman

	0003
	B
	1.0
	256MB
	Egoman

	0004
	B
	2.0
	256MB
	Sony UK

	0005
	B
	2.0
	256MB
	Qisda

	0006
	B
	2.0
	256MB
	Egoman

	0007
	A
	2.0
	256MB
	Egoman

	0008
	A
	2.0
	256MB
	Sony UK

	0009
	A
	2.0
	256MB
	Qisda

	000d
	B
	2.0
	512MB
	Egoman

	000e
	B
	2.0
	512MB
	Sony UK

	000f
	B
	2.0
	512MB
	Egoman

	0010
	B+
	1.2
	512MB
	Sony UK

	0011
	CM1
	1.0
	512MB
	Sony UK

	0012
	A+
	1.1
	256MB
	Sony UK

	0013
	B+
	1.2
	512MB
	Embest

	0014
	CM1
	1.0
	512MB
	Embest

	0015
	A+
	1.1
	256MB/512MB
	Embest

New-style revision codes

With the launch of the Raspberry Pi 2, new-style revision codes were introduced. Rather than being sequential, each bit of the hex code represents a piece of information about the revision:

 Copy to Clipboard

NOQuuuWuFMMMCCCCPPPPTTTTTTTTRRRR

	Part	Represents	Options
	N (bit 31)
	Overvoltage
	0: Overvoltage allowed

			1: Overvoltage disallowed

	O (bit 30)
	OTP Program1
	0: OTP programming allowed

			1: OTP programming disallowed

	Q (bit 29)
	OTP Read1
	0: OTP reading allowed

			1: OTP reading disallowed

	uuu (bits 26-28)
	Unused
	Unused

	W (bit 25)
	Warranty bit2
	0: Warranty is intact

			1: Warranty has been voided by overclocking

	u (bit 24)
	Unused
	Unused

	F (bit 23)
	New flag
	1: new-style revision

			0: old-style revision

	MMM (bits 20-22)
	Memory size
	0: 256MB

			1: 512MB

			2: 1GB

			3: 2GB

			4: 4GB

			5: 8GB

	CCCC (bits 16-19)
	Manufacturer
	0: Sony UK

			1: Egoman

			2: Embest

			3: Sony Japan

			4: Embest

			5: Stadium

	PPPP (bits 12-15)
	Processor
	0: BCM2835

			1: BCM2836

			2: BCM2837

			3: BCM2711

			4: BCM2712

	TTTTTTTT (bits 4-11)
	Type
	0: A

			1: B

			2: A+

			3: B+

			4: 2B

			5: Alpha (early prototype)

			6: CM1

			8: 3B

			9: Zero

			a: CM3

			c: Zero W

			d: 3B+

			e: 3A+

			f: Internal use only

			10: CM3+

			11: 4B

			12: Zero 2 W

			13: 400

			14: CM4

			15: CM4S

			16: Internal use only

			17: 5

	RRRR (bits 0-3)
	Revision
	0, 1, 2, etc.

1 Information on programming the OTP bits.

2 The warranty bit is never set on Raspberry Pi 4.

New-style revision codes in use

	
Note

	
This list is not exhaustive - there may be codes in use that are not in this table. Please see the next section for best practices on using revision codes to identify boards.

	Code	Model	Revision	RAM	Manufacturer
	900021
	A+
	1.1
	512MB
	Sony UK

	900032
	B+
	1.2
	512MB
	Sony UK

	900092
	Zero
	1.2
	512MB
	Sony UK

	900093
	Zero
	1.3
	512MB
	Sony UK

	9000c1
	Zero W
	1.1
	512MB
	Sony UK

	9020e0
	3A+
	1.0
	512MB
	Sony UK

	9020e1
	3A+
	1.1
	512MB
	Sony UK

	920092
	Zero
	1.2
	512MB
	Embest

	920093
	Zero
	1.3
	512MB
	Embest

	900061
	CM1
	1.1
	512MB
	Sony UK

	a01040
	2B
	1.0
	1GB
	Sony UK

	a01041
	2B
	1.1
	1GB
	Sony UK

	a02082
	3B
	1.2
	1GB
	Sony UK

	a020a0
	CM3
	1.0
	1GB
	Sony UK

	a020d3
	3B+
	1.3
	1GB
	Sony UK

	a020d4
	3B+
	1.4
	1GB
	Sony UK

	a02042
	2B (with BCM2837)
	1.2
	1GB
	Sony UK

	a21041
	2B
	1.1
	1GB
	Embest

	a22042
	2B (with BCM2837)
	1.2
	1GB
	Embest

	a22082
	3B
	1.2
	1GB
	Embest

	a220a0
	CM3
	1.0
	1GB
	Embest

	a32082
	3B
	1.2
	1GB
	Sony Japan

	a52082
	3B
	1.2
	1GB
	Stadium

	a22083
	3B
	1.3
	1GB
	Embest

	a02100
	CM3+
	1.0
	1GB
	Sony UK

	a03111
	4B
	1.1
	1GB
	Sony UK

	b03111
	4B
	1.1
	2GB
	Sony UK

	b03112
	4B
	1.2
	2GB
	Sony UK

	b03114
	4B
	1.4
	2GB
	Sony UK

	b03115
	4B
	1.5
	2GB
	Sony UK

	c03111
	4B
	1.1
	4GB
	Sony UK

	c03112
	4B
	1.2
	4GB
	Sony UK

	c03114
	4B
	1.4
	4GB
	Sony UK

	c03115
	4B
	1.5
	4GB
	Sony UK

	d03114
	4B
	1.4
	8GB
	Sony UK

	d03115
	4B
	1.5
	8GB
	Sony UK

	c03130
	Pi 400
	1.0
	4GB
	Sony UK

	a03140
	CM4
	1.0
	1GB
	Sony UK

	b03140
	CM4
	1.0
	2GB
	Sony UK

	c03140
	CM4
	1.0
	4GB
	Sony UK

	d03140
	CM4
	1.0
	8GB
	Sony UK

	902120
	Zero 2 W
	1.0
	512MB
	Sony UK

	c04170
	5
	1.0
	4GB
	Sony UK

	d04170
	5
	1.0
	8GB
	Sony UK

Using revision codes for board identification

From the command line we can use the following to get the revision code of the board:

 Copy to Clipboard

$ cat /proc/cpuinfo | grep Revision
Revision : c03111

In this example above, we have a hexadecimal revision code of c03111. Converting this to binary, we get 0 0 0 000 0 0 1 100 0000 0011 00010001 0001. Spaces have been inserted to show the borders between each section of the revision code, according to the above table.

Starting from the lowest order bits, the bottom four (0-3) are the board revision number, so this board has a revision of 1. The next eight bits (4-11) are the board type, in this case binary 00010001, hex 11, so this is a Raspberry Pi 4B. Using the same process, we can determine that the processor is a BCM2711, the board was manufactured by Sony UK, and it has 4GB of RAM.

Getting the revision code in your program

Obviously there are so many programming languages out there it’s not possible to give examples for all of them, but here are two quick examples for C and Python. Both these examples use a system call to run a bash command that gets the cpuinfo and pipes the result to awk to recover the required revision code. They then use bit operations to extract the New, Model, and Memory fields from the code.

 Copy to Clipboard

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 FILE *fp;
 char revcode[32];

 fp = popen("cat /proc/cpuinfo | awk '/Revision/ {print $3}'", "r");
 if (fp == NULL)
 exit(1);
 fgets(revcode, sizeof(revcode), fp);
 pclose(fp);

 int code = strtol(revcode, NULL, 16);
 int new = (code >> 23) & 0x1;
 int model = (code >> 4) & 0xff;
 int mem = (code >> 20) & 0x7;

 if (new && model == 0x11 && mem >= 3) // Note, 3 in the mem field is 2GB
 printf("We are a 4B with at least 2GB of RAM!\n");

 return 0;
}

And the same in Python:

 Copy to Clipboard

import subprocess

cmd = "cat /proc/cpuinfo | awk '/Revision/ {print $3}'"
revcode = subprocess.check_output(cmd, shell=True)

code = int(revcode, 16)
new = (code >> 23) & 0x1
model = (code >> 4) & 0xff
mem = (code >> 20) & 0x7

if new and model == 0x11 and mem >= 3 : # Note, 3 in the mem field is 2GB
 print("We are a 4B with at least 2GB RAM!")

Best practices for revision code usage

To avoid problems when new board revisions are created, do not use the revision code (e.g. c03111).

A naive implementation uses a list of supported revision codes, comparing the detected code with the list to decide if the device is supported.
This breaks when a new board revision comes out or if the production location changes: each creates a new revision code not in the supported revision code list. This would cause rejections of new revisions of the same board type, despite the fact that they are always backwards-compatible. Every time a new revision appears, you would have to release a new supported revision code list containing the new revision code - an onerous support burden.

Instead, use one of the following approaches:

	
Filter by the board-type field (3A, 4B, etc.), which indicates the model, but not the revision.

	
Filter by the amount-of-memory field, since RAM vaguely corresponds to the computing power of a board.

For instance, you could limit support to Raspberry Pi 4B models with 2GB of RAM or more.
The examples in the previous section use this recommended approach.

	
Note

	
Always check bit 23, the 'New' flag, to ensure that the revision code is the new version before checking any other fields.

Check Raspberry Pi model and CPU across distributions

Support and formatting for /proc/cpuinfo varies across Linux distributions. To check the model or CPU of a Raspberry Pi device on any Linux distribution (including Raspberry Pi OS), check the device tree:

 Copy to Clipboard

$ cat /proc/device-tree/compatible | tr '\0' '\n'
raspberrypi,5-model-b
brcm,bcm2712

This outputs two null-separated string values, each containing a comma-separated make and model. For instance, the Raspberry Pi 5 outputs the board and CPU strings above. These correspond to the following values:

	
raspberrypi (board make)

	
5-model-b (board model)

	
brcm (CPU make)

	
bcm2712 (CPU model)

Raspberry Pi models have the following device tree values:

	Device Name	Make	Model	CPU Make	CPU
	Raspberry Pi 5
	raspberrypi
	5-model-b
	brcm
	bcm2712

	Raspberry Pi 400
	raspberrypi
	400
	brcm
	bcm2711

	Raspberry Pi Compute Module 4
	raspberrypi
	4-compute-module
	brcm
	bcm2711

	Raspberry Pi 4 Model A
	raspberrypi
	4-model-a
	brcm
	bcm2711

	Raspberry Pi 4 Model B
	raspberrypi
	4-model-b
	brcm
	bcm2711

	Raspberry Pi Compute Module 3
	raspberrypi
	3-compute-module
	brcm
	bcm2837

	Raspberry Pi 3 Model A+
	raspberrypi
	3-model-a-plus
	brcm
	bcm2837

	Raspberry Pi 3 Model B+
	raspberrypi
	3-model-b-plus
	brcm
	bcm2837

	Raspberry Pi 3 Model B
	raspberrypi
	3-model-b
	brcm
	bcm2837

	Raspberry Pi 2 Model B
	raspberrypi
	2-model-b
	brcm
	bcm2836

	Raspberry Pi Compute Module
	raspberrypi
	compute-module
	brcm
	bcm2835

	Raspberry Pi Model A+
	raspberrypi
	model-a-plus
	brcm
	bcm2835

	Raspberry Pi Model B+
	raspberrypi
	model-b-plus
	brcm
	bcm2835

	Raspberry Pi Model B Rev 2
	raspberrypi
	model-b-rev2
	brcm
	bcm2835

	Raspberry Pi Model A
	raspberrypi
	model-a
	brcm
	bcm2835

	Raspberry Pi Model B
	raspberrypi
	model-b
	brcm
	bcm2835

	Raspberry Pi Zero 2 W
	raspberrypi
	model-zero-2-w
	brcm
	bcm2837

	Raspberry Pi Zero
	raspberrypi
	model-zero
	brcm
	bcm2835

	Raspberry Pi Zero W
	raspberrypi
	model-zero-w
	brcm
	bcm2835

 Raspberry Pi documentation is copyright © 2012-2024 Raspberry Pi Ltd and is licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA) licence.

 Some content originates from the eLinux wiki, and is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported licence.

 The terms HDMI, HDMI High-Definition Multimedia Interface, HDMI trade dress and the HDMI Logos are trademarks or registered trademarks of HDMI Licensing Administrator, Inc

 Follow us

 	

 Sign up to newsletter

	

 Threads

	

 Mastodon

	

 YouTube

	

 Instagram

	

 LinkedIn

	

 Facebook

 About Raspberry Pi

 	News
	Contact us
	Trademark
	About us
	Our Approved Resellers
	Jobs
	Accessibility
	Site use terms and conditions
	Acceptable use
	Cookies
	Licensing
	Terms and conditions of sale
	Privacy
	Security
	Verify our bank details

 For home

 	Raspberry Pi for home
	Tutorials

 For industry

 	Raspberry Pi for industry
	Thin clients
	Raspberry Pi in space
	Powered by Raspberry Pi
	Design partners
	Success stories

 Hardware

 	Computers and microcontrollers
	Cameras and displays
	Add-on boards
	Power supplies and cables
	Cases
	Peripherals

 Software

 	Raspberry Pi OS
	Raspberry Pi Imager
	Raspberry Pi Desktop

 Documentation

 	All categories
	Product information portal
	Datasheets

 Community

 	Forums
	Events

 Raspberry Pi Store

 	Store information

 Raspberry Pi Press

 	About Raspberry Pi Press
	The MagPi
	HackSpace

